Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

SIAM J. OPTIM. (© 2016 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 1695-1714

A FEASIBLE ACTIVE SET METHOD WITH REOPTIMIZATION
FOR CONVEX QUADRATIC MIXED-INTEGER PROGRAMMING*

CHRISTOPH BUCHHEIM', MARIANNA DE SANTISt, STEFANO LUCIDI#,
FRANCESCO RINALDI$, AND LONG TRIEUT

Abstract. We propose a feasible active set method for convex quadratic programming prob-
lems with nonnegativity constraints. This method is specifically designed to be embedded into
a branch-and-bound algorithm for convex quadratic mixed- integer programming problems. The
branch-and-bound algorithm generalizes the approach for unconstrained convex quadratic integer
programming proposed by Buchheim, Caprara, and Lodi [Math. Program., 135 (2012), pp. 369—
395] to the presence of linear constraints. The main feature of the latter approach consists of a
sophisticated preprocessing phase, leading to a fast enumeration of the branch-and-bound nodes.
Moreover, the feasible active set method takes advantage of this preprocessing phase and is well
suited for reoptimization. Experimental results for randomly generated instances show that the new
approach significantly outperforms the MIQP solver of CPLEX 12.6 for instances with a small number
of constraints.

Key words. integer programming, quadratic programming, global optimization
AMS subject classifications. 90C10, 90C20, 90C57

DOI. 10.1137/140978971

1. Introduction. We consider mixed-integer optimization problems with strictly
convex quadratic objective functions and linear constraints:

min f(z)=2"Qr+c'z+d
s.t. Az <D,

r, €2, 1=1,...,n1,

z; €R, i=n1+1,...,n,

(MIQP)

where) € R™ "™ is a positive definite matrix, c € R", d €¢ R, A € R™*" b ¢ R™,
and ny € {0,...,n} is the number of integer variables. Up to now, all solution
methods for convex mixed-integer quadratic programming have been based on either
cutting planes [2], branch-and-cut [6], Benders decomposition [19, 20], or branch-and-
bound [3, 15, 21]. Numerical experiments by Fletcher and Leyffer [15] showed that
branch-and-bound is the most effective approach of all the common methods, since
the continuous relaxations are very easy to solve. Standard commercial solvers that
can handle (MIQP) include CPLEX [18], Xpress [14], Gurobi [17], and MOSEK [22],
while Bonmin [7] and SCIP [1] are well-known noncommercial software packages being
capable of solving (MIQP).

*Received by the editors July 23, 2014; accepted for publication (in revised form) May 19, 2016;

published electronically August 24, 2016. A preliminary version of this paper has been published in
the Proceedings of ISCO 2014 [9].

http://www.siam.org/journals/siopt/26-3/97897.html

Funding: The second author has been partially supported by the German Research Foundation
(DFG) under grant BU 2313/4.

TFakultat fiir Mathematik, Technische Universitat Dortmund, Vogelpothsweg 87, 44227 Dort-
mund, Germany (christoph.buchheim@tu-dortmund.de, marianna.de.santis@math.tu-dortmund.de,
long.trieu@math.tu-dortmund.de).

IDipartimento di Ingegneria Informatica Automatica e Gestionale, Sapienza Universita di Roma,
Via Ariosto, 25, 00185 Roma, Italy (stefano.lucidi@dis.uniromal.it).

§Dipartimento di Matematica, Universitd di Padova, Via Trieste, 63, 35121 Padova, Italy (rinaldi@
math.unipd.it).

1695

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

http://www.siam.org/journals/siopt/26-3/97897.html
mailto:christoph.buchheim@tu-dortmund.de
mailto:marianna.de.santis@math.tu-dortmund.de
mailto:long.trieu@math.tu-dortmund.de
mailto:stefano.lucidi@dis.uniroma1.it
mailto:rinaldi@math.unipd.it
mailto:rinaldi@math.unipd.it

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1696 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

Many optimization problems in real world applications can be formulated as con-
vex mixed-integer optimization problems with few linear constraints, e.g., the clas-
sical mean-variance optimization problem (MVO) for the selection of portfolios of
assets [10]. Thus, the design of effective algorithms for this class of problems plays an
important role both in theory and in practice.

Our approach is based on a branch-and-bound scheme that enumerates nodes
very quickly. Similar to Buchheim et al. [8], we fix the branching order in advance,
thus losing the flexibility of choosing sophisticated branching strategies, but gaining
the advantage of shifting expensive computations into a preprocessing phase. In each
node the dual problem of the continuous relaxation is solved in order to determine a
local lower bound. Since all constraints of the continuous relaxation of (MIQP) are
affine, strong duality holds if the primal problem is feasible. The dual problem of the
continuous relaxation is again a convex quadratic programming (QP) problem, but
contains only nonnegativity constraints; for its solution we devise a specific feasible
active set method. By considering the dual problem, it suffices to find an approximate
solution, as each dual feasible solution yields a valid lower bound. We can thus prune
the branch-and-bound node as soon as the current upper bound is exceeded by the
value of any feasible iterate produced in a solution algorithm for the dual problem.

Another feature of our algorithm is the use of warmstarts: after each branching,
corresponding to the fixing of a variable, we pass the optimal solution from the parent
node as the starting point in the children nodes. This leads to a significant reduction
in the average number of iterations needed to solve the dual problem to optimality.

If the primal problem has a small number of constraints, the dual problem has a
small dimension. Using sophisticated incremental computations, the overall running
time per node in our approach is linear in the dimension n if the number of constraints
is fixed and when we assume that the solution of the dual problem, which is of fixed
dimension in this case, can be done in constant time. In this sense, our approach can
be seen as an extension of the algorithm devised in [8].

This paper is organized as follows. In section 2 we present the active set method
for convex QP problems with nonnegativity constraints. The properties of the pro-
posed active set estimation are discussed and the convergence of the algorithm is an-
alyzed. Section 3 presents an outline of the branch-and-bound algorithm, we discuss
the advantages of considering the corresponding dual problem instead of the primal
one. Afterwards, we explain the idea of reoptimization, using warmstarts within the
branch-and-bound scheme. The end of the section deals with some tricks to speed
up the algorithm by using incremental computations and an intelligent preprocessing.
In section 4 we present computational results and compare the performance of the
proposed algorithm, applied to randomly generated instances, to the MIQP solver of
CPLEX 12.6. Section 5 concludes.

2. A feasible active set algorithm for quadratic programming prob-
lems with nonnegativity constraints. The vast majority of solution methods for
(purely continuous) quadratic programs can be categorized into either interior point
methods or active set methods (see [23] and references therein for further details).
In interior point methods, a sequence of parameterized barrier functions is (approxi-
mately) minimized using Newton’s method. The main computational effort consists
of solving the Newton system to get the search direction. In active set methods, at
each iteration, a working set that estimates the set of active constraints at the solution
is iteratively updated. Usually, only a single active constraint is added to or deleted
from the active set at each iteration. However, when dealing with simple constraints,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

FEASIBLE ACTIVE SET METHOD FOR CONVEX MIQP 1697

one can use projected active set methods, which can add to or delete from the current
estimated active set more than one constraint at each iteration, and eventually find
the active set in a finite number of steps if certain conditions hold.

An advantage of active set methods is that they are well-suited for warmstarts,
where a good estimate of the optimal active set is used to initialize the algorithm.
This is particularly useful in applications where a sequence of QP problems is solved,
e.g., in a sequential quadratic programming method. Since in our branch-and-bound
framework we need to solve a large number of closely related quadratic programs,
using active set strategies seems to be a reasonable choice.

