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NONDISPERSAL AND DENSITY PROPERTIES OF INFINITE
PACKINGS\ast 
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Abstract. This article is motivated by an optimization problem arising in biology. Interpreting
the egg arrangements (packings) in the brood chamber as results from an optimization process, we
are led to look for packings that are at the same time the most possible dense and nondispersed. We
first model this issue in terms of an elementary shape optimization problem among convex bodies,
involving their inradius, diameter, and area. We then solve it completely, showing that the solutions
are either particular hexagons or a symmetric 2-cap body, namely the convex hull of a disk and two
points lined up with the center of the disk.
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Notation.
\scrK set of compact convex bodies of \BbbR 2

D(0, R) centered closed ball with radius R
| K| area of a convex body K
r(K) inradius of a convex body K
Diam(K) diameter of a convex body K
H\ast 

r regular hexagon with inradius r

1. Introduction. This article is devoted to investigating optimal configurations
of infinite packings in the two-dimensional space \BbbR 2. Recall that a packing associated
to a convex body K with nonempty interior is an arrangement of nonoverlapping
copies of K. More precisely, denoting by \scrK the set of compact convex bodies of \BbbR 2,
an infinite packing P (K) with pattern K is defined by

P (K) =
\bigcup 
i\in I

\tau i(K),

where I denotes a countable set of indices, and the mappings \tau i are affine isometries
of \BbbR 2 such that int(\tau i(K)) \cap int(\tau j(K)) = \emptyset for all i \not = j.

Since we are interested in infinite packings, we will consider without loss of gen-
erality in what follows that I = \BbbN , and we will denote by \scrP (K) the set of all infinite
packings of the plane with pattern K.

A close notion that will be much discussed in what follows is the one of tiling
domains. Recall that, as a consequence of the definition of packings, a convex K
defines a tiling domain of the plane whenever \BbbR 2 \in \scrP (K).

In the whole article, the notation | \cdot | will denote the Lebesgue measure in \BbbR 2.
Let us make precise the shape optimization problem we will deal with. The

criterion to minimize involves two geometrical functionals denoted by d and D\infty . Let
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us define them:
\bullet The first one models the density of a packing. We choose to define it as
follows; see section 2.1 for a discussion and the link with another classical
quantity for the density:

(1.1) d(K) =
| K| 
| KT | 

for every convex set K, where KT denotes the smallest convex set tiling the
plane and containing K (we refer the reader to Appendix A for the proof that
such a set exists). In some sense, the quantity d(K) stands for a quantitative
measure of the tiling ability of K. Roughly speaking, we can consider that
the highest d(K) is and the most tiling will be the convex set K. Note, in
particular, that if K is tiling, then d(K) = 1.

\bullet The second functional is defined by

(1.2) D\infty (K) =
2
\sqrt{} 
| K| \surd 

\pi Diam(K)

for every convex set K, where Diam(K) denotes the diameter of K. As
this will be highlighted in what follows, the quantity D\infty (K) is a measure of
nondispersal of any packing associated to the convex K. Indeed, this quantity
is obtained by introducing the restriction of a packing with pattern K to a
disk with diameter R > 0, by comparing the diameter of this set with the
diameter of the disk and by letting R tend to +\infty . Hence, trying to minimize
D\infty (K) will allow us to obtain a convex K and an associated packing as
``compact"" as possible.

Note that modeling issues, and in particular the functionals' choices, will be discussed
and commented on in section 2.1.

Finally, for a given t \in [0, 1], we will consider in what follows a convex combination
of both previous criteria. The resulting criterion, denoted by Jt, reads

Jt(K) = td(K) + (1 - t)
1

D\infty (K)
.

Let us define the admissible set. We will deal with three kinds of constraints:
(i) The considered sets will be compact and convex subsets of \BbbR 2.
(ii) To avoid the shapes collapsing, we impose to the considered convex sets to

have a minimal inradius r0. In what follows, we will denote by r(K) the
inradius of any convex set K.

(iii) Since the functionals we will deal with are invariant by homothety, it is rele-
vant to assume the area of the pattern prescribed, equal to a positive constant
A.

We now introduce the complete shape optimization problem we will solve.
Let t \in [0, 1], r0 > 0, and A \geqslant \pi r20 be fixed, and let \scrA r0,A denote the
set of compact convex sets having an inradius larger than r0 and an
area equal to A, namely

\scrA r0,A = \{ K \in \scrK | r(K) \geqslant r0 and | K| = A\} .
The shape optimization problem we will consider reads

(1.3) sup
K\in \scrA r0,A

Jt(K) .
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It is notable that this problem is also motivated by applied considerations. Some
explanations about the biological framework in which this problem naturally arises
are provided at the end of this section.

Let us roughly state hereafter the main results of this article. More detailed (and
technical) versions of these theorems are provided in section 2.2.

Our first result deals with generalities about tiling domains. It seems to us inter-
esting in itself.

Theorem A. Among all (convex) tiling sets with a given diameter and inradius,
the one of minimal area is a p-hexagon, in other words a hexagon with two parallel
opposite sides with the same length. By duality, one shows that the (convex) tiling set
with a given area and inradius maximizing its diameter is a p-hexagon.

