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Abstract: For a continuous-scale diagnostic test, the receiver operating characteristic (ROC) curve is a
popular tool for displaying the ability of the test to discriminate between healthy and diseased subjects.
In some studies, verification of the true disease status is performed only for a subset of subjects, possibly
depending on the test result and other characteristics of the subjects. Estimators of the ROC curve based
only on this subset of subjects are typically biased; this is known as verification bias. Methods have been
proposed to correct verification bias, in particular under the assumption that the true disease status, if
missing, is missing at random (MAR). MAR assumption means that the probability of missingness depends
on the true disease status only through the test result and observed covariate information. However, the
existing methods require parametric models for the (conditional) probability of disease and/or the (condi-
tional) probability of verification, and hence are subject to model misspecification: a wrong specification of
such parametric models can affect the behavior of the estimators, which can be inconsistent. To avoid
misspecification problems, in this paper we propose a fully nonparametric method for the estimation of the
ROC curve of a continuous test under verification bias. The method is based on nearest-neighbor imputation
and adopts generic smooth regression models for both the probability that a subject is diseased and the
probability that it is verified. Simulation experiments and an illustrative example show the usefulness of the
new method. Variance estimation is also discussed.
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1 Introduction

The evaluation of the ability of a diagnostic or a screening test to separate diseased from non-diseased
subjects is a crucial issue in modern medicine. In fact, before applying a test in a clinical setting, rigorous
statistical assessment of its performance in discriminating the disease status from the non-disease status is
required.

Typically, in evaluating a diagnostic test’s discriminatory ability, the available data come from medical
records of patients who undergo the test. The accuracy of the test under study is ideally evaluated by
comparison with a perfect gold standard test, which assesses disease status with certainty. In practice,
however, a gold standard may be too expensive, or too invasive or both for regular use. Hence, only a subset
of patients undergoes disease verification, and the decision to send a patient to verification is often based on
the test result and other patient characteristics. As noted by many authors (see Begg and Greenes [1], Begg [2]
and Zhou [3], among others), summary measures of test performance based on data from patients with
verified disease status only may be badly biased. This bias is usually referred to as verification bias.

For a diagnostic test that yields a continuous test result, the receiver operating characteristic (ROC)
curve is a popular tool for displaying the ability of the test to discriminate between healthy and diseased
subjects. The continuous test result can be dichotomized at a specified cutpoint. Given the cutpoint c, the
sensitivity SeðcÞ is the probability of a true positive, i.e., the probability that the test correctly identifies a
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diseased subject. The specificity SpðcÞ is the probability of a true negative, i.e. the probability that the test
correctly identifies a non-diseased subject. When one varies the cutpoint throughout the entire real line, the
resulting pairs (1-specificity, sensitivity) form the ROC curve. A commonly used summary measure that
aggregates performance information of the test is the area under the ROC curve (AUC). See, for example,
Zhou et al. [4] as a general reference.

In the presence of verification bias, under the assumption that the true disease status, if missing, is
missing at random (MAR), estimation of the ROC curve of a continuous test, i.e., estimation of sensitivity and
specificity, has been discussed in Alonzo and Pepe [5], where alternative estimators are reviewed and
compared. MAR assumption states that the probability of a subject having the disease status verified is purely
determined by the test result and the subjects’ observed characteristics and is conditionally independent of the
unknown true disease status. This corresponds to a so-called ignorable missingness, which is often assumed in
practice. Estimation of the ROC curve when the true diseased status is subject to non-ignorable missingness is
tackled in Fluss et al. [6] and Liu and Zhou [7]. In all these cases, however, inference on the ROC curve requires
specification of a parametric regression model for the probability of a subject being diseased and/or verified. A
wrong specification of these parametric models affects the behavior of the estimators.

To reduce the effects of model misspecification, He and McDermott [8] propose a method that stratifies
the verified sample into several subsamples that have homogeneous propensity scores (the conditional
probabilities of verification) and allows correction for verification bias within each subsample. Parametric
models are still used to estimate the propensity scores, but since the estimated propensity scores are only
used for the purpose of stratification, the estimators of sensitivity and specificity are less sensitive to model
misspecification. The method applies to binary tests under the MAR assumption.

In this paper, we propose a fully nonparametric method for the estimation of the ROC curve of a
continuous test under verification bias. The proposed method is based on nearest-neighbor imputation and
adopts generic smooth regression models for both the probability that a subject is diseased and the
probability that it is verified. Our choice is motivated by the results in Ning and Cheng [9], according to
which the nearest-neighbor imputation method favorably compares with other nonparametric imputation
methods in estimating a population mean.

The estimators for the sensitivity and the specificity obtained by the new approach are shown to be
consistent and asymptotically normal under the MAR assumption. Estimation of their variance is also
discussed. Some simulation results and an illustrative example show usefulness of our proposal and
advantages in comparison with known estimators.

The paper is organized as follows. In Section 2, we give a brief review of existing methods for estimating
the ROC curve under verification bias. Section 3 describes the proposed approach, giving theoretical
justification. Section 4 presents some results of a simulation study carried out to compare the new method
with the existing methods. In Section 5, we illustrate the method with an example, and Section 6 contains
details about variance estimation. A concluding discussion is given in Section 7.

2 Background

In this section, we review current bias-correction methods in the presence of verification bias, as presented
in Alonzo and Pepe [5]. Let Ti denote the continuous test result from a diagnostic test, and let Di denote the
binary disease status, i ¼ 1; . . . ; n; where Di ¼ 1 indicates the ith patient is diseased and Di ¼ 0 indicates the
ith patient is free of disease. Let Vi denote the binary verification status of the ith patients, with Vi ¼ 1 if the
ith patient has the true disease status verified, and Vi ¼ 0 otherwise. In practice, some information, other
than the results from the test, can be obtained for each patient. Let Xi be a vector of observed covariates for
the ith patient that may be associated with both Di and Vi.