In this section, we thus consider QP problems of the form

min ¢(z)=2"Qr+c'z+d
(QP) st. x>0,
x € R™,

where @Q € R™*™ ig positive semidefinite, ¢ € R™, and d € R. We describe a
projected active set method for the solution of such problems that tries to exploit the
information calculated in a preprocessing phase at each level of the branch-and-bound
tree. Our method is inspired by the work of Bertsekas [4], where a class of active set
projected Newton methods is proposed for the solution of problems with nonnegativity
constraints. The main difference between the two approaches is in the way the active
variables are defined and updated. On the one side, the method described in [4]
uses a linesearch procedure that both updates active and nonactive variables at each
iteration. On the other side, our method, at a given iteration, first sets to zero the
active variables (guaranteeing a sufficient reduction of the objective function), and
then tries to improve the objective function in the space of the nonactive variables.
This gives us more freedom in the choice of the stepsize along the search direction,
since the active variables are not considered in the linesearch procedure.

In the following we denote by g(x) € R™ and H(z) € R™*™ the gradient vector
and the Hessian matrix of the objective function ¢(z) in problem (QP), respectively.
Explicitly, we have

g(x) =2Qx+e¢, H(z)=2Q.

Given a matrix M, we further denote by A4, (M) the maximum eigenvalue of M.
Given a vector v € R™ and an index set I C {1,...,m}, we denote by vy the subvector
with components v; with 7 € I. Analogously, given the matrix H € R™*™ we denote
by Hj; the submatrix with components h; ; with 4, j € I. Given two vectors v,y € R™
we denote by max{v,y} the vector with components max{v;,y;}, for i € {1,...,m}.
The open ball with center z and radius p > 0 is denoted by B(z, p). Finally, we denote
the projection of a point z € R™ onto R by [z]* := max{0, z}.

2.1. Active set estimate. The idea behind active set methods in constrained
nonlinear programming problems is correctly identifying the set of active constraints
at the optimal solution x*.

DEFINITION 1. Let z* € R™ be an optimal solution for problem (QP). We define
as active set at x* the following:

Alz*)={ie{l,...,m} :z} =0}.
We further define as nonactive set at * the complementary set of A(z*):

N@*)={1,....m}\ A@@*) = {ie{1,...,m}: 2} > 0}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1698 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

Our aim is to find a rule that leads us to the identification of the optimal active
set for problem (QP) as quickly as possible. The rule we propose is based on the use
of multiplier functions and follows the ideas reported in [13].

DEFINITION 2. Let x € R™. We define the following sets as estimates of the
nonactive and active sets at x:

N@E)y={ie{l,....m}:z; >egi(z)}
and
Az) ={1,...,m} \ N(x),

where € > 0 is a positive scalar.
The following result can be proved [13].

THEOREM 3. Let z* € R™ be a solution of problem (QP). Then, there exists a
neighborhood of x* such that, for each x in this neighborhood, we have

AT (2%) © A(z) € A(a"),

with A (z*) = A(z*) N {i € {1,...,m} : g;(z*) > 0}.
Furthermore, if strict complementarity holds, we can state the following corollary.

COROLLARY 4. Let z* € R™ be a solution of problem (QP) where strict comple-
mentarity holds. Then, there exists a neighborhood of x* such that, for each x in this
neighborhood, we have

Alz) = A(z).

2.2. Outline of the algorithm. We now give an outline of our Feasible Active
SeT Quadratic Programming Algorithm (FAST-QPA) for solving problem (QP); see
Algorithm 1.

At each iteration k, the algorithm first determines the two sets N* := N (z¥)
and A*F := A(z*) according to Definition 2. Then, the variables belonging to A" are
set to zero, thus obtaining a new point #*, and a search direction d* is calculated.
More specifically, dik, the components of d* related to AF, are set to zero, while a
gradient related direction d, is calculated in AN'*. Here we define that a direction
dprr is gradient related at % (see, e.g., [5]) if there exist 01,02 > 0 such that

(1) dpn (@) e < —o1lg(@) a1,
(2) ldne Il < o2llg (@) pr |-

In order to obtain the direction df\/k, we solve the following unconstrained quadratic
problem in the subspace of nonactive variables:

: k TO =T

min ¢“(y) =y Qy+¢'y
P ;
(QP) st yeRW

where @ = Qur av and & = g(#%)prv. In particular, we apply a conjugate gradient

type algorithm (see Algorithm 2). Algorithm 2 is basically a modification of the
conjugate gradient method for quadratic problems that embeds a truncated Newton

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

FEASIBLE ACTIVE SET METHOD FOR CONVEX MIQP 1699

Algorithm 1 Feasible Active SeT Quadratic Programming Algorithm (FAST-QPA).

0 Fix e (0,1),v€(0,3), and ¢ satisfying (3)
1 Choose z° ¢ R"
2 For £=0,1,...
3 If 2% is optimal then STOP
4 Compute A* := A(z*) and N* := N (aF)
5 Set a?ﬂk =0 and iﬁ[k = xf\[k
6 Set d*, =0
7 Compute a gradient related direction dj“\/k in #* and the point z*
8 If z* is optimal then STOP
9 Set a* = §7 where j is the first nonnegative integer for which
q([Z* + &7 d"F) < q(@%) + 7 87 g(3%) T d*
10 Set
J,‘k+1 — [jk + akdk]ﬁ
11 End For

like test for the calculation of a gradient related direction (step 3 of Algorithm 2).
We report two theoretical results, proved in [24], that help us to understand the
properties of Algorithm 2.

PROPOSITION 5. Let problem (QPy) admit an optimal solution, and let matriz
Q be positive semidefinite. Then, the conjugate gradient method terminates with an
optimal solution of problem (QP}) in at most IN*| iterations.

PROPOSITION 6. Let matrix QNQ in problem (QPy) be positive semidefinite. Then
at least one direction p', 1 <1 < |N*|—1, computed by the conjugate gradient method
satisfies the condition

T ~
P Qp'=0.
By Propositions 5 and 6, we are able to prove the following proposition.

PROPOSITION 7. Let matriz Q in problem (QPy) be positive semidefinite. Algo-
rithm 2 terminates after a finite number of iterations, returning a gradient related
direction dﬁ/k. Furthermore, if problem (QP) admits an optimal solution, then y' is
an optimal solution of problem (QPy).

Proof. By the results reported in [11, 16] we have that direction dﬁ,k satisfies (1)
and (2), and hence is gradient related at Z*. Furthermore, by taking into account
Propositions 5 and 6, the rest of the result follows. 0

According to Proposition 7, when the minimum of problem (QPy) is finite, Al-
gorithm 2 produces a gradient related direction dka and an optimal solution 7' of
problem (QP}) (in at most |[A*| —1 iterations). The point y' is then used for building
up the candidate optimal point z*. In the case when problem (QPjy) is unbounded
from below, the algorithm still stops after a finite number of iterations, giving a gra-
dient related direction df\/k, but the point used for generating Z* is just a combination
of conjugate gradient directions generated along the iterations of the method. As we
will see in section 2.3, calculating the point Z* is needed to guarantee, under some
specific assumptions, finite convergence of Algorithm 1 (see Proposition 15).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1700 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

Algorithm 2 Calculation of the direction djka and of the point z*.