Our second result deals with the solution of problem (1.3). For the sake of clarity,
we state it informally.

Theorem B. Under a smallness assumption on the ratio r20/A, the solutions of
problem (1.3) are either a p-hexagon or a symmetric 2-cap body (the convex hull of a
disk and two points lined up with the center of the disk), depending on the values of
the parameter t.

Complete and extensive versions of these results are provided in Theorems 2.7
and 2.9.

We end this section by giving an interpretation of this problem in biology. The
shape optimization problem (1.3) is related to the understanding of the egg shape of
a class of crustaceans, subclass branchiopoda, called eulimnadia.

In a clutch, the eggs are placed in the brood chamber, which is located dorsally
beneath the carapace and which is closed by the abdominal processes. To understand
egg geometry, it appears relevant to interpret the observed arrangements as the result
of an optimization process. This way, assuming that the resulting shapes allow the
crustacean to incubate the largest number of eggs, we look for configurations guaran-
teeing at the same time that shapes and arrangements make the resulting packing the
most ``dense"" (this word meaning here the ``most tiling""; see the definition of d(K))
and the most ``compact"" (in the sense that the restriction of the packing to a given
ball with a large radius will contain the largest number of elements). In a nutshell, de-
noting by K the egg shape and assuming that the clutch contains the largest possible
number of eggs, it is plausible that egg arrangements look at maximizing at the same
time d(K) and D\infty (K). We formalize this idea by looking for patterns K maximizing
a convex combination of these functionals, hence the writing of problem (1.3).

Structure of the article. This article is organized as follows. Section 2.1 is devoted
to several remarks about our motivations for considering problem (1.3), as well as our
functional and admissible set choices. The main results of this article are gathered in
section 2.2. Section 3 is devoted to the proof of Theorem 2.7, and section 4 is devoted
to the proof of Theorem 2.9.

2. Modeling and solving the optimization problem.

2.1. Modeling issues and state of the art.
Density of convex sets. Let K \in \scrK and P (K) be a packing with pattern K. It is

standard (see [12]) to define the density of \delta (P (K)) as

(2.1) \delta (P (K)) = lim inf
r\rightarrow +\infty 

\sharp \{ i \in \BbbN | \tau i(K) \subset [ - r/2, r/2]2\} | K| 
r2

.
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Fig. 1. An example of a packing with ellipses; we can see the density as the ratio between the
blue area (ovals) and the entire square.

See Figures 1 and 2 for an illustration of packing density. For a fixed r > 0, the ratio
\sharp \{ i \in \BbbN | \tau i\in I(K) \subset [ - r/2, r/2]2\} | K| /r2 represents the rate of the area occupied by
the elements of the packing P (K) contained in [ - r/2, r/2]2 with respect to the total
area of a square with side r. Letting r \rightarrow +\infty makes this definition independent of
the window in which this rate is evaluated.

Having in mind to look for packings maximizing (among other criteria) the density
functional, it is relevant to introduce a criterion depending only on the pattern choice,
by setting d1(K) = supP (K)\in \scrP (K) \delta (P (K)), corresponding to the optimal density of
a packing associated to the pattern K. This quantity is called density of the convex
K [12].

Notice that the following elementary properties about d1 are direct consequences
of the definition.

Proposition 2.1. For every K \in \scrK , one has d1(K) \in [0, 1]. Moreover,
1. if D is a disk, d1(D) = \pi 

2
\surd 
3
\simeq 0.9 [5];

2. if K is a tiling domain, d1(K) = 1;

3. if K \in \scrK and T \in \scrK is tiling such that K \subset T , then d1(K) \geqslant | K| 
| T | [10].

The last property will be crucial in what follows since it allows one to provide a
lower bound for d1. Roughly speaking, the main ingredient consists in considering a
tiling domain T such that K \subset T , the family of sets \{ \tau i(T )\} i\in \BbbN defining the associated
packing. We then define a packing with pattern K by placing a copy of K in each
cell \tau i(T ) and observing that the density of this packing will be larger than | K| /| T | .
Moreover, it has been shown that given a convex body K, there exists a triangle T
such that K \subset T and | K| /| T | \geqslant 2/3 (see [4] by F\'ary in 1950 and [2] by Courant
in 1965). By considering parallelograms instead of triangles, Kuperberg obtained in
1982 in [10] the same conclusion, and this way the lower bound d1(K) \geqslant 3/4 for every
convex bodyK. This lower bound was improved in 1990 by Kuperberg and Kuperberg
in [9], where it is shown that d1(K) \geqslant 

\surd 
3/2, by using a particular tiling hexagon. In

1995, Doheny proved in [3] the existence of r0 >
\surd 
3/2 such that d1(K) \geqslant r0 for every

convex body K. To our knowledge, the exact value of the bound inf\{ d1(K), K \in \scrK \} 
remains unknown.

Unfortunately, the precise value of d1(K) is almost never computable, even for
simple choices of K. More annoying, having in mind to consider it as a criterion
of an optimization problem, the quantity d1(K) appears intricate to handle. These
considerations lead us to consider as an alternative and more workable definition of
the density functional d defined by (1.1) involving the smallest convex tiling domain
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Fig. 2. A packing with ellipses in a tiling with rectangles. It is intuitive that the density of this
packing is equal to the ratio of the area of the ellipse over the area of the rectangle.

containing K. Obviously, there holds that d(K) \leqslant d1(K) for every convex body K,
and it is notable that all the properties gathered in Proposition 2.1 above remain
satisfied with this new definition of density.