When all patients are verified, i.e., Vi ¼ 1; i ¼ 1; . . . ; n; a complete data set is obtained. In this case, for
any cutpoint c, the sensitivity SeðcÞ and the specificity SpðcÞ could be easily estimated by
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bSeðcÞ ¼
Pn
i¼1

IðTi � cÞDiPn
i¼1

Di

; cSpðcÞ ¼
Pn
i¼1

IðTi < cÞð1� DiÞPn
i¼1

ð1� DiÞ
;

where Ið�Þ is the indicator function. bSeðcÞ and cSpðcÞ are unbiased estimators for SeðcÞ and SpðcÞ;
respectively.

If not all patients have their disease status verified, several estimators based on the MAR assumption
have been proposed. MAR assumption states that the binary responses D and V are mutually independent
given the test result T and the covariates X, i.e.,

PrðV ¼ 1jD;T;XÞ ¼ PrðV ¼ 1jT;XÞ: ð1Þ
The so-called full imputation (FI) estimators of SeðcÞ and SpðcÞ are

bSeFIðcÞ ¼
Pn
i¼1

IðTi � cÞρ̂iPn
i¼1

ρ̂i

; cSpFIðcÞ ¼
Pn
i¼1

IðTi < cÞð1� ρ̂iÞPn
i¼1

ð1� ρ̂iÞ
:

Parametric models, such as logistic regression models, have to be used to obtain the estimate ρ̂i of
ρi ¼ PrðDi ¼ 1jTi;XiÞ using only data from verified subjects. Mean score imputation (MSI) is another possible
approach that only imputes disease status for subjects who are not in the verification sample. In this case,

bSeMSIðcÞ ¼
Pn
i¼1

IðTi � cÞfViDi þ ð1� ViÞρ̂igPn
i¼1

fViDi þ ð1� ViÞρ̂ig
;

cSpMSIðcÞ ¼
Pn
i¼1

IðTi < cÞfVið1� DiÞþð1� ViÞð1� ρ̂iÞgPn
i¼1

fVið1� DiÞ þ ð1� ViÞð1� ρ̂iÞg
:

The inverse probability weighting (IPW) estimator weights each verified subject by the inverse of the
probability that the subject is selected for verification. Therefore, the estimators of SeðcÞ and SpðcÞ are

bSeIPWðcÞ ¼
Pn
i¼1

IðTi � cÞViDiπ̂�1
iPn

i¼1
ViDiπ̂�1

i

;

cSpIPWðcÞ ¼
Pn
i¼1

IðTi < cÞVið1� DiÞπ̂�1
iPn

i¼1
Við1� DiÞπ̂�1

i

;

where π̂i is an estimate of πi ¼ PrðVi ¼ 1jTi;XiÞ: Finally, the semiparametric efficient (SPE) estimators are

bSeSPEðcÞ ¼
Pn
i¼1

IðTi � cÞfViDiþðπ̂i � ViÞρ̂igπ̂�1
iPn

i¼1
fViDiþðπ̂i � ViÞρ̂igπ̂�1

i

;

bSeSPEðcÞ ¼
Pn
i¼1

IðTi < cÞfVið1� DiÞþðπ̂i � ViÞð1� ρ̂iÞgπ̂�1
iPn

i¼1
fVið1� DiÞþðπ̂i � ViÞð1� ρ̂iÞgπ̂�1

i

:
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Alonzo and Pepe [5] find that SPE estimators are doubly robust in the sense that they are consistent if either
πi’s or ρi’s are estimated consistently.

3 The proposal

All the verification bias-corrected estimators of SeðcÞ and SpðcÞ reviewed in the previous section require a
regression model to be fitted for a binary response, D or V. The FI and MSI approaches require estimates of
ρi’s, whereas the IPW approach requires estimates of πi’s. The SPE approach requires estimates of both ρi’s
and πi;’s although only one of the two sets of probabilities needs to be estimated consistently. Typically,
suitable generalized linear regression models are employed to this end. However, a wrong specification of
such parametric models might strongly affect the behavior of the estimators.

To avoid misspecification problems, in what follows we propose a fully nonparametric approach to the
estimation of SeðcÞ and SpðcÞ: Our approach is based on the K-nearest-neighbor (KNN) imputation estimator
of the mean of a response variable as discussed in Ning and Cheng [9].

Hereafter, we will assume Y ¼ ðT;XÞT to be a continuous-valued random vector. Let θ1 be the disease
prevalence, i.e., θ1 ¼ EðDÞ ¼ PrðD ¼ 1Þ: As θ1 is a mean, following Ning and Cheng [9], for a finite positive
integer K and a suitable distance measure, a nearest-neighbor imputation estimator of θ1, based on the
sample ðYi;Di;ViÞ; i ¼ 1; . . . ; n; may be defined as

θ̂1 ¼ 1
n

Xn
i¼1

fViDi þ ð1� ViÞρ̂Kig; ð2Þ

where ρ̂Ki ¼ 1
K

PK
j¼1 DiðjÞ; and fðYiðjÞ;DiðjÞÞ : ViðjÞ ¼ 1; j ¼ 1; . . . ;Kg is a set of K observed data pairs and YiðjÞ

denotes the jth nearest neighbor to Yi ¼ ðTi;XiÞT among all Y’s corresponding to the verified patients, i.e., to
those Dh’s with Vh ¼ 1:

Let θ2 ¼ PrðT � c;D ¼ 1Þ and θ3 ¼ PrðT � c;D ¼ 0Þ: Then SeðcÞ ¼ θ2
θ1
and SpðcÞ ¼ 1� θ3

1�θ1
: Similarly to

θ̂1, KNN estimators for θ2 and θ3 can be defined as:

θ̂2 ¼ 1
n

Xn
i¼1

IðTi � cÞfViDi þ ð1� ViÞρ̂Kig;

θ̂3 ¼ 1
n

Xn
i¼1

IðTi � cÞfVið1� DiÞ þ ð1� ViÞð1� ρ̂KiÞg:

Therefore

bSeKNNðcÞ ¼ θ̂2
θ̂1

and cSpKNNðcÞ ¼ 1� θ̂1 � θ̂3
1� θ̂1

;

are KNN imputation estimators for the sensitivity SeðcÞ and the specificity SpðcÞ; respectively. The following
theorem gives asymptotic normality of bSeKNNðcÞ and cSpKNNðcÞ

Let ρðyÞ ¼ PrðD ¼ 1jY ¼ yÞ and πðyÞ ¼ PrðV ¼ 1jY ¼ yÞ:

Theorem 1 Assume (1) and first-order differentiability of the functions ρðyÞ and πðyÞ. Moreover, assume that
Eð1=πðYÞÞ < 1: Then, for a fixed cutpoint c; the KNN imputation estimators bSeKNNðcÞ and cSpKNNðcÞ based on
the sample ðYi;Di;ViÞ; i ¼ 1; . . . ; n; are consistent and asymptotically normally distributed.