1 Set y° =0, §° = 2@ jka +¢ p°=—-3% n>0,1=0, and check = true;
2 While p' ' Qp! > 0

3 If plT@pl < n|p*||* and check = true then
~0 .
. [=g =0, _)
y= { y it 10, check = false;
4 End If
5 Compute stepsize along the search direction p':
_ @
2 Qpt
6 Update point ¢!+ = ¢! 4+ ol p; N
7 Update gradient of the quadratic function §'+! = §' + 2a! Q p';
8 Compute coefficient
g _ 180,
19'1I?
9 Determine new conjugate direction p't! = —g!tt + g+l
10 Setl=1+1;
11 End While
12 If check = true then
. -g if =0,
Y= l : .
y if 1 >0;
13 End If
14 Return dka. = ¢ and z*, where
~O .
& v) =g ifl=0,
Tar =0 xN’“_{ yoo i 1> 0.

Note that even if the matrix @ is ill-conditioned, Algorithm 2 still generates a
gradient related direction. In practice, when dealing with ill-conditioned problems,
suitable preconditioning techniques can be applied to speed up Algorithm 2.

Once the direction d* and the point z* are computed, Algorithm 1 checks opti-
mality of point Z*. If Z* is not optimal, the algorithm generates a new point z*+! by
means of a projected Armijo linesearch along d*.

We finally notice that at each iteration of Algorithm 1, two different optimal-
ity checks are performed: the first one, at step 3, to test optimality of the current

iterate 2¥; the second one, at step 8, to test optimality of the candidate solution z*.

2.3. Convergence analysis. The convergence analysis of FAST-QPA is based on
two key results, namely Propositions 8 and 9. These results show that the algorithm

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

FEASIBLE ACTIVE SET METHOD FOR CONVEX MIQP 1701

obtains a significant reduction of the objective function both when fixing to zero
the variables in the active set estimate and when we perform the projected Armijo
linesearch.

Proposition 8 completes the properties of the active set identification strategy
defined in section 2.1. More specifically, it shows that, for a suitably chosen value
of the parameter ¢ appearing in Definition 2, a decrease of the objective function is
achieved by simply fixing to zero those variables whose indices belong to the estimated
active set.

ASSUMPTION 1. The parameter € appearing in Definition 2 satisfies

1
(3) O<€<72)\maw(@))

PROPOSITION 8. Let Assumption 1 hold. Given the point z and the sets A(z) and
N(z), let y be the point such that

Yai) =0, Un(z) = 2N (2)-

Then,

)~ a(2) < —5lly — =I*

Proof. Define A = A(z) and N'= N(z). By taking into account the definition of
these two sets and the points y and z, we have

1
a(y) = a(2) + 94(2) " (y = 2)a+ 5y = 2) aHaaly = 2)a -
Since H = 2Q), the following inequality holds:

a(y) < () + 94(2) T (y — 2) 4 + Amaa(Q) |(y — 2) all>-

Using (3) we obtain
a0) < 4(2) + 94() Ty — 2)a+ 5l — 2)al?
and hence
1 T 1)
o) <)+ (2402 + 2= 20a) = 2ha = 5w - 2l

It thus remains to show
1 T
(04 + 2= 214) =200,
which follows from the fact that for all 7 € A,
1
9i(2) + g(yz‘ —2i)) (yi — z) <0.

Indeed, for all i € A we have z; > 0 and y; = 0; hence z; — y; = 2z; < £g;(2), so that

1
gi(z)+g(yi_zi)20~ ad

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1702 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

The following result shows that the projected Armijo linesearch performed at
step 9 of Algorithm 1 terminates in a finite number of steps, and that the new point
obtained guarantees a decrease of the objective function of (QP). Its proof is similar
to the proof of Proposition 2 in [4].

PROPOSITION 9. Let v € (0, %) Then, for every & € R’ which is not optimal for

problem (QP), there exist p > 0 and & > 0 such that

(4) q([@ + ad]*) — q(&) < ¥ dy (1) 9(F) o)

for all x,2 € R} with x,% € B(z,p) and for all a € (0,a], where d € R" is the
direction used at T, and such that

(i) d.A(m) =0,

(ii) dar(e) satisfies (1) and (2).

Using Propositions 8 and 9, we can show that the sequence {g(«*)} is monotoni-
cally decreasing.

PROPOSITION 10. Let Assumption 1 hold. Let {x*} be the sequence produced by
FAST-QPA. Then, the sequence {q(z*)} is such that

‘%k _xk”Q

I2.

a(@) < qlat) - = — o1l g(@) pre

26”

Proof. Let &* be the point produced at step 5 of Algorithm 1. By setting y = &*
and z = 2* in Proposition 8, we have

1
a() < qleh) = o — 2P

Furthermore, by the fact that we use an Armijo linesearch at step 9 of Algorithm 1
and by Proposition 9, we have that the chosen point z**1 satisfies inequality (4); that
is,

(@) = q() < v ¥ diug(F) p
By taking into account (1), we thus have

g(a™) - I?

q(#") < 5" dig(@) e < —o1]|g(@) we
In summary, we obtain
(@) < q(@") — o1 [|g (@) pre |12

1, .
a(@*) = |17 = 2¥1* = onllg (&%) |

Proposition 10 will allow us to prove two important results. If the minimum
of problem (QP) is finite, then the iterates generated by Algorithm 1 will meet a
stopping condition of the type

I max{0, —g(z*)}|| < etar,

with a fixed tolerance €;,; > 0 in a finite number of iterations; see Proposition 11.
Otherwise, the sequence {q(z*)} is unbounded from below; see Proposition 12.

IN

PROPOSITION 11. Let Assumption 1 hold. Let {x*} be the sequence produced by
FAST-QPA. If the minimum of problem (QP) is finite, then

Jim [max{0, —g(a M)} = 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

FEASIBLE ACTIVE SET METHOD FOR CONVEX MIQP 1703

Proof. By Proposition 10, the sequence {g(z*)} is monotonically decreasing. Since
it is bounded by the minimum of (QP), we have that {q(z*)} converges. In particular,
this implies that both ||Z* — 2|2 and | g(Z*)xx||? go to zero when k& — co. By noting
that

0 < [lg(@*) — g™l = 1QE" —)| < IQII - I2" — «*|| = 0

we obtain |g(x*)\x]|? — 0 as well, and thus || max{0, —g(z*)}xx[|> — 0. On the
other hand, if i € A¥, we have g;(z*) > 0, so that || max{0, —g(x*)} 4«||*> = 0. This
shows the result. |

PROPOSITION 12. Let Assumption 1 hold. Let {x*} be the sequence produced by
FAST-QPA. If problem (QP) is unbounded, then

lim ¢(z*) = —oc.
k—o0
Proof. By Proposition 10, the sequence {g(z*)} is monotonically decreasing. As-
sume by contradiction that it is bounded and hence limy, o, g(2*) = g for some g € R.
Then, as in the proof of Proposition 11, ||g(x*)x||> — 0. Since problem (QP) is un-
bounded, there must exist some d > 0 such that Qd = 0 and ¢"d < 0. In particular,
we obtain g(z)'d = c'd =n < 0 for all x € R".
Therefore, since g;(z*) > 0 for all i € A*, we have

0>n=g@")"d="Y" g@")di+ Y g")d

i€ AR iENFE
> > gila®)di = — |g(a®) udn |
iENFE

k k
> =[lg@@®)nell - lldnell = =llg(@®)arell - Il
and we get a contradiction since |g(z*)x||? goes to zero. O

Finally, we are able to prove the main result concerning the global convergence
of FAST-QPA.