Nondispersal properties of convex sets. Let us first model the notion of nondis-
persion for packings. We start from the observation that balls are the ``less dispersed""
bodies, in the sense that, among all nonempty convex sets, they minimize the ratio
of the diameter by the square root of their area. This leads us to define the notion
of ``nondispersion"" of packings by comparing their diameter to that of balls. More
precisely, we introduce, mimicking the definition of \delta in (2.1),

D\prime 
\infty (K) = inf

P\in \scrP (K)
lim sup
R\rightarrow \infty 

2R\sqrt{} 
\sharp \{ i, \tau i(K) \subset D(0, R)\} Diam(K)

,

the lim sup being used in the definition to make D\prime 
\infty (K) independent of the balls'

radii. More precisely, given a packing P \in \scrP (K) and R > 0, we consider a disk
with radius R and evaluate the number of copies of K within the disk. Note also
that we take the square root of this integer in the definition by observing that the
maximal number of identical copies of a convex order of magnitude in a disk with
radius R is1 O(R2). Finally, the diameter of K appearing in the denominator is used
as a renormalization factor. This appears natural in view of defining an adimensional
quantity.

First, an elementary reasoning shows that, in a disk of radius R, there cannot be
more than \pi R2/| K| copies of K. As a consequence, we infer that

(2.2) D\prime 
\infty (K) \geqslant 

2
\sqrt{} 

| K| \surd 
\pi Diam(K)

= D\infty (K)

for every K \in \scrK , where D\infty (K) is defined by (1.2). The following result, whose proof
is postponed to Appendix B, provides fine estimates of D\prime 

\infty (K).

Theorem 2.2. Let K \in \scrK . One has

(2.3)
2
\sqrt{} 

| K| \surd 
\pi Diam(K)

\leqslant D\prime 
\infty (K) \leqslant 

\sqrt{} 
2\surd 
3

2
\sqrt{} 

| K| \surd 
\pi Diam(K)

.

Furthermore, if K is tiling, then one has D\prime 
\infty (K) = D\infty (K).

1Indeed, let us provide a sketch of argument. Let us consider a rectangle tiling the plane and
containing the convex body. We denote by L and \ell its dimensions. If R \gg L, the number of
rectangles that can be packed within a disk with radius R is O(\pi R2)/(L\ell ) = O(R2). Therefore, the
number of copies of a convex K that can be packed within a disk is less than \pi R2/| K| = O(R2).
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Fig. 3. (Left) The 15 kinds of tiling pentagons (source: https:// commons.wikimedia.org/
wiki/File:PentagonTilings15 .svg). (Right) The three kinds of tiling hexagons (source: http:
//mathworld .wolfram.com/HexagonTiling.html).

According to the result above, one has D\prime 
\infty (K)/D\infty (K) \in [1, 1.08). We infer that,

in order to consider workable quantities, it will be relevant in what follows to consider
D\infty as a criterion of nondispersal.

Convex tiling domains. The previous remarks suggest that we take a short interest
in convex tiling domains. Notice that a convexity argument allows us to show that a
two-dimensional convex domain which is tiling in \BbbR 2 is necessarily a polygon. More
precisely, thanks to Euler's formulae, it is known that a polygon with more than six
vertices cannot be tiling [1]. Moreover, any triangle or quadrilateral tiles the plane,
but there exist only three kinds of tiling hexagons. The case of pentagons is more
intricate. It has been recently solved in [11] by leading an exhaustive search of all
families of convex pentagons tiling the plane. In particular, the authors state that
there are no more than 15 kinds of pentagons tiling the plane (see Figure 3 for an
illustration of tiling pentagons and hexagons).

2.2. Solving the optimization problems.
Notation. Let us define particular convex sets that will play a crucial role in what

follows.

Definition 2.3 (the hexagons HA,r and HD,r). Let r > 0 and A \geqslant 2
\surd 
3r2. Let

\scrC be a circle centered at the origin O with radius r and HA,r be the hexagon defined
as follows:

(i) Each side of HA,r is tangent to \scrC .
(ii) Denoting by \{ Bi\} i=1,...,6 the set of tangential points ordered between HA,r and

\scrC and by \theta i the angle \widehat BiOBi+1 (with the convention that B7 = B1), one has\Biggl\{ 
\theta 1 = \theta 4 = 4arctan

\Bigl( 
2r2+

\surd 
A2 - 12r4

4r2+A

\Bigr) 
,

\theta 2 = \theta 3 = \theta 5 = \theta 6 = \pi  - \theta 1
2 .

It is notable that HA,r is a p-hexagon, in other words a hexagon with two parallel
opposite sides with the same length (see Figure 4).