Proof 1 Since EðD2Þ < 1; VarðDjY ¼ yÞ ¼ ρðyÞð1� ρðyÞÞ < 1; ρðyÞ and πðyÞ are finite and first order
differentiable, by Theorem 1 in Ning and Cheng [9], the KNN imputation estimator θ̂1 is consistent and
asymptotically normally distributed, that is
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ffiffiffi
n

p ðθ̂1 � θ1Þ ! Nð0; σ21Þ; ð3Þ
as n goes to infinity, where

σ21 ¼ θ1ð1� θ1Þ þ E ρðYÞð1� ρðYÞÞð1� πðYÞÞ½ � 1þ 1
K

� �
þ E

ρðYÞð1� ρðYÞÞð1� πðYÞÞ2
πðYÞ

" #
:

Moreover, one can write

θ̂2 ¼ 1
n

Xn
i¼1

IðTi � cÞfViDi þ ð1� ViÞρig þ
1
n

Xn
i¼1

IðTi � cÞð1� ViÞðρ̂Ki � ρiÞ; ð4Þ

and

θ̂3 ¼ 1
n

Xn
i¼1

IðTi � cÞfVið1� DiÞ þ ð1� ViÞð1� ρiÞg �
1
n

Xn
i¼1

IðTi � cÞð1� ViÞðρ̂Ki � ρiÞ: ð5Þ

Hence, conditions stated in the theorem allow to apply the arguments given in the proof of Theorem 1 in Ning
and Cheng [9] showing, in particular, that

1
n

Xn
i¼1

IðTi � cÞð1� ViÞðρ̂Ki � ρiÞ ¼ W þ opðn�1=2Þ;

where W ¼ 1
n

Pn
i¼1 IðTi � cÞð1� ViÞ 1

K

PK
j¼1 ViðjÞDiðjÞ � ρiðjÞ
� �h i

; and

ffiffiffi
n

p
W ! N 0;

1
K
E ð1� πðYÞÞσ2ðYÞ� �þ E

ð1� πðYÞÞ2σ2ðYÞ
πðYÞ

" # !
;

in distribution (here, σ2ðYÞ denotes the conditional variance of IðT � c;D ¼ 1Þ given Y). Furthermore,
ffiffiffi
n

p
W

behaves asymptotically as a sample mean. This, together with an application of the standard central limit
theorem to the first term of the right hand side of equations (4) and (5), leads to asymptotic results for θ̂2 and
θ̂3 similar to that in (3). That isffiffiffi

n
p ðθ̂2 � θ2Þ ! Nð0; σ22Þ;

ffiffiffi
n

p ðθ̂3 � θ3Þ ! Nð0; σ23Þ;

as n goes to infinity, for suitable values σ22 and σ23 (see also Section 6). Finally, θ̂1; θ̂2 and θ̂3 are jointly

asymptotically normal. Thus, by a standard application of the delta method, bSeKNNðcÞ ¼ θ̂2
θ̂1

andcSpKNNðcÞ ¼ 1�θ̂1�θ̂3
1�θ̂1

are consistent and asymptotically normal estimators of SeðcÞ and SpðcÞ; respectively.

It is straightforward to show that estimators bSeKNNðcÞ and cSpKNNðcÞ are nonparametric version of the MSI
estimators, i.e.,

bSeKNNðcÞ ¼
Pn
i¼1

IðTi � cÞfViDiþð1� ViÞρ̂KigPn
i¼1

fViDiþð1� ViÞρ̂Kig
;

cSpKNNðcÞ ¼
Pn
i¼1

IðTi < cÞfVið1� DiÞþð1� ViÞð1� ρ̂KiÞgPn
i¼1

fVið1� DiÞþð1� ViÞð1� ρ̂KiÞg
:

ð6Þ

Clearly, by varying c; the pairs ð1�cSpKNNðcÞ; bSeKNNðcÞÞ give rise to the nonparametric verification bias-
corrected estimate of the ROC curve. Moreover, it is worth noting that (2) gives a fully nonparametric
estimator for the disease prevalence that is alternative to the estimators, obtained by the FI, MSI, IPW and
SPE methods, discussed in Alonzo and Pepe [10].
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In practice, the use of our estimators requires to select the neighborhood size K and a suitable distance
measure. Such aspects, touched upon in the following section, are discussed in Section S1 of
Supplementary Material.

4 Simulation study

In this section, Monte Carlo experiments are used to compare the new method with existing approaches
with respect to bias and standard deviation. In particular, we compare the ability of the MSI, IPW, SPE and
KNN methods to estimate the sensitivity and the specificity of a test. We do not consider the FI method
because of its similarities with the MSI method. As for the KNN method, we give the results for the
estimators based on the quite commonly used Euclidean distance and on values of K equal to 1 and 3.
This choice is supported by the results of a preliminary simulation study, in which KNN estimators based on
various distance measures (Manhattan, Euclidean, Lagrange and Mahalanobis) and on different neighbor-
hood sizes (K ¼ 1; 3; 5; 10; 20) have been compared (see Supplementary Material, Section S1).