THEOREM 13. Assume that the minimum of problem (QP) is finite and that As-
sumption 1 holds. Let {x*} be the sequence produced by Algorithm 1. Then either an
integer k > 0 exists such that ¥ or ¥ is an optimal solution for problem (QP), or
the sequence {x*} is infinite and every limit point * of the sequence is an optimal
point for problem (QP).

Proof. Let x* be any limit point of the sequence {2*}, and let {z*}x be the
subsequence with

lim 2F = 2"
k—oo, keEK
Because of the continuity of g(z), the function max{0, —g(x)} is continuous in z, and
therefore, Proposition 11 gives max{0, —g(z*)} = 0. But this means that x* satisfies
the standard first-order optimality condition for (QP). Since (QP) is convex, z* must
be an optimal point. 0

COROLLARY 14. If (3) holds, then the sequence q(x*) converges to the optimal

value of (QP).

As a final result, we prove that, under a specific assumption, FAST-QPA finds an
optimal solution in a finite number of iterations.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1704 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

THEOREM 15. Let Assumption 1 hold. Assume that there exists an accumulation
point x* of the sequence {x*} generated by FAST-QPA such that

Quxr =0,

where N = N(z*)U{i e {1,...,n}:2* =0, g;(z*) = 0}. Then FAST-QPA produces
a minimizer of Problem (QP) in a finite number of steps.

Proof. Let {x*} be the sequence generated by FAST-QPA, and let {z*}x be the
subsequence with
k *

1m r =T .
k—oo, ke K

By Theorem 13, the limit 2* of {2*} ¢ is a minimizer of problem (QP). Furthermore,
by Theorem 3, we know that the active set estimation yields A*(z*) C A* C A(z*)
for sufficiently large k. Consequently,

(5) N(z*) C N* .
Moreover, taking into account the definition of N , we get N'* C N and thus

(6) Q_N’k e = 0.

Hence by (5), (6), and the fact that g;(z*) = 0 for all i € A%, we have that solv-
ing (QP) is equivalent to solving the following problem:

min z'Qr+c'z+d
(7) st xur =0,
e R™.

Since ;Ejka is the only optimal solution for problem (QPj) and fﬁk = 0, we conclude
that ¥ is the optimal solution of (7) and of (QP). 0

By Theorem 15, we just need that the submatrix Q. - is positive definite in
order to ensure finite termination of FAST-QPA.

Furthermore, by taking into account the scheme of our algorithm, and by carefully
analyzing the proof given above, we notice two important facts:

e the algorithm, at iteration k, moves towards the optimal point x* by only
using an approximate solution of the unconstrained problem (QPy), i.e. the
solution needed in the calculation of the gradient related direction;

e once the point z* gets close enough to z*, thanks to the properties of our
estimate, we can guarantee that the point Z* is the optimum of the original
problem (QP).

This explains why, in the algorithmic scheme, we calculate ¥ and just use it in the
optimality check at step 8.

3. Embedding FAST-QPA into a branch-and-bound scheme. Asshown in [9],
the approach of embedding tailored active set methods into a branch-and-bound
scheme is very promising for solving convex quadratic integer programming prob-
lems of type (MIQP). In this section we briefly summarize the key ingredients of our
branch-and-bound algorithm FAST-QPA-BB, which makes use of FAST-QPA, presented
in section 2, for the computation of lower bounds. The branch-and-bound algorithm
we consider is based on the work in [8], where the unconstrained case is addressed.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

FEASIBLE ACTIVE SET METHOD FOR CONVEX MIQP 1705

As our branch-and-bound scheme aims at a fast enumeration of the nodes, we focus
on bounds that can be computed quickly. A straightforward choice for determining
lower bounds is to solve the continuous relaxation of (MIQP). Instead of considering
the primal formulation of the continuous relaxation of (MIQP), we deal with the dual
one, which again is a convex QP, but with only nonnegativity constraints so that it
can be solved by FAST-QPA. The solution can be used as a lower bound for f over all
feasible integer points, and is as strong as the lower bound obtained by solving the
primal problem, since strong duality holds.

Our branching strategy and its advantages are discussed in section 3.1. In sec-
tion 3.2, we have a closer look at the relation between the primal and the dual problem,
while in section 3.3 we briefly discuss the advantage of reoptimization. Using a pre-
determined branching order, some of the expensive calculations can be moved into a
preprocessing phase, as described in section 3.4.

3.1. Branching. At every node in our branch-and-bound scheme, we branch by
fixing a single primal variable in increasing distance to its value in the solution of the
continuous relaxation z*. For example, if the closest integer value to z} is |z}], we
fix x; to integer values |} |, [z}], [#F] — 1, [}] + 1, and so on. After each branching
step, the resulting subproblem is a quadratic programming problem of type (MIQP)
again, with a dimension decreased by one. We are not imposing bound constraints
on the integer variables (i.e., x; < |xF| and x; > |z}]) since they are taken into
account as fixings (i.e., ; = [2}]) in the construction of the reduced subproblem by
adapting properly the matrices Q; and A, the linear term ¢, the constant term d,
and the right-hand side b (see section 3.4). The branching order of these variables at
every level / is set to x1,...,T,_¢, assuming that ¢ variables are already fixed. Hence,
at every level we have a predetermined branching order. Let x} be the value of the
next branching variable in the continuous minimizer. Then, by the strict convexity of
f, all consecutive lower bounds obtained by fixing x; to integer values in increasing
distance to z}, on each side of 7, are increasing. Thus, we can cut off the current
node of the tree and all its outer siblings as soon as we fix a variable to some value for
which the resulting lower bound exceeds the current best known upper bound. Since
f is strictly convex we get a finite algorithm even without bounds on the variables.

Once all integer variables have been fixed, we compute the optimal solution of the
QP problem in the reduced continuous subspace. If the computed point is feasible, it
yields a valid upper bound for the original problem. As our enumeration is very fast
and we use a depth-first approach, we do not need any initial feasible point nor do we

apply primal heuristics.

3.2. Dual approach. In the following, we derive the dual problem of the con-
tinuous relaxation of (MIQP) and point out some advantages when using the dual
approach within the branch-and-bound framework. The dual can be computed by
first forming the Lagrangian of the relaxation

L@ N)=2"Qr+c z4+d+ N (Az — D)
and then, for fixed A\, minimizing .Z with respect to the primal variables z. As @ is

assumed to be positive definite, the unique minimizer can be computed from the first
order optimality condition

1
(8) V. Z(x,)) :2Qx+c+AT)\:O<:>:c:—§Q_1(0+AT)\).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1706 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

Having = as a function of A, we can insert it into the Lagrangian .Z, yielding the
following dual function:

L) = AT(- iAQ*lAT)A - (bT n %JQ*AT)A - icTQ’lc +d.

Defining Q := FAQTTAT, €= FAQ c+b, and d:= 3¢" Q7 c—d, we can thus write

the dual of the continuous relaxation of (MIQP) as

— min /\T@/\—l—ET/\—I—J
9) st. A>0,
AeR™,

Note that (9) is again a convex QP, since Qv is positive semidefinite.

The first crucial difference in considering the dual problem is that its dimension
changed from n to m, which is beneficial if m < n. The second is that A = 0 is always
feasible for (9). Finally, note that having the optimal solution * € R™ of (9), it is
easy to reconstruct the corresponding optimal primal solution z* € R™ using the first
order optimality condition (8).

Within a branch-and-bound framework, a special feature of the dual approach
is early pruning: we can stop the iteration process and prune the node as soon as
the current iterate A; becomes feasible and its objective function value exceeds the
current upper bound, since each dual feasible solution yields a valid bound. Note,
however, that, in case we cannot prune, an optimal solution of the dual problem is
required, since it is needed for the computation of the corresponding primal solution
z*, which in turn is needed to decide the enumeration order in the branch-and-bound
scheme.