Moreover, let D and r be two positive numbers. Noting that one has2

Diam(HA,r) =
1

3r

\Bigl( 
2A+

\sqrt{} 
A2  - 12r4

\Bigr) 
,

2We refer the reader to Appendix C for a proof of this claim.

https://commons.wikimedia.org/wiki/File:PentagonTilings15.svg
https://commons.wikimedia.org/wiki/File:PentagonTilings15.svg
http://mathworld.wolfram.com/HexagonTiling.html
http://mathworld.wolfram.com/HexagonTiling.html
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Fig. 4. The p-hexagon HA,r and its inscribed circle.

one defines the hexagon HD,r by HD,r = HA(D),r, where A(D) is the unique solution
of the equation

(2.4) D = \alpha (A(D), r), with \alpha (A, r) =
1

3r

\Bigl( 
2A+

\sqrt{} 
A2  - 12r4

\Bigr) 
.

Furthermore, one has | HD,r| = 2rD  - r
\surd 
D2  - 4r2 (see Appendix C).

Definition 2.4 (the symmetric 2-cap bodies GD,r and GA,r). Let D and r be
two positive numbers such that D \geqslant 2r. We denote by GD,r the convex hull of a circle
with radius r and two points at a distance of D, lined up with the circle center (see
Figure 5). Such a convex set will be called a symmetric 2-cap body of diameter D
and inradius r.

Similarly, let A and r be two positive numbers. One defines the symmetric 2-cap
body GA,r by GA,r = GD(A),r, where D(A) is the unique positive solution of

A = r

\biggl( \sqrt{} 
D(A)2  - 4r2 + 2r arcsin

\biggl( 
2r

D(A)

\biggr) \biggr) 
.

Remark 2.5. Let A, D, r be three positive numbers. In [8], it is shown that for
every convex set with area A, inradius r, and diameter D, one has

(2.5) A \geqslant r

\biggl( \sqrt{} 
D2  - 4r2 + 2r arcsin

\biggl( 
2r

D

\biggr) \biggr) 
and this inequality is an equality if and only if K = GD,r (and thus A = | GD,r| ).
This inequality can also be interpreted as follows: the convex set with diameter D
and inradius r having the lowest area is GD,r. By duality, this also means that the
convex set with area A and inradius r having the maximal diameter is the convex hull
of a circle with radius r and two points, lined up with the circle center.

Remark 2.6. It follows easily from geometrical observations or simple computa-
tions that the following hold:

\bullet There exists a unique hexagon (up to rotations) fulfilling the conditions of
Definition 2.3, and this construction can be led if and only if A \geqslant 2

\surd 
3r2.

\bullet The hexagon HA,r is of area A and inradius r.
\bullet The sides of HA,r are two by two parallels. In particular, HA,r is a p-hexagon
(see Theorem A for the definition).

\bullet The diameter of HD,r can differ from D. For instance, it is the case if
r2 \geqslant A/2

\surd 
3 and D \leqslant min\{ 4/

\surd 
3r,Diam(GA,r), as noted in the proof of

Lemma 4.2.
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Fig. 5. Left: the hexagon HA,r and its inscribed circle. Right: the symmetric 2-cap body GD,r

and its inscribed circle.

Statement of the main results. In the following theorem, we state several sharp
inequalities for tiling domains of the plane. These results constitute key ingredients
of the proof of Theorem 2.9.

Theorem 2.7. Let T be a compact convex tiling domain of \BbbR 2:
1. There holds that

| T | \geqslant 2
\surd 
3r(T )2 and Diam(T ) \geqslant 

4\surd 
3
r(T )

with equality if only if T is a regular hexagon.
2. One has

(2.6) Diam(T ) \leqslant 
1

3r(T )

\Bigl( 
2| T | +

\sqrt{} 
| T | 2  - 12r(T )4

\Bigr) 
with equality if and only if T = HA,r

Remark 2.8. Let r > 0. As a byproduct of Theorem 2.7, using, in particular, that
the mapping [2

\surd 
3r2,+\infty ) \ni A \mapsto \rightarrow \alpha (A, r) (where \alpha is given by (2.4)) is increasing,

we get the following:
\bullet the (convex) tiling set with diameter D and inradius r minimizing its area is
the hexagon HD,r;

\bullet the (convex) tiling set with area A and inradius r maximizing its diameter is
the hexagon HA,r.

The first point comes from the following observation: let A \geqslant 2
\surd 
3r2 for some r >

0. Then, the map Fr : A \mapsto \rightarrow \alpha (A, r) = 1
3r

\bigl( 
2A+

\surd 
A2  - 12r4

\bigr) 
is increasing and

defines a bijection from [2
\surd 
3r2,+\infty ) to [4/

\surd 
3,+\infty ). Its inverse mapping is F - 1

r :
[4/

\surd 
3,+\infty ) \ni D \mapsto \rightarrow 2rD  - r

\surd 
D2  - 4r2.

Now, let T be a tiling domain of \BbbR 2. According to the considerations above, the in-
equality (2.6) is equivalent to Diam(T ) \leqslant Fr(T )(| T | ), which rewrites F - 1

r (Diam(T )) \leqslant 
| T | . This shows that the inequality

(2.7) 2r(T )Diam(T ) - r(T )
\sqrt{} 

Diam(T )2  - 4r(T )2 \leqslant | T | 
holds true for every tiling domain of \BbbR 2. The expected conclusion follows.