From Section 2, the MSI method requires a parametric model for ρðyÞ, the IPW method requires a
parametric model for πðyÞ, and the SPE method requires both models. A wrong specification of such
models may affect the est imation. Hence, in the simulation study we consider two scenarios: (i) the
models for ρðyÞ and πðyÞ are both correctly specified, (ii) the models for ρðyÞ and πðyÞ are both
misspecified. Scenario (i) allows to evaluate the behavior of the proposed estimators in samples of
moderate sizes, where the MSI, IPW and SPE estimators are expected to well behave. On the other side,
scenario (ii) allows to look for weaknesses of existing methods and to highlight the potential advantages
of the new proposal.

Simulation settings are similar to those in Alonzo and Pepe [5] and He and McDermott [8]. Starting from
two independent random variables Z1,Nð0;0:5Þ and Z2,Nð0;0:5Þ, the disease indicator D is specified as
D ¼ I½gðZ1; Z2Þ > r1�: The threshold r1 determines the disease prevalence (in what follows, we choose r1 to
make the disease prevalence 0.25) and different specifications of the function gðZ1; Z2Þ give rise to different
disease processes. The diagnostic test result T and an auxiliary covariate X are generated to be related to D
through Z1 and Z2: More precisely, T ¼ hðZ1; Z2Þ þ "1 and X ¼ f ðZ1; Z2Þ þ "2; for suitable functions hð�; �Þ and
f ð�; �Þ; where "1 and "2 are independent Nð0;0:25Þ random variables, independent also from Z1 and Z2.
Finally, the verification probability π is set to be a suitable function of T and X; in accordance with the MAR
assumption. The number of replicates in each simulation experiment is 5,000.

(i) Models for ρðyÞ and πðyÞ both correctly specified.

We set gðZ1; Z2Þ ¼ f ðZ1; Z2Þ ¼ Z1 þ Z2; hðZ1; Z2Þ ¼ αðZ1 þ Z2Þ; and πðT;XÞ ¼ eδ0þδ1Tþδ2X

1þ eδ0þδ1Tþδ2X
: We fix δ0 ¼ 0:05,

δ1 ¼ 0:9, δ2 ¼ 0:7: This choice corresponds to a verification rate of about 0.51. As for α, we choose three
different values, i.e., 0.5, 1 and 1.5 that give rise to different variances of T; as well as to different
correlations between T and X; with larger values giving rise to higher variances and correlations. In
particular, on going from α ¼ 0:5 to α ¼ 1:5 the variance of T becomes five times greater. Moreover, we
consider four values for the cutpoint c, i.e., 0.2, 0.5, 0.8, and 1.2. Obviously, each combination ðα; cÞ
determines a different true value for the pair (sensitivity, specificity), given by

SeðcÞ ¼ 1�
Rþ1
r1

Φðc� αzffiffiffiffiffiffiffiffiffi
0:25

p Þ’ðzÞdz
1�Φðr1Þ ; SpðcÞ ¼

R r1
�1 Φðc� αzffiffiffiffiffiffiffiffiffi

0:25
p Þ’ðzÞdz
Φðr1Þ

0B@
1CA;

where ’ð�Þ and Φð�Þ are the density function and the cumulative distribution function of the standard
normal random variable, respectively.
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According to the aim of the study in this scenario, we fix two sample sizes, a relatively small one, i.e.,
n ¼ 50; and a moderate one, i.e., n ¼ 100. This allows to evaluate the behavior of the proposed estimators
in settings where the MSI, IPW and SPE estimators are expected to well behave.

To estimate the conditional disease probabilities, we use a generalized linear model for D given T and X
with probit link; this model is correctly specified (see Alonzo and Pepe [5]). The conditional verification
probabilities are estimated from a logistic regression model with V as the response and T and X as
predictors. Evidently, also this model is correct.

Tables 1 and 2 show Monte Carlo means and standard deviations (in brackets) of the estimators for the
sensitivity and the specificity. Results concern the estimators IPW, MSI, SPE and the new proposals 1NN
and 3NN, i.e., the KNN estimator with K ¼ 1 and K ¼ 3, respectively, computed using the Euclidean
distance. From the simulation results it is clear that all of the methods behave well if both parametric
models for ρðyÞ and πðyÞ are correctly specified, with the IPW method showing slightly poorer perfor-
mances in some circumstances. In terms of bias and standard deviation, the new proposals compare very
well with existing estimators. Moreover, the estimators 1NN and 3NN seem to achieve similar perfor-
mances, making the choice of the number K of nearest neighbors not particularly crucial (within the
range 1–3).

Tables 1 and 2 allow also to gain insight into the effect on results of different variances of T and of
different correlations between T and X. By crossing values of α and c giving rise to comparable values of
sensitivity or specificity, it is possible to note that, for all considered estimators, the obtained Monte Carlo
means and standard deviations are essentially not influenced by the different values of variance and
correlation. As far as sensitivity is concerned, for example, one can compare results obtained for α ¼ 0:5
and c ¼ 0:2 (true sensitivity equal to 0.782), with results obtained for α ¼ 1:5 and c ¼ 1:2 (true sensitivity
equal to 0.784). As for specificity, one can compare results obtained for α ¼ 0:5 and c ¼ 0:2 (true specificity
equal to 0.742), with results obtained for α ¼ 1 and c ¼ 0:2 (true specificity equal to 0.745) or α ¼ 1:5 and
c ¼ 0:2 (true specificity equal to 0.731).

As pointed out by a Referee, the values chosen for α in Tables 1 and 2 refer to situations where the
diagnostic tests perform well, i.e., situations where the true AUC value ranges from 0.85 to 0.97.
Performance of estimators in situations where the true AUC value of the test is relatively small (0.59 and
0.71) are given in Section S2, Supplementary Material. Results show the same behavior as the one shown in
Tables 1 and 2.

Simulation results allowing to explore the effect of a multidimensional vector of auxiliary covariates are
given in Section S4, Supplementary Material. A vector X of dimension 3 is employed. Compared with results
in Tables 1 and 2, results in Tables 10 and 11, Supplementary Material, show some loss of efficiency of the
KNN estimators with respect to the parametric competitors.

(ii) Models for ρðyÞ and πðyÞ both misspecified.