During the tree search it may occur that a node relaxation is infeasible due to
the current fixings. In this case infeasibility of the primal problem implies the un-
boundness of the dual problem. Therefore, during the solution process of the dual
problem, an iterate will be reached such that its objective function value exceeds the
current upper bound and the node can be pruned. This is why in our implementation
of FAST-QPA we set the following stopping criterion: the algorithm stops either if the
norm of the projected gradient is less than a given optimality tolerance, or if an iterate
is computed such that its objective function value exceeds the current upper bound.
More precisely, we declare optimality when the point A € R’ satisfies the following
condition:

I max {0, —g(\)} || < 107°.

By Propositions 11 and 12, we then have a guarantee that the algorithm stops after
a finite number of iterations.

3.3. Reoptimization. At every node of the branch-and-bound tree, we use Al-
gorithm 1, described in section 2 for solving problem (9). A crucial advantage of using
an active set method is the possibility of working with warmstarts, i.e., of passing in-
formation on the optimal active set from a parent node to its children. In the dual
approach the dimension of all subproblems is m, independently of the depth ¢ in the
branch-and-bound tree. When fixing a variable, only the objective function changes,
given by @, ¢, and d. So as the starting guess in a child node, we choose A := A(*),
i.e., we use the estimated active set for the optimal solution A* of the parent node,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

FEASIBLE ACTIVE SET METHOD FOR CONVEX MIQP 1707

according to step 3 of Algorithm 1. We also pass the solution A* to the child nodes
to initialize the variables in the line search procedure in step 4 of Algorithm 1; that
is, we set :ijo\m = Ayo- Our experimental results presented in section 4 show that
this warmstarting approach reduces the average number of iterations of FAST-QPA
significantly.

3.4. Incremental computations and preprocessing. A remarkable speed-
up can be achieved by exploiting the fact that the subproblems enumerated in the
branch-and-bound tree are closely related to each other. Let ¢ € {0,...,n1 — 1} be
the current depth in the branch-and-bound tree, and recall that after fixing the first ¢
variables, the problem reduces to the minimization of

2 xR SR o2 Qur+é x+d

over the feasible region F = {z € Z™~* x R"™™ | Az < b}, where Q; = 0 is
obtained by deleting the corresponding ¢ rows and columns of @, and ¢ and d are
adapted properly by

¢
Cj—¢ ::cj—i-ZZqijri forj=40+4+1,...,n
i=1

and

4)4 4
JZ: d—i—Zciri—i—ZZqijrirj,
=1

i=1 j=1

where 7 = (rq,...,7¢) € Z' is the current fixing at depth ¢. Similarly, Ay is obtained
by deleting the corresponding ¢ columns of A, and the reduced right-hand side b is
updated according to the current fixing.

Since we use a predetermined branching order, the reduced matrices @y, QZl,
and Ay only depend on the depth ¢, but not on the specific fixings. Along with the
reduced matrix)y, the quadratic part of the reduced dual objective function @, can
then be computed in the preprocessing phase, because it only depends on @), and
Ag. The predetermined branching order also allows the computation of the maxi-
mum eigenvalues A4, (Q¢) in the preprocessing phase, needed for ensuring proper
convergence of our active set method as described in section 2; compare (3).

Concerning the linear part ¢ and the constant part d of the dual reduced problem,
both can be computed incrementally in linear time per node. Let r = (ry,...,7¢) € Z!
be the current fixing at depth ¢. By definition of ¢, we have

) = S Ay elr) +0(r)

where the suffix (r) always denotes the corresponding data after fixing the first ¢
variables to r.

THEOREM 16. After a polynomial time preprocessing, the vector ¢(r) can be con-
structed incrementally in O(n — £ +m) time per node.

Proof. Defining y(r) := —3Q; "c(r), we have

SAQT elr) = ~A¢ - y(r).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1708 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

Note that y(r) is the unconstrained continuous minimizer of f(r). In [8], it was shown
that y(r) can be computed incrementally by

y(r) == [y(r') +az"" o e R

for some vector 271 € R* ™! and a := rp — y(r'); € R, where ' = (ry,...,7¢_1)
is the fixing at the parent node. This is due to the observation that the continuous
minima, according to all possible fixings of the next variable, lie on a line for which
2~ 1 is the direction. It can be proved that the vectors z¢~! only depend on the depth £
and can be computed in the preprocessing [8]. Updating y thus takes O(n — £) time.
We now have

ar) = —Ady(r') + az"" "1, e +b(r)
= Ay e — A2 1 e+ B(r)
= (A 1y(r) —y(Vn—es1 - A no1) — A2 1+ B(7).
In the last equation, we used the fact that the first part of the computation can be
taken over from the parent node by subtracting column n — £ 4+ 1 of A, scaled by the
last component of y(r'), from Ay_1y(r’), which takes O(m) time. The second part
Ag[#*71)1,.. n—¢ can again be computed in the preprocessing. The result then follows

from the fact that also b(r) can easily be computed incrementally from b(r’) in O(m)
time. d

THEOREM 17. After a polynomial time preprocessing, the scalar c?(r) can be con-
structed incrementally in O(n — £) time per node.

Proof. Recalling that

~ 1 3

d(r) = 7¢(r)"Qy e(r) —d(r) ,
the proof follows from the fact that y(r) = —3Q, '¢(r) and ¢(r) can be computed
in O(n — ¢) time per node [8]. O

COROLLARY 18. After a polynomial time preprocessing, the dual problem (9) can
be constructed in O(n — €+ m) time per node.

Besides the effort for solving the QP with the active set method, computing
the optimal solution of the primal problem from the dual solution is the most time
consuming task in each node. The following observation is used to speed up its
computation.

THEOREM 19. After a polynomial time preprocessing, the optimal primal solu-
tion z*(r) can be computed from the optimal dual solution A*(r) in O(m-(n—1{)) time
per node.

Proof. From (8) we derive

The first part can again be computed incrementally in O(n—¥£) time per node. For the
second part, we observe that —%Qé_lai can be computed in the preprocessing phase
foralli=1,...,m. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

FEASIBLE ACTIVE SET METHOD FOR CONVEX MIQP 1709

The above results show that the total running time per node is linear in n — ¢
when the number m of constraints is considered a constant, and when we make the
reasonable assumption that problem (QP) can be solved in constant time in fixed
dimension.

3.5. Postprocessing. Using FAST-QPA, we can solve the dual problem of the
continuous relaxation in every node of the branch-and-bound tree, in the case when it
admits a solution, up to high precision. If the dual problem is bounded, strong duality
guarantees the existence of a primal feasible solution. However, in practice, computing
the primal solution by formula (8) can affect its feasibility. This numerical problem is
negligible in the pure integer case (where we end up fixing all the variables), while it
becomes crucial in the mixed-integer case. Indeed, when dealing with mixed-integer
problems, the primal solution of the relaxation in the optimal branch-and-bound node
(i.e., the node that gives the optimal value) is actually used to build up the solution
of the original problem.

Hence, in the case when a high precision is desired for the primal solution, we
propose the following approach: the branch-and-bound node related to the optimal
value gives an optimal fixing of the integer variables. Therefore, we consider the
convex QP that arises from problem (MIQP) under these optimal fixings. Then, we
call a generic solver to deal with this QP problem (the values of the primal continuous
variables obtained by formula (8) can be used as a starting point). Since the hardness
of problem (MIQP) is due to the integrality constraints on the variables, the running
time for this postprocessing step is negligible.