The second claim is a direct consequence of (2.6) in Theorem 2.7.

Theorem 2.9. Let r0 and A be two positive numbers such that 2
\surd 
3r20 < A.

Let us denote by X0 (\simeq 3.1847) the unique zero of the function X \mapsto \rightarrow 
\surd 
X2  - 4(14 - 

5X2) + 4X(X2  - 3) on [4/
\surd 
3,+\infty ) and set

(2.8) tA,r0 =

\surd 
\pi /(2

\surd 
A)\surd 

\pi /(2
\surd 
A) +A\gamma 0/r30

\in (0, 1),
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with

(2.9) \gamma 0 =

\Bigl( 
2
\sqrt{} 
X2

0  - 4 - X0

\Bigr) 
\sqrt{} 
X2

0  - 4(2X0  - 
\sqrt{} 
X2

0  - 4)2
\simeq 0.0472.

1. If t \in [0, tA,r0 ], the symmetric 2-cap body GA,r0 solves problem (1.3).
2. Let us assume, moreover, that

(2.10)

r0 \leqslant \gamma 
\surd 
A, where \gamma =

1\sqrt{} 
2X0  - 

\sqrt{} 
X2

0  - 4
\in [0.5069, 0.5070],

and define
(2.11)

t\ast A,r0 =

\surd 
\pi 

2
\surd 
A
(\mathrm{D}\mathrm{i}\mathrm{a}\mathrm{m}(GA,r0) - \mathrm{D}\mathrm{i}\mathrm{a}\mathrm{m}(HA,r0))

\surd 
\pi 

2
\surd 
A
(\mathrm{D}\mathrm{i}\mathrm{a}\mathrm{m}(GA,r0) - \mathrm{D}\mathrm{i}\mathrm{a}\mathrm{m}(HA,r0)) +A

\Bigl( 
1

| Diam(GA,r0
)|  - 

1
| Diam(HA,r0

)| 

\Bigr) 
.

One has t\ast A,r0 \geqslant tA,r0 . Moreover, if t \in [0, t\ast A,r0), the symmetric 2-cap body
GA,r0 solves problem (1.3), and if t \in (t\ast A,r0 , 1], the p-hexagon HA,r0 solves
problem (1.3). If t = t\ast A,r0 , the two convex sets HA,r0 and GA,r0 solve problem
(1.3).

Remark 2.10 (comment on the assumption (2.10)). The assumption 2
\surd 
3r20 < A

is natural since it is a sufficient and necessary condition for ensuring the existence
of the p-hexagon HA,r0 (see the first item of Theorem 2.7). Note that it writes also

r0 \leqslant \^\gamma 
\surd 
A, with \^\gamma \simeq 0.5373.

The assumption (2.10) appears a bit technical (although relevant from an applied
point of view). A refined analysis can show that if r0/

\surd 
A \in (\gamma , \^\gamma ), there exists

\~tA,r0 \geqslant tA,r0 such that for t \geqslant \~tA,r0 , either the symmetric 2-cap body GA,r0 or the
p-hexagon HA,r0 solves problem (1.3).

3. Proof of Theorem 2.7. Proving Theorem 2.7 is equivalent to determining
the optimal value of the problems

(3.1) inf\{ | K| , K \in \scrT , r(K) \geqslant r0\} and inf\{ Diam(K), K \in \scrT , r(K) \geqslant r0\} 

and

(3.2) sup\{ Diam(K), K \in \scrT , r(K) \geqslant r0, | K| = A\} ,

where \scrT denotes the set of tiling domains in \BbbR 2. In what follows, we will solve a
relaxed version of these problems, namely

(3.3) inf\{ | K| , K \in \scrP 6, r(K) \geqslant r0\} and inf\{ Diam(K), K \in \scrP 6, r(K) \geqslant r0\} 

and

(3.4) sup\{ Diam(K), K \in \scrP 6, r(K) \geqslant r0, | K| = A\} ,

where \scrP 6 denotes the set of convex polygons of the plane having at most six sides,
and show that the solutions are tiling domains. As a consequence, and since the new
admissible set contains the previous one, the optimal values between the problems
(3.1) and their relaxed version will coincide.
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Before dealing with each problem separately, let us state some preliminary re-
sults allowing us to reduce the search of an optimal domain to a simpler class. The
arguments used in Step 1 below hold indifferently for each problem of (3.3).

As a preliminary remark, notice that the two problems of (3.3) have a solution
since \scrP 6 is compact for the Hausdorff topology and the functionals K \mapsto \rightarrow | K| , K \mapsto \rightarrow 
r(K), K \mapsto \rightarrow Diam(K) restricted to convex sets are continuous for this topology; see
[7, Chapter 2].

Step 1. Restricting the set of admissible domains. The following lemmas are in
order.

Lemma 3.1. For any problem of (3.3) and (3.4), there exists a solution K\ast that
is a hexagon. Moreover, regarding the first problem of (3.3) and problem (3.4), every
solution of one of such problems is necessarily a hexagon.