We set gðZ1; Z2Þ ¼ exp½2ðZ1Z2Þ2�; hðZ1; Z2Þ ¼ 2ðZ1Z2Þ2, f ðZ1; Z2Þ ¼
ffiffiffi
2

p ðZ2
1 þ Z2

2Þ, and πðT;XÞ ¼ 0:05þ δI
½T > 1:2� þ ð1� 0:05� δÞI½X > 1:95�: In this case, the verification probabilities are: 1 for those subjects with
T > 1:2 and X > 1:95; 1� δ for those subjects with T � 1:2 and X > 1:95; 0:05þ δ for those subjects with
T > 1:2 and X � 1:95; 0.05 otherwise. The values 1.2 and 1.95 correspond roughly to the 92-th and the 86-th
percentile of the distributions of T and X; respectively. The value of δ is allowed to range from 0.1 to 0.9
with steps of 0.2. By varying δ, one can vary the strength of the dependence among V; T; and X: small
values of δ indicate a strong dependence of V on X; whereas high values of δ indicate a strong dependence
of V on T: Finally, for the cutpoint c, we choose three different values, i.e., 0:2; 0:4; 0:6, that give rise to
three different values for the target pair (sensitivity, specificity). The aim in this scenario is to compare the
estimators when the complete data set provides a great amount of information, in order to highlight
possible weaknesses of competitors of our KNN estimators, in particular their possible inconsistency.
Therefore, the required size for generating samples should be high enough to guarantee both reliable
estimates from the complete data set and a sufficiently high number of verified healthy and diseased
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Table 1: Monte Carlo means and standard deviations (in brackets) of the estimators for the sensitivity and the specificity, when
the models for ρðyÞ and πðyÞ are correctly specified. “True” denotes the true parameter value. Sample size = 50.

c ¼ 0:2 c ¼ 0:5 c ¼ 0:8 c ¼ 1:2

α ¼ 0:5

Sensitivity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
Specificity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)

α ¼ 1

Sensitivity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
Specificity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)

α ¼ 1:5

Sensitivity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
Specificity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
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Table 2: Monte Carlo means and standard deviations (in brackets) of the estimators for the sensitivity and the specificity, when
the models for ρðyÞ and πðyÞ are correctly specified. “True” denotes the true parameter value. Sample size = 100.

c ¼ 0:2 c ¼ 0:5 c ¼ 0:8 c ¼ 1:2

α ¼ 0:5

Sensitivity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
Specificity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)

α ¼ 1

Sensitivity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
Specificity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)

α ¼ 1:5

Sensitivity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
Specificity
True . . . .
IPW . (.) . (.) . (.) . (.)
MSI . (.) . (.) . (.) . (.)
SPE . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
NN . (.) . (.) . (.) . (.)
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subjects. In the setting of scenario (ii), for δ going from 0.1 to 0.9, the verification rate ranges roughly from
0.29 to 0.18 and, within healthy subjects, from 0.11 to 0.05. This has led us to the choice of n ¼ 1000.

To estimate the conditional disease probabilities, we use a generalized linear model for D given T and X
with logit link; this model is misspecified. The conditional verification probabilities are estimated from a
logistic regression model with V as the response and T as predictor. Clearly, also this model is misspecified.

Table 3 presents Monte Carlo means and standard deviations (across 5,000 replications) for the
estimators of the sensitivity and the specificity. Results concern the estimators IPW, MSI, SPE, 1NN and
3NN. Moreover, results for the estimators based on complete data (denoted by “Full” in the table), that is
with all cases verified, are also presented. Given the large sample size utilized in this setting, we expect that
the Monte Carlo means for the Full estimators represent a good approximation of the true values of the
sensitivity and the specificity and they are therefore used as the benchmark values.

Table 3 clearly shows limitations of parametric estimators when models for ρðyÞ and πðyÞ are mis-
specified. In particular, in terms of bias, the IPW, MSI and SPE methods perform almost always poorly, with
high distortion in some cases. Moreover, the Monte Carlo standard deviations shown in the table indicate
that the SPE method (and sometime also the IPW method) might yield very unstable estimates. In fact, the
SPE estimates may even fall outside the interval (0,1). In our simulations, in the worst case this event
happened about 20 times across 5,000 replications.

Overall, the new estimators 1NN and 3NN perform well in terms of both bias and standard deviation. In
particular, they yield estimates that are, in all cases, close to the full data estimates (see also results in
Section S3, Supplementary Material, where some simulations have been produced for a smaller sample
size). The estimator 3NN appears to be slightly more biased than 1NN, but, on the other side, with slightly
less variance. Note that in this setting the function πðyÞ used for the verification process is not smooth.
Then, the KNN estimators seem to show also some degree of robustness against violation of smoothness
assumptions. This is not surprising because, as stated in Section 2 of Ning and Cheng [9], “the NN rule is
basically unaffected by discontinuity of πðyÞ, sparse data or multi-dimensional covariate”.

5 An illustration

To illustrate the application of the method developed in the previous sections, we utilize the Wisconsin
Breast Cancer Data, publicly available at the UCI Machine Learning Repository [11]. The construction of the
dataset was motivated by the need to accurately diagnose breast masses on the basis, solely, of a Fine
Needle Aspiration (FNA). The dataset collects various features which are computed from a digitized image
of a FNA of a breast mass, describing characteristics of the cell nuclei present in the image. A total of 30
nuclear features are computed on each of 569 samples, of which 357 are benign and 212 malignant. The
dataset has been extensively used in the literature. The interested reader can refer to the UCI Machine
Learning Repository documentation for retrieving information about the dataset creation, the description of
its attributes, and a list of relevant papers using or citing this data set.

Here, we use one of the features, i.e., the worst radius (WR), as the test to diagnose malignant breast
masses, and one of the remaining features, i.e., the worst concave point (WCP), as a covariate giving
auxiliary information. Our aim is to estimate the ROC curve of the test WR. To mimic verification bias, a
subset of the complete dataset is constructed. In this subset, the test WR and the covariate WCP are known
for all samples, but the true status (benign or malignant) is available only for some samples, that we select
according to the following mechanism. We select all samples having a value for both WR and WCP above
their respective medians; we do not select samples having a value for both WR and WCP below their
respective medians; we select all remaining samples with probability equal to 0.95.