In the experiments reported below, we apply this approach using CPLEX 12.6 as
solver for the QP problem (we choose 1079 as feasibility tolerance). The time required
for the postprocessing step is included in all stated running times. As noticed above,
this postprocessing phase is not needed in the pure integer case.

4. Experimental results. In order to investigate the potential of our algorithm
FAST-QPA-BB, we implemented it in C++/Fortran 90 and compared it to the MIQP
solver of CPLEX 12.6. We also tested the branch-and-bound solver B-BB of Bonmin
1.74. However, we did not include the running times for the latter in the tables of
this paper since its performance was not competitive at all, not even for mixed-integer
instances with a few number of integer variables. All experiments were carried out on
Intel Xeon processors running at 2.60 GHz. We used an absolute optimality tolerance
and a relative feasibility tolerance of 10~° for all algorithms.

In order to obtain a feasible solution to problem (MIQP) and thus an initial upper
bound—or to determine infeasibility of (MIQP)—we replace the objective function
in (MIQP) by the zero function and use the CPLEX 12.6 ILP solver. In principle,
the algorithm also works when setting the initial upper bound to a very large value.
Then it is either replaced as soon as a feasible solution is found in some branch-and-
bound node, or it will remain unchanged until the algorithm terminates, in which case
problem (MIQP) must be infeasible.

Altogether, we randomly generated 1600 different problem instances for (MIQP),
considering percentages of integer variables p := =1 € {0.25,0.50,0.75,1.0}. For
p=0.25(0.5/0.75 / 1.0), we chose n € {50, 100, 150, 200, 250} ({50, 75, 100, 125,150}
/ {50, 60,70,80,90} / {50, 55,60,65,70}), respectively. The number of constraints m
was chosen in {1,10,25,50}. For each combination of p, n, and m, we generated ten
instances. For every group of instances with a given percentage of integer variables p,
the parameter n was chosen up to a number such that at least one of the tested
algorithms was not able to solve all of the ten instances to optimality for m = 1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1710 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

within our time limit of three cpu hours.

For generating the positive definite matrix @), we chose n eigenvalues \; uniformly
at random from [0, 1] and orthonormalized n random vectors v;, each entry of which
was chosen uniformly at random from [—1,1]; then we set @ = Y., Ajv;v;. The
entries of ¢ were chosen uniformly at random from [—1, 1]; moreover, we set d = 0.
For the entries of A and b, we considered two different choices:

(a) the entries of b and A were chosen uniformly at random from [—1, 1],

(b) the entries of A were chosen uniformly at random from [0,1] and we set

bi = %Z;—l:laij, 1= 1,...,m.
The constraints of type (b) are commonly used to create hard instances for the knap-
sack problem. At www.mathematik.tu-dortmund.de/lsv/instances/MIQP.tar.gz all
instances are publicly available.

The performance of the considered algorithms for instances of type (a) can be
found in Tables 1-4. We do not include tables for instances of type (b), since there are
no significant differences in the results, except that they are, in general, easier to solve
for our algorithm as well as for CPLEX. All running times are measured in cpu seconds.
The tables include the following data for the comparison between FAST-QPA-BB and
CPLEX 12.6: number of instances solved within the time limit, average preprocessing
time, average running times, average number of branch-and-bound nodes, average
number of iterations of FAST-QPA in the root node, and average number of iterations
of FAST-QPA per node in the rest of the enumeration tree. All averages are taken over
the set of instances solved within the time limit.

From our experimental results, we can conclude that p € {0.25;0.50} FAST-QPA-BB
clearly outperforms CPLEX 12.6 for m up to 25, and is at least competitive to CPLEX
12.6 if p = 0.75. For the mixed-integer case we can see that the average running
times of FAST-QPA-BB compared to CPLEX 12.6 are better the bigger the percentage
of continuous variables is, even with a larger number of constraints. For the pure
integer case we still outperform CPLEX 12.6 for m up to 10. For all instances, the
preprocessing time is negligible.

This experimental study shows that FAST-QPA-BB is able to solve 644 instances of
type (a) to optimality, while CPLEX 12.6 can only solve 606 instances. Note that the
average number of branch-and-bound nodes in our dual approach is approximately
30 times greater than that needed by CPLEX 12.6. Nevertheless, the overall running
times of our approach are much faster for moderate sizes of m, emphasizing both the
quick enumeration process within the branch-and-bound tree and the benefit of using
reoptimization. Note that the performance of our approach highly depends on m. As
the number of constraints grows, the computational effort for both solving the dual
problem and recomputing the primal solution (see Theorem 19) is growing as well.

In Table 5 we compare the performance of FAST-QPA-BB with FAST-QPA-BB-NP, a
version in which the early pruning is not implemented (see section 3.2). We show the
results for the pure integer instances of type (a) with p = 1.0. The benefits from the
early pruning are evident: the average number of iterations of FAST-QPA is decreased,
leading to faster running times so that nine more instances can be solved.

Our experimental results also underline the strong performance of FAST-QPA. The
number of iterations of FAST-QPA needed in the root node of our branch-and-bound
algorithm is very small on average: for m = 50 it is always below 60 and often much
smaller. Using warmstarts, the average number of iterations drops to 1-6.

Besides the tables of average running times, we visualize our results by per-
formance profiles in Figure 1, as proposed in [12]. They confirm the result that
FAST-QPA-BB outperforms CPLEX 12.6 significantly.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

www.mathematik.tu-dortmund.de/lsv/instances/MIQP.tar.gz

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

FEASIBLE ACTIVE SET METHOD FOR CONVEX MIQP

TABLE 1
Results for instances of type (a) with p = 1.0.

1711

inst FAST-QPA-BB CPLEX 12.6

n [m # [ptime [time nodes [it root [it # [time [nodes
50 1 10 0.00 6.83 9.24e+6 1.50 1.16 10 48.79 5.22e+5
50 | 10 10 0.00 83.15 3.16e+7 3.80 1.54 10 157.87 1.38e+6
50 | 25 9 0.01 2337.87 | 1.62e+8 8.56 2.09 10 | 1993.92 | 1.13e+7
50 | 50 0 - - - - - 0 - -

55 1 10 0.00 28.47 3.62e+7 1.60 1.25 10 149.52 1.31e+6
55 | 10 10 0.00 427.66 1.46e+8 3.40 1.48 10 | 1030.84 | 7.30e+6
55 | 25 4 0.01 3843.30 | 3.37e+8 7.50 1.86 5 3126.64 | 1.64e+7
55 | 50 0 - - - - - 0 - -

60 1 10 0.00 133.32 1.60e+8 1.30 1.11 10 | 692.71 5.67e+6
60 | 10 8 0.01 1894.81 | 6.86e+8 2.62 1.51 8 | 3397.34 | 2.35e+7
60 | 25 2 0.02 8963.19 | 7.55e+8 5.50 2.00 3 7357.56 | 3.72e+7
60 | 50 0 - - - - - 0 - -

65 1 10 0.01 349.11 4.13e+8 1.40 1.15 10 | 1352.04 | 1.05e+7
65 | 10 8 0.01 4010.42 | 1.50e+9 2.75 1.48 4 | 4270.80 | 2.73e+7
65 | 25 0 - - - - - 1 7818.69 | 3.64e+7
65 | 50 0 - - - - - 0 - -

70 1 10 0.01 1113.47 | 1.30e+9 1.60 1.27 9 | 4609.44 | 3.24e+7
70 | 10 4 0.01 6915.67 | 2.38e+9 2.50 1.51 1 9510.90 | 5.33e+7
70 | 25 0 - - - - - 0 - -