Proof. Let us assume by contradiction thatK\ast hasN sides, withN < 6. Consider
two diametral points D1 and D2 of K\ast , and let M be any vertex of K\ast different from
D1 and D2. Then, we change K\ast into \^K\ast by removing the vertex M and creating
two new vertices as follows: we cut K\ast with a well-chosen hyperplane at a distance
of M small enough so that the diameter and the inner radius of K\ast are not modified.

\bullet Minimizing the area: The area of \^K\ast is strictly lower than the area of K\ast ,
which contradicts the optimality of K\ast . The conclusion follows.

\bullet Minimizing the diameter: The diameter of \^K\ast being equal to the one of K\ast ,
we infer that it is possible to restrict our search to hexagons.

\bullet Maximizing the diameter: Consider the set t \^K\ast , where t > 1 is chosen in such
a way that | t \^K\ast | = | K\ast | . Then, one has r(t \^K\ast ) = tr( \^K\ast ) = tr0 > r0 and
Diam(t \^K\ast ) = tDiam( \^K\ast ) > Diam( \^K\ast ), which contradicts the optimality of
K\ast . The conclusion follows.

Remark 3.2. It will follow from the proof that all the solutions of problems (3.3)
and (3.4) are hexagons.

The proofs of the next two lemmas are exactly the same for each problem of
(3.1) and (3.2). Since this last problem is more constrained and in some sense more
intricate, we prove this lemma for the problem of maximizing the diameter. An easy
adaptation of the proof below shows the same result for the issue of minimizing the
area or the diameter.

Lemma 3.3. Let K\ast be a solution of any problem of (3.3) and (3.4). Then,
necessarily, r(K\ast ) = r0.

Proof. Let K\ast be a solution of problem (3.4), and let us assume by contradiction
that r(K\ast ) > r0. Since K\ast is a convex polygon, there exist two vertices B and
C of K\ast such that Diam(K\ast ) = BC. For t \in [0, 1], let \rho t be the stretching with
ratio t and direction (kept fixed) the axis (BC). Then, one has | \rho t(K\ast )| = t| K\ast | 
and Diam(\rho t(K

\ast )) = Diam(K\ast ). Noting that [0, 1] \ni t \mapsto \rightarrow r(\rho t(K
\ast )) is a continuous

increasing function such that r(0) = 0 and r(1) = r(K\ast ), consider r \in (r0, r(K
\ast )) and

t \in (0, 1] such that r(\rho t(K
\ast )) = r. Let Kt be the range of \rho t(K

\ast ) by the homothety
centered at O, the center of the incircle, with scale factor 1/

\surd 
t > 1. Hence, one has

| Kt| = | K\ast | , Diam(Kt) = Diam(K\ast )/
\surd 
t, and r(Kt) = r(K\ast )/

\surd 
t > r0. It follows

that Kt is a admissible hexagon and, moreover, Diam(Kt) > Diam(K\ast ). We have
then reached a contradiction (see Figure 6 for an illustration of the proof).

Lemma 3.4. Let K\ast be a solution of any problem of (3.3) and (3.4). Then,
necessarily K\ast is tangent at each side to any inscribed circle.
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CB

Fig. 6. Illustration of the proof of Lemma 3.3: the hexagon K\ast (black), the hexagon \rho t(K\ast )
(blue), and the hexagon Kt (red). Color is available online only.

M ′

M
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Mλ

M ′

M

N

Fig. 7. Geometrical illustration of the method: construction of \~K (left) and construction of \^K
(dotted line) from \~K (right).

Proof. We argue by contradiction by assuming that there exist an inscribed circle
\scrC and a side of K\ast that do not meet. To reach a contradiction, we will show that one
can transform K\ast into a new admissible set \^K having a strictly larger diameter.

Consider first the case where there exists a side [MM \prime ] at a positive distance of \scrC 
such that Diam(K\ast ) > MM \prime . Assume without loss of generality the existence of two
vertices of K\ast different from M and reaching its diameter. This property will allow
one to construct a new set \~K from K\ast by slightly modifying the location of M such
that Diam( \~K) = Diam(K\ast ). Let N be the vertex of K\ast such that M is adjacent to
N and M \prime . Let \lambda \in (0, 1) and M\lambda = \lambda N + (1 - \lambda )M . For \lambda > 0 small enough, there
holds that (M \prime M\lambda )\cap \scrC = \emptyset . Hence, denoting by \~K the hexagon obtained by replacing
M by M\lambda , one has r( \~K) = r(K\ast ). Moreover, since \~K \subset K\ast and \~K \not = K\ast , one has
| \~K| < | K\ast | . To get \^K, we now apply a homothety to \~K where the scale factor is
chosen in such a way that | \^K| = | K\ast | (see Figure 7). We then have r( \^K) > r(K\ast )
and Diam( \^K) > Diam(K\ast ), hence the contradiction.

Consider now the complementary case where any side which does not meet tan-
gentially the circle \scrC realizes the diameter of K\ast . Hence, let us consider a side [AB]
of K\ast realizing the diameter without meeting \scrC tangentially. Notice that if such a
choice of side does not exist, then we are in the previous case and we can reach a
contradiction.