The obtained dataset shows a percentage of samples with true status known (verified) of about 58%:

The percentage of benign samples is about 36% among verified samples and 99% among non-verified
samples.
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Table 3: Mean estimated sensitivity, mean estimated specificity and standard deviation (in brackets) from 5,000 replications
when both models for ρðyÞ and πðyÞ are misspecified and the cutpoint c is set equal to 0.2, 0.4, 0.6. “Full” indicates the
estimator based on complete data, which does not change with δ. Sample size = 1,000.

δ IPW MSI SPE NN NN Full

Sensitivity

c = .

. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)

c ¼ 0:4

. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)

c ¼ 0:6

. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)

Specificity

c ¼ 0:2

. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)

c ¼ 0:4

. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)

c ¼ 0:6

. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
. . (.) . (.) . (.) . (.) . (.)
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As traditional methods (MSI, IPW, SPE) require the use of parametric regression models for the
conditional probability of a sample being malignant and/or selected (i.e., with the true status known),
we use a generalized linear model for the status given WR and WCP with probit link to estimate the
conditional disease probabilities, and a logistic regression model with WR and WCP as predictors to
estimate the conditional selection probabilities. Clearly, this last model is misspecified.

Figure 1 shows the estimated ROC curves of the test WR obtained with the IPW, MSI, SPE, 1NN and 3NN
methods. Such curves are benchmarked with the estimated ROC curve obtained from the complete dataset by
using the Full estimator of sensitivity and specificity. The plot shows that the estimators MSI, 1NN and 3NN well
behave, whereas the estimators IPW and SPE are highly biased. This could imply that, in our data, the probit
model is a good approximation of the disease process, whereas misspecification of the selection model seems to
highly affect the estimators IPW and SPE. This is somehow surprising, as far as the doubly robust SPE estimator
is concerned, especially taking into account the good behavior of the MSI estimator. It is worth noting, however,
that the SPE estimator produces estimates that are outside the range ð0; 1Þ and estimates of the specificity
around 0.82 are not monotonically increasing for increasing values of the cutpoint c, as shown in Table 4,
which reports estimates obtained for the sensitivity and the specificity at some values of c.

1.
0

0.
9

0.
8

0.
7

S
en

si
tiv

ity

0.
6

0.
5

0.
4

0.0 0.2 0.4
1-Specificity

Full
MSI
IPW
SPE
1NN
3NN

0.6 0.8

Figure 1: Illustrative example: estimated ROC curves of the test WR.

Table 4: Illustrative example: estimates for the pair (sensitivity, specificity) of the test WR obtained by the various methods at
different values of the cutpoint c.

c Full MSI IPW SPE NN NN

. (., .) (., .) (., .) (., .) (., .) (., .)
. (., .) (., .) (., .) (., .) (., .) (., .)
. (., .) (., .) (., .) (0.986, 0:819) (., .) (., .)
. (., .) (., .) (., .) (0.875, 0:775) (., .) (., .)
. (., .) (., .) (., .) (0.867, 0:799) (., .) (., .)
. (., .) (., .) (., .) (0.863, 0:814) (., .) (., .)
. (., .) (., .) (., .) (., .) (., .) (., .)
. (., .) (., .) (., .) (., .) (., .) (., .)

Note: Values in bold highlight the non-monotonicity of the SPE estimator.
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6 Variance estimation

In this section, we describe an approach to obtain estimates of the variances of the estimators proposed in
Section 3. Such estimates could be used to build confidence intervals and perform hypothesis testing.

Recall that θ̂1 in (2) is the KNN imputation estimator of the disease prevalence θ1 ¼ PrfD ¼ 1g, and that
θ̂2 and θ̂3 are the KNN imputation estimators of θ2 ¼ PrfT � c;D ¼ 1g and θ3 ¼ PrfT � c;D ¼ 0g, respec-
tively. Moreover, recall that Y ¼ ðT;XÞ`.

From Section 3, θ̂1 has asymptotic variance σ21 ¼ θ1ð1� θ1Þ þ ω2
1; where

ω2
1 ¼ E ρðYÞð1� ρðYÞÞð1� πðYÞÞ½ � 1þ 1

K

� �
þ E

ρðYÞð1� ρðYÞÞð1� πðYÞÞ2
πðYÞ

" #
:

This result follows by an application of Theorem 1 in Ning and Cheng [9]. Note that, in the expression of σ21,
θ1ð1� θ1Þ is the variance of D, and that the term ρðYÞð1� ρðYÞ is the conditional variance of D given Y.
Therefore, taking into account that IðT � cÞρðYÞð1� ρðYÞÞ is the conditional variance of IðT � c;D ¼ 1Þ
given Y, the asymptotic variance of θ̂2 is given by σ22 ¼ θ2ð1� θ2Þ þ ω2

2, where

ω2
2 ¼ E IðT � cÞρðYÞð1� ρðYÞÞð1� πðYÞÞ½ � 1þ 1

K

� �
þ E

IðT � cÞρðYÞð1� ρðYÞÞð1� πðYÞÞ2
πðYÞ

" #
:

Similarly, for the asymptotic variance of θ̂3 one obtains σ23 ¼ θ3ð1� θ3Þ þ ω2
2.