70 | 50 0 - - - - - 0 - -

TABLE 2
Results for instances of type (a) with p = 0.75.
inst FAST-QPA-BB CPLEX 12.6

n [m # [ptime [time nodes [it root [it # time [nodes
60 1 10 0.00 1.81 2.0le+6 1.30 1.11 10 12.12 1.12e+5
60 10 10 0.01 5.65 1.82e+6 2.80 1.47 10 17.63 1.34e+5
60 | 25 10 0.02 32.60 2.36e+6 9.10 1.84 10 26.49 1.51e+5
60 | 50 10 0.08 641.91 6.64e+6 55.80 2.79 10 129.51 4.80e+5
70 1 10 0.01 12.15 1.30e+7 1.60 1.20 10 84.02 6.67e+5
70 10 10 0.01 27.11 8.19¢+6 3.40 1.47 10 77.70 5.07e+5
70 | 25 10 0.03 159.81 1.23e+7 9.20 1.76 10 183.43 8.85e+5
70 | 50 10 0.08 2222.15 | 2.79e+7 18.60 2.41 10 | 593.70 1.89¢+-6
80 1 10 0.02 65.98 6.51e+7 1.40 1.12 10 | 446.60 2.91e+6
80 10 10 0.03 151.77 | 4.37e+7 3.80 1.45 10 | 386.33 2.08e+-6
80 | 25 10 0.04 963.38 7.06e+7 10.30 1.77 10 791.62 3.20e+-6
80 | 50 7 0.09 3339.39 | 5.38e+7 15.29 2.16 9 1903.79 | 5.27e+6
90 1 10 0.03 417.90 | 3.79e+8 1.30 1.11 10 | 2332.52 | 1.25e+7
90 10 10 0.04 1538.99 | 4.36e+8 3.00 1.42 10 | 2745.36 | 1.26e+7
90 | 25 10 0.06 4468.73 | 3.55e+8 5.90 1.69 9 | 3094.58 | 1.08e+7
90 | 50 1 0.09 5361.11 | 1.02e+8 10.00 2.01 4 | 5199.56 | 1.27e+7
100 1 6 0.05 1897.13 | 1.69e+9 1.33 1.10 5 5918.25 | 2.6le+7
100 | 10 6 0.06 5893.96 | 1.52e+9 4.83 1.41 0 - -
100 | 25 1 0.06 4897.75 | 3.95e+8 5.00 1.64 0 - -
100 | 50 1 0.11 3622.67 | 8.05e+7 15.00 1.99 1 2664.13 | 5.47e+6

5. Conclusions. We presented a new branch-and-bound algorithm for convex
quadratic mixed-integer minimization problems based on the use of an active set

method for computing lower bounds.

Using a dual instead of a primal algorithm

considerably improves the running times, as it may allow an early pruning of the
node. Moreover, the dual problem only contains nonnegativity constraints, making the
problem accessible to our tailored active set method FAST-QPA. Our sophisticated rule

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1712 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

TABLE 3
Results for instances of type (a) with p = 0.5.

inst FAST-QPA-BB CPLEX 12.6
n [m # [ptime [time [nodes [it root [it # [time [nodes
50 1 10 0.00 0.02 9.83e+3 1.50 1.16 10 0.18 1.26e+3
50 | 10 || 10 0.00 0.03 5.46e+3 3.80 1.51 10 0.16 7.47e+2

50 | 25 10 0.01 0.11 4.68e+3 8.20 1.95 10 0.23 8.70e+2
50 | 50 10 0.06 1.14 8.30e+3 21.40 3.00 10 0.61 1.63e+3
75 1 10 0.01 0.25 1.76e+5 1.60 1.21 10 2.20 1.30e+4

75 10 10 0.02 0.68 1.65e+5 3.60 1.46 10 2.50 1.17e+4
75 25 10 0.02 2.23 1.68e+5 9.80 1.75 10 3.80 1.47e+4
75 50 10 0.09 12.08 1.70e+5 17.00 2.31 10 6.56 1.74e+4
100 1 10 0.05 13.84 1.08e+7 1.50 1.15 10 76.62 3.20e+5
100 | 10 10 0.05 14.13 3.46e+6 4.80 1.41 10 63.18 2.35e+5
100 | 25 10 0.07 56.86 4.35e+6 8.50 1.66 10 87.39 2.55e+45
100 | 50 10 0.13 322.71 5.39e+6 51.80 2.03 10 | 216.89 | 4.38e+5
125 1 10 0.11 193.38 1.33e+8 1.40 1.13 10 | 2449.15 | 6.70e+-6
125 | 10 10 0.13 516.50 1.15e+8 3.40 1.39 10 | 2265.19 | 5.70e+6
125 | 25 10 0.14 1342.59 | 1.03e+8 8.80 1.56 10 | 2111.49 | 4.22e+6
125 | 50 10 0.21 4524.80 | 9.28e+7 | 52.60 1.86 10 | 2843.59 | 4.22e+6
150 1 9 0.22 4011.63 | 2.34e+9 1.78 1.25 2 5026.81 | 9.86e+6
150 | 10 6 0.24 6857.64 | 1.29e+9 3.50 1.40 0

150 | 25 3 0.24 9440.33 | 6.65e+8 7.33 1.54 0 - -
150 | 50 0 0

TABLE 4
Results for instances of type (a) with p = 0.25.

inst FAST-QPA-BB CPLEX 12.6

n [m # [ptime [time [nodes [it root [it # [time [nodes
50 1 10 0.01 0.01 1.31e+2 1.50 1.18 10 0.01 3.44e+1
50 10 10 0.00 0.01 1.96e+2 3.80 1.58 10 0.02 4.46e+1
50 | 25 10 0.01 0.03 1.40e+2 8.20 2.34 10 0.03 3.85e+1

50 | 50 10 0.06 0.10 1.14e+-2 21.40 4.39 10 0.07 3.32e+1
100 1 10 0.06 0.09 1.05e+4 1.50 1.16 10 0.50 1.06e+3
100 | 10 10 0.06 0.11 3.88e+3 4.80 1.43 10 0.45 6.32e+-2
100 | 25 10 0.06 0.18 4.91e+3 8.50 1.73 10 0.55 7.36e+2
100 | 50 10 0.12 0.75 8.24e+3 51.80 2.16 10 1.30 1.53e+3
150 1 10 0.25 0.62 1.68e+5 1.70 1.23 10 7.49 1.31le+4
150 | 10 10 0.22 0.97 1.24e+5 3.00 1.41 10 7.37 1.09e+4
150 | 25 10 0.24 2.85 1.56e+5 6.40 1.58 10 12.81 1.65e+4
150 | 50 10 0.31 4.74 7.77e+4 11.20 1.82 10 9.50 8.69e+3
200 1 10 0.58 14.79 6.38e+6 1.50 1.16 10 | 283.67 | 2.73e+5
200 | 10 10 0.52 21.32 3.00e+6 3.20 1.38 10 | 244.09 2.19e+5
200 | 25 10 0.57 74.93 4.03e+6 5.90 1.52 10 | 344.88 2.56e+5
200 | 50 10 0.68 400.99 7.44e+6 | 40.60 1.73 10 | 818.13 | 4.83e+5
250 1 10 1.12 329.54 1.21e+8 1.50 1.15 7 | 4413.64 | 2.54e+6
250 | 10 10 1.10 617.59 7.35e+7 3.80 1.37 9 | 5291.97 | 2.67e+6