Denote by O the center of \scrC and by M the orthogonal projection of O on (AB).
Then, M belongs to the segment [AB] and the distance \delta of M to \scrC is positive

(by compactness). The new circle \scrC \prime obtained from \scrC by translation of vector \delta 
 -  - \rightarrow 
OM
OM

is tangent to (AB) (see Figure 8). Let us prove that \scrC \prime \subset K\ast . Let (A,\vec{}i,\vec{}j) be

the orthonormal basis such that \vec{}i =
 -  - \rightarrow 
AB/AB and K\ast be contained in \BbbR 2

+. Then,
\partial K\ast \setminus (AB) is parametrized by a positive concave function f : [0, AB] \mapsto \rightarrow \BbbR +. For
u \in [0, 1], let Du be the vertical axis with equation x = u. Then, defining x1 =
min\{ u \in [0, 1], Du \cap \scrC \not = \emptyset \} and x2 = max\{ u \in [0, 1], Du \cap \scrC \not = \emptyset \} , the region
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BA x1 x2

δ

Fig. 8. Case where the diameter is realized by the only side [AB] of K\ast which does not meet
\scrC tangentially.

\scrR = \{ (x, y), x1 \leqslant x \leqslant x2, 0 \leqslant y \leqslant f(x)\} is contained in K\ast with an easy convexity
argument and, by construction, \scrC \prime \subset \scrR . Hence, \scrC \prime \subset K\ast and we are then led to the
previous case.

By combining the three lemmas we have just proved, we will recast both problems
of (3.3) in a simpler way by using a convenient parametrization and some analytical
arguments. For homogeneity reasons and according to Lemma 3.3, we will assume
from now on that r0 = 1, the solutions for the general case being easily inferred from
that case.

Let K\ast be a hexagon solution of a problem of (3.3). Since each problem is
invariant under rotation or translation of K, we will assume without loss of generality
that the center of the inscribed circle (which is uniquely located inside K\ast , according
to Lemma 3.4) is the origin O and that one side of K\ast is included in the axis x = 1.
Let \{ Bi\} i=1,...,6 be the projections of O on each side of K\ast with the convention that
B1 is the projection of O on the side included in the axis x = 1 and the other points
are located by following the trigonometric sense.

Let \{ Ai\} i=1,...,6 be the vertices of K\ast having positive coordinates in the basis

(O;
 -  - \rightarrow 
OBi,

 -  -  -  - \rightarrow 
OBi+1), and let \theta i = \widehat BiOBi+1 and \varphi i = \widehat BiOAi, so that

6\sum 
i=1

\theta i = 2\pi and

6\sum 
i=1

\varphi i = \pi .

Notice that 0 \leqslant \theta i \leqslant \pi and since the two triangles BiOAi and AiOBi+1 are similar,
one has \varphi i = \theta i/2 (see Figure 9).

Using this parametrization, let us rewrite each optimization problem in terms of
the variables \varphi i. Decomposing the hexagon K\ast into the six quadrilaterals OBiAiBi+1

(i = 1, . . . , 6) and each quadrilateral into two similar triangles BiOAi and Bi+1OAi
(whose area is equal to OBi.BiAi

2 = tan(\varphi i)
2 ), we get

| K\ast | =
6\sum 
i=1

tan\varphi i.

Introduce the sets \Theta 0 =
\bigl\{ 
\Phi = (\varphi 1, . . . , \varphi 6) \in [0, \pi /2]6,

\sum 6
i=1 \varphi i = \pi 

\bigr\} 
and

\Theta A =
\bigl\{ 
\Phi \in \Theta 0,

\sum 6
i=1 tan\varphi i = A

\bigr\} 
. The two problems of (3.3) rewrite

(3.5) min
\Phi \in \Theta 0

6\sum 
i=1

tan(\varphi i) and min
\Phi \in \Theta 0

Diam(H(\Phi )),

whereas problem (3.4) rewrites

(3.6) max
\Phi \in \Theta A

Diam(H(\Phi )),
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θ1
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Fig. 9. Parametrization of hexagons.

where H(\Phi ) denotes the hexagon tangent at each side to the unit circle, whose semi-
circle center angles are the \varphi i's.

Step 2. Solving the two problems of (3.5). Let us consider the first problem of
(3.5). The proof is straightforward. Indeed, noting that the pointwise constraint
\varphi i \leqslant \pi /2 cannot be active, it follows from the Karush--Kuhn--Tucker theorem that
there exists a Lagrange multiplier \lambda \in \BbbR such that

1 + (tan\varphi i)
2 = \lambda 

for all the nonzero angles \varphi i. As a consequence, all the nonzero angles are necessarily
equal. Hence, investigating separately the cases where three, four, five, and six angles
are nonzero yields easily the expected result.

Let us now solve the second problem of (3.5). Let K be a hexagon, and let us
use the notation of Figure 9. One has

min
\Phi \in \Theta 0

Diam(H(\Phi )) = min
K\in \scrP 6

max
(x,y)\in K2

| x - y| \geqslant min
K\in \scrP 6

max
i=1,2,3

AiAi+3.

Let us now solve the problem minK\in \scrP 6 maxi=1,...,3AiAi+3. We will show that
the chain of inequalities above is in fact a chain of equalities. We start with several
remarks allowing us to reduce the problem. Notice that the preliminary remarks of
Step 1 still hold for this problem. Consider a solution denoted by K\ast associated to
\Phi \ast \in \Theta 0.