Define γ1 ¼ PrfT < c;D ¼ 1g and γ0 ¼ PrfT < c;D ¼ 0g. Then, γ1 ¼ θ1 � θ2 and γ0 ¼ 1� θ1 � θ3. Let

γ̂1 ¼ 1
n

Xn
i¼1

IðTi < cÞfViDi þ ð1� ViÞρ̂Kig

and

γ̂0 ¼ 1
n

Xn
i¼1

IðTi < cÞfVið1� DiÞ þ ð1� ViÞð1� ρ̂KiÞg

be the KNN imputation estimators of γ1 and γ0, respectively. Let ζ
2
1 and ζ 20 denote the asymptotic variances

of γ̂1 and γ̂0, respectively. The above given arguments still hold, leading to the expressions
ζ 21 ¼ γ1ð1� γ1Þ þ ω2

3 and ζ 20 ¼ γ0ð1� γ0Þ þ ω2
3, where

ω2
3 ¼ E IðT < cÞρðYÞð1� ρðYÞÞð1� πðYÞÞ½ � 1þ 1

K

� �
þ E

IðT < cÞρðYÞð1� ρðYÞÞð1� πðYÞÞ2
πðYÞ

" #
:

It is easy to see that γ̂1 ¼ θ̂1 � θ̂2 and γ̂0 ¼ 1� θ̂1 � θ̂3. As a consequence, the asymptotic covariances
between θ̂1 and θ̂2 – say σ12 – and θ̂1 and θ̂3 – say σ13 – may be obtained as σ12 ¼ ð1=2Þðσ21 þ σ22 � ζ 21Þ and
σ13 ¼ ð1=2Þðσ21 þ σ23 � ζ 20Þ.

Finally, recall that bSeKNNðcÞ ¼ θ̂2
θ̂1
and cSpKNNðcÞ ¼ 1�θ̂1�θ̂3

1�θ̂1
. Therefore, by applying the delta method, one

obtains

asVarð bSeKNNðcÞÞ ¼ θ22
θ41

σ21þ
σ22
θ21

� 2
θ2
θ31

σ12

and

asVarðcSpKNNðcÞÞ ¼ θ23
ð1� θ1Þ4

σ21þ
σ23

ð1� θ1Þ2
� 2

θ3
ð1� θ1Þ3

σ13:

To obtain consistent estimates of the asymptotic variances given above, we may replace the unknown
quantities in their expressions by the corresponding estimates. In particular, to estimate asVarð bSeKNNðcÞÞ
and asVarðcSpKNNðcÞÞ, we ultimately need the estimates θ̂1, θ̂2, θ̂3, ω̂2

1, ω̂
2
2 and ω̂2

3.
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In a nonparametric regression imputation framework, quantities as ω2
1, ω2

2 and ω2
3 are typically

estimated by their empirical counterparts. The propensity score πðyÞ is generally estimated by some kernel
regression method (see Cheng [12]). In our context, however, we propose an approach that uses a nearest-
neighbor rule to estimate both the functions ρðyÞ and πðyÞ in ω2

1, ω
2
2 and ω2

3. In particular, for the conditional
probabilities of disease we can use the estimates ~ρi ¼ ρ̂�Ki, for some suitable positive integer �K. For the
conditional probabilities of verification, instead, we choose the estimates ~πi ¼ 1

K�
i

PK�
i

j¼1 ViðjÞ; where
fðYiðjÞ;ViðjÞÞ; j ¼ 1; . . . ;K�

i g is a set of K�
i observed pairs, and YiðjÞ denotes the jth nearest neighbor to

Yi ¼ ðTi;XiÞ` among all Y’s. When ~πi is computed for a non-verified sample unit i, K�
i is set equal

to the rank of the first verified nearest neighbor to the unit i, i.e., K�
i is such that

Vi ¼ Við1Þ ¼ Við2Þ ¼ � � �ViðK�
i �1Þ ¼ 0; and ViðK�

i Þ ¼ 1: When ~πi is computed for a verified sample unit i, K�
i is

set equal to the rank of the first non-verified nearest neighbor to the unit i, i.e., K�
i is such that

Vi ¼ Við1Þ ¼ Við2Þ ¼ � � �ViðK�
i �1Þ ¼ 1; and ViðK�

i Þ ¼ 0: Observe that such procedure automatically avoids zero
values for the ~πi’s. Then, based on the ~ρi’s and the ~πi’s, we obtain the estimates

ω̂1 ¼ K þ 1
nK

Xn
i¼1

~ρið1� ~ρiÞð1� ~πiÞ þ 1
n

Xn
i¼1

~ρið1� ~ρiÞð1� ~πiÞ2
~πi

;

ω̂2 ¼ K þ 1
nK

Xn
i¼1

IðTi � cÞ~ρið1� ~ρiÞð1� ~πiÞ þ 1
n

Xn
i¼1

IðTi � cÞ~ρið1� ~ρiÞð1� ~πiÞ2
~πi

and

ω̂3 ¼ K þ 1
nK

Xn
i¼1

IðTi < cÞ~ρið1� ~ρiÞð1� ~πiÞ þ 1
n

Xn
i¼1

IðTi < cÞ~ρið1� ~ρiÞð1� ~πiÞ2
~πi

;

from which, together with θ̂1, θ̂2, θ̂3, one derives the estimates of the variances of the KNN imputation
estimators proposed in the paper. Clearly, to avoid ω̂1, ω̂2 and ω̂3 to be equal to zero, we need to choose
�K > 1 in estimating the conditional probabilities of disease.

To assess the behavior of the discussed variance estimators, we performed some simulation experiments.
The results are given in Table 5. For the parameters θ1, θ2, θ3, γ1, γ0, SeðcÞ and SpðcÞ, the table shows the
relative biases, computed as ðMCV �MCMÞ=MCV, where MCV is the Monte Carlo variance (multiplied by the
sample size n, so as to obtain the asymptotic Monte Carlo variance) of the 1NN and 3NN estimators and MCM
the Monte Carlo mean of the corresponding estimators of the asymptotic variances. The considered variance
estimators are those discussed in this section. For each variance estimator, the involved estimates of
parameters such as θ1, θ2, θ3 are based on the same nearest-neighbor rule (1NN or 3NN) used to estimate
the parameter of interest. For the estimates of the probabilities of disease in ω2

1, ω
2
2 and ω2

3, we chose �K ¼ 2.
The simulation setting is the same as in scenario (i) in Section 4, with some values for the pair ðα; cÞ and
sample size n ¼ 100. The number of replicates in each simulation experiment is 5,000. Some other simulation
results referring to scenario (ii) can be found in Section S3, Supplementary Material.