5

4

250 | 25 10 1.17 2115.57 | 1.01le+8 6.90 1.48 4984.95 | 2.08e+6
250 | 50 9 1.28 3709.07 | 6.27e47 | 49.11 1.68 5444.02 | 1.90e+-6

to estimate the active set leads to a small number of iterations of FAST-QPA in the root
node that, however, grows as the number of constraints increases. This shows that for
a large number of constraints, the QPs addressed by FAST-QPA are nontrivial and their
solution time has a big impact on the total running time, since we enumerate a large
number of nodes in the branch-and-bound tree. Nevertheless, reoptimization helps
to reduce the number of iterations of FAST-QPA per node substantially, leading to an

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

FEASIBLE ACTIVE SET METHOD FOR CONVEX MIQP

TABLE 5

Results for instances of type (a) with p = 1.0 turning early pruning on/off.

inst FAST-QPA-BB FAST-QPA-BB-NP
n [m # [time [nodes [it # [time [nodes [it
50 1 10 6.83 9.24e+6 1.16 10 8.79 9.24e+6 1.48
50 | 10 10 83.15 3.16e+7 | 1.54 10 145.95 3.16e+7 | 2.74
50 | 25 9 2337.87 | 1.62e+8 | 2.09 7 | 4587.82 | 1.35e+8 | 4.25
50 | 50 0 - - - 0 - -
55 1 10 28.47 3.62e+7 | 1.25 10 34.86 3.62e+7 | 1.74
55 | 10 10 | 427.66 1.46e+8 | 1.48 10 743.12 1.46e+8 | 2.53
55 | 25 4 | 3843.30 | 3.37e+8 | 1.86 3 | 4216.79 | 1.56e+8 | 3.63
55 | 50 0 - - - 0 - - -
60 1 10 133.32 1.60e+8 | 1.11 10 154.74 1.60e+8 | 1.34
60 | 10 8 1894.81 | 6.86e+8 | 1.51 8 3259.91 | 6.86e+8 | 2.62
60 | 25 2 8963.19 | 7.55e+8 | 2.00 0 - -
60 | 50 0 - - - 0 - - -
65 1 10 349.11 4.13e+8 1.15 10 410.14 4.13e+8 1.47
65 | 10 8 | 4010.42 | 1.50e+9 | 1.48 7 | 5238.44 | 1.23e+9 | 2.52
65 | 25 0 - - - 0 - - -
65 | 50 0 - - - 0 - - -
70 1 10 | 1113.47 | 1.30e+9 | 1.27 10 | 1318.95 | 1.30e+9 | 1.81
70 10 4 6915.67 | 2.38e+9 1.51 1 8714.63 1.31e+9 | 2.95
70 | 25 0 - - - 0 - - -
70 | 50 0 - - - 0 - - -

p=025

p=075

p=050

""" CPLEX 12.6

FAST-QPA-BB

F1G. 1. Performance profiles for all instances of type (a).

1713

algorithm that outperforms CPLEX 12.6 on nearly all problem instances considered.

REFERENCES

[1] T. ACHTERBERG, SCIP: solving constraint integer programs, Math. Program. Comput., 1
(2009), pp. 1-41.
[2] S. C. AGRAWAL, On mized integer quadratic programs, Naval Res. Logist. Quart., 21 (1974),
pPp- 289-297.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/24/21 to 147.162.22.66. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1714 BUCHHEIM, DE SANTIS, LUCIDI, RINALDI, AND TRIEU

&s!

. A. AL-KHAYYAL AND C. LARSEN, Global optimization of a quadratic function subject to a
bounded mized integer constraint set, Ann. Oper. Res., 25 (1990), pp. 169-180.

. P. BERTSEKAS, Projected Newton methods for optimization problems with simple constraints,
STAM J. Control Optim., 20 (1982), pp. 221-246, doi:10.1137/0320018.

. P. BERTSEKAS, Nonlinear Programming, Athena Scientific, Belmont, MA, 1999.

. BIENSTOCK, Computational study of a family of mized-integer quadratic programming prob-
lems, Math. Programming, 74 (1996), pp. 121-140.

P. BoNaMI, L. BIEGLER, A. CONN, G. CORNUEJOLS, I. GROSSMANN, C. LAIRD, J. LEE, A. LobI,
F. MARGOT, N. SAWAYA, AND A. WACHTER, An algorithmic framework for conver mized
integer nonlinear programs, Discrete Optim., 5 (2008), pp. 186-204.

C. BUucHHEIM, A. CAPRARA, AND A. LoDI, An effective branch-and-bound algorithm for convex
quadratic integer programming, Math. Program., 135 (2012), pp. 369-395.

C. BUCHHEIM AND L. TRIEU, Active set methods with reoptimization for convexr quadratic
integer programming, in Combinatorial Optimization, Lecture Notes in Comput. Sci. 8596,
Springer, Cham, 2014, pp. 125-136.

G. CORNUEJOLS AND R. TUTUNCU, Optimization Methods in Finance, Math. Finance Risk,
Cambridge University Press, Cambridge, UK, 2006.

R. S. DEMBO, S. C. EISENSTAT, AND T. STEINHAUG, Inezact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400-408, doi:10.1137/0719025.

E. DOLAN AND J. MORE, Benchmarking optimization software with performance profiles, Math.
Program., 91 (2002), pp. 201-213.

F. FACCHINEI AND S. Lucipi, Quadratically and superlinearly convergent algorithms for the so-
lution of inequality constrained minimization problems, J. Optim. Theory Appl., 85 (1995),
pp. 265-289.

FICO Xpress Optimization Suite, 2015, www.fico.com.

R. FLETCHER AND S. LEYFFER, Numerical experience with lower bounds for MIQP branch-and-
bound, SIAM J. Optim., 8 (1998), pp. 604-616, doi:10.1137/51052623494268455.

L. GrippO, F. LAMPARIELLO, AND S. Lucipi, A truncated newton method with nonmonotone
line search for unconstrained optimization, J. Optim. Theory Appl., 60 (1989), pp. 401-
419.

GUROBI Optimizer, 2015. www.gurobi.com.

IBM ILOG CPLEX Optimizer, 2015. www.ibm.com/software/commerce/optimization/cplex-
optimizer.

R. LazIMY, Mized-integer quadratic programming, Math. Programming, 22 (1982), pp. 332-349.

R. Lazimy, Improved algorithm for mized-integer quadratic programs and a computational
study, Math. Programming, 32 (1985), pp. 100-113.

S. LEYFFER, Deterministic Methods for Mized Integer Nonlinear Programming, Ph.D. thesis,
University of Dundee, Scotland, UK, 1993.

MOSEK Optimization Software, 2015. mosek.com/products/mosek.

J. NOCEDAL AND S. WRIGHT, Numerical Optimization, Springer-Verlag, New York, 1999.

B. N. PSHENICHNY AND Y. M. DANILIN, Numerical Methods in Extremal Problems, Mir Pub-

lishers, Moscow, 1978.

gg U

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

doi:10.1137/0320018
doi:10.1137/0719025
www.fico.com
doi:10.1137/S1052623494268455
www.gurobi.com

	Introduction
	A feasible active set algorithm for quadratic programming problems with nonnegativity constraints
	Active set estimate
	Outline of the algorithm
	Convergence analysis

	Embedding FAST-QPA into a branch-and-bound scheme
	Branching
	Dual approach
	Reoptimization
	Incremental computations and preprocessing
	Postprocessing

	Experimental results
	Conclusions
	References