In summary, results in Table 5 (and in Section S3, Supplementary Material) seem to indicate that the
proposed variance estimators behave satisfactorily. Of course, other variance estimators could be retrieved.
For example one could, at least in principle, resort on resampling strategies. Naturally, this requires further
investigation.

7 Discussion

This paper considers the estimation of the ROC curve of a continuous test under verification bias. Existing
methods for correcting verification bias require estimation of ρðyÞ or πðyÞ, or both, and parametric models
are commonly used to this end. However, as shown also by the simulation results presented in Section 4, a
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wrong specification of these models can have an adverse impact on the performance of the estimators,
which result in a high bias and/or unstable behavior.

The new estimators of sensitivity and specificity (6) are fully nonparametric. Their use reduces the
effects of possible misspecification to the inference results. The loss of efficiency with respect to the use of
parametric competitors (when these can be reasonably employed) can range from minimal to sensible
values according to the nature of the problem at hand, as simulation results in the main paper and in
Supplementary Material, Section S4 show. This is somehow intrinsic in the nonparametric nature of the
proposed estimators.

The new approach is based on the K-nearest-neighbor imputation, which requires the choice of a value
for K. Our simulation results (see also the Supplementary Material) seem to confirm results in Ning and
Cheng [9] according to which a small value of K-within the range 1–3 may be a good choice. It is worth
noting, however, that the choice of K might depend upon the dimension of the feature space. In our study,
the feature space includes the diagnostic test result T and the an auxiliary covariate X of dimension 1 (and
3, see Section S4, Supplementary Material). A small number of features is quite common in the context of
the evaluation of diagnostic tests. However, if the number of features increases, it could be convenient to
consider higher values for K: Of course, the nonparametric nature of the approach imposes to take into
account the number of verified units, both in the healthy and diseased group, available in the sample. In
particular, this means that K should not be too big compared to the number of the verified subjects, nver say.
Generally speaking, a possible strategy to choose a suitable value for K in practice could be cross-
validation, based on using the KNN estimators on the verified subjects only. Each verified subject is treated
in turn as if it were not verified; for fixed K, the estimate ρ̂Ki of its conditional disease probability is
computed using KNN imputation and compared to the truth to produce a measure of discrepancy. This is
done for a number of K’s and the K for which the discrepancy is smallest is retained for use in the original
sample. A possible choice for the discrepancy in this context could be 1

nver

Pnver
i¼1 jDi � ρ̂Kij.

Table 5: For each parameter: relative biases, computed as ðMCV �MCMÞ=MCV , of the estimators of the asymptotic variance of
KNN estimators.

θ1 θ2 θ3 γ1 γ0 SeðcÞ SpðcÞ
α = 0.5 c ¼ . NN . . –. . . . –.

NN . . –. . . . –.
c ¼ . NN . –. . . . . .

NN . –. . . . . .
c ¼ . NN . . –. . . . –.

NN . . –. . . . –.
α ¼ 1 c ¼ . NN . . . . . . .

NN . . . . . . .
c ¼ . NN . –. –. . . . –.

NN . –. –. . . . –.
c ¼ . NN . –. –. . . . –.

NN . –. –. . . . –.
α ¼ 1.5 c ¼ . NN . . . –. . –. .

NN . . . –. . –. .
c ¼ . NN . . –. . –. . –.

NN . . –. –. –. –. –.
c ¼ . NN . . –. . . . –.

NN . . –. –. . –. –.

Notes: MCV is the Monte Carlo variance (multiplied by the sample size n) of the 1NN and 3NN estimators and MCM is the Monte
Carlo mean of the corresponding estimators of the asymptotic variances. The considered variance estimators are those discussed in
Section 6. For each variance estimator, the estimates of parameters such as θ1, θ2, θ3 are based on the same nearest-neighbor rule (1NN
or 3NN) used to estimate the parameter of interest. For the estimates of the probabilities of disease in ω2

1 , ω
2
2 and ω2

3, it is �K ¼ 2. The
simulation setting is the same as in scenario (i) in Section 4, with some values for the pair ðα; cÞ. The sample size is n ¼ 100: The
number of replicates in each simulation experiment is 5,000.
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The issue of the choice of the distance measure to use is of more general nature. Our simulation results
(see Supplementary Material) seem to indicate that the standard Euclidean distance may be a good choice.
However, it is clear that an adequate choice ultimately depends on several aspects, such as features of the
data to analyze, as well as computational concerns.

Estimators (6) modify in an obvious way when no covariates are measured, i.e., when Y ¼ T. Moreover,
a simple extension, that could be used when categorical variables are also observed for each patient, is
possible. Consider, for example, the problem of estimating the sensitivity. Without loss of generality,
suppose that a single factor U, with u levels, is observed together with Y. We also assume that U may be
associated with both D and V. Then, if Theorem 1 holds in each stratum, i.e., in each group of units with the
same level of U, a consistent and asymptotically normally distributed estimator of SeKNN ðcÞ is

1
n

Xu
j¼1

bSecondKNNj
ðcÞnj;

where nj denotes the size of the jth sample stratum and bSecondKNNj
cð Þ is the KNN estimator of the conditional

sensitivity, i.e., bSeKNN cð Þ obtained from the patients in the jth stratum. Clearly, the use of such estimator
relies on availability of sufficient information in each stratum.

As suggested by a Referee, one could think of possible devices aimed at enhancing performances of the
estimators. One possibility could be to assign unequal weights to the K nearest neighbors entering in the
estimates ρ̂Ki: This might produce a reduction of the mean square error of the KNN estimators for the
sensitivity and the specificity. Otherwise, “hybrid” estimators for the sensitivity and specificity could be
obtained by combining the SPE estimator with the KNN strategy. This could lead, at least in principle, to
partially parametric estimators, robust with respect to possible weaknesses of the (nonparametric) model
chosen for ρðyÞ when, for example, the disease process depends also on unobserved auxiliary variables.
These are interesting and intriguing topics whose development, however, requires non-trivial treatment,
both from a theoretical and empirical perspective.
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