\bullet Let us assume without loss of generality that the maximum is reached by
A1A4. Consider the hexagons \^Ki, i = 1, 2, obtained by symmetrizing the
quadrilaterals A1A2A3A4 and A4A5A6A1 with respect to the axis (A1A4).
Assume by contradiction that A1, A4, and O are not aligned. Then, it is
obvious that either the inradius of \^K1 or the one of \^K2 is strictly lower than
1. Assume that the inradius of \^K1 is strictly lower than 1. Then, applying
a well-chosen homothety to \^K1 provides a hexagon with inradius 1 having a
diameter larger than the one of K\ast , which is absurd. Hence, A1, A4, and
O are necessarily aligned and this argument can be extended to any length
reaching the maximum.

\bullet In fact, one can show that the three lengths A1A4, A2A5, and A3A6 are equal.
Indeed, in the converse case, assume that A1A4 does not reach the maximum.
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We replace A1 and A4 by \^A1 and \^A4, which are the respective images of A1

and A4, by a homothety centered at the middle of [A1A4] in such a way that
\^A1

\^A4 > A1A4, and the maximum remains unchanged. This is a contradiction
with the conclusion of Lemma 3.4.

As a result, one has necessarily A1A4 = A2A5 = A3A6 and, moreover, the points
Ai, O, and Ai+3 are aligned in this order for i = 1, 2, 3. According to the considera-
tions above, and since OAi = 1/ cos\varphi \ast 

i , i = 1, . . . , 6, one has

AiAi+3 = OAi +OAi+3 =
1

cos\varphi \ast 
i

+
1

cos\varphi \ast 
i+3

.

Therefore, we infer that

min
\Phi \in \Theta 0

Diam(H(\Phi )) \geqslant min
K\in \scrP 6

max
i=1,2,3

AiAi+3 = max
i=1,2,3

\biggl( 
1

cos\varphi \ast 
i

+
1

cos\varphi \ast 
i+3

\biggr) 
.

Moreover, one has

max
i=1,2,3

1

cos\varphi \ast 
i

+
1

cos\varphi \ast 
i+3

\geqslant 
1

3

6\sum 
i=1

1

cos\varphi \ast 
i

\geqslant 
1

3
min
K\in \scrP 6

6\sum 
i=1

1

cos\varphi i
.

For this last problem, let \~\Phi be a solution. Notice that one has necessarily \~\varphi i < \pi /2.
Let us assume that \~\varphi i is positive. Hence, it follows from the Karush--Kuhn--Tucker
theorem that there exists a Lagrange multiplier \lambda \in \BbbR such that

 - sin\varphi i
cos2 \varphi i

= \lambda ,

and therefore all the nonzero angles must be equal. For N = 3, 4, 5, 6, assume that
there are 6 - N zero angles and N nonzero angles (therefore equal to \pi /N according
to the equality constraint). One shows easily that

6\sum 
i=1

1

cos \~\varphi i
=

N

cos(\pi /N)
+ (N  - 6) \geqslant 

6

cos(\pi /6)
=

12\surd 
3
.

This proves that the only solution of the problem minK\in \scrP 6

\sum 6
i=1

1
cos2 \varphi i

is \~\Phi =
\pi 
6 (1, 1, 1, 1, 1, 1). We infer from this reasoning that

min
\Phi \in \Theta 0

Diam(H(\Phi )) \geqslant 
4\surd 
3
.

We conclude by noting that this inequality is an equality as soon as \Phi = \~\Phi (in other
words, whenever K\ast is a regular hexagon with inradius 1).

Step 3. Solving problem (3.6). Assume that K\ast is the hexagon plotted in Figure
9. The diameter can be realized in three ways: (i) on a side, (ii) on a diagonal of
the kind A1A4, or (iii) on a diagonal of the kind A1A3. In what follows, we will first
consider separately each of these three cases and combine them in a second step to get
the expected result. In what follows, we will denote by \Phi \ast = (\varphi \ast 

1, . . . , \varphi 
\ast 
6) a solution

of (3.6) associated to a hexagon K\ast .
Case (i): the diameter is realized by a side. Assume without loss of generality

that the diameter of K\ast is given by A1A2 (this is always possible by re-indexing the
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Fig. 10. Hexagon maximizing D1,2(\Phi ) for A = 4
\surd 
3.

vertices). For \Phi \in \Theta A, denote by D1,2(\Phi ) the length A1A2 in the hexagon H(\Phi ). One
has D1,2(\Phi ) = tan(\varphi 1) + tan(\varphi 2), and we are therefore led to solve the optimization
problem

max
\Phi \in \Theta 

tan(\varphi 1) + tan(\varphi 2).

It is notable that for the hexagon K\ast , one has necessarily 0 < \varphi i < \pi /2. Indeed, the
left inequality is a direct consequence of the conclusion of Lemma 3.1 for problem (3.4),
and the right one comes from the area constraint. According to the Karush--Kuhn--
Tucker theorem, there exists (\lambda , \mu ) \in \BbbR 2 such that 1+tan2(\varphi \ast 

i ) = \lambda (1+tan2(\varphi \ast 
i ))+\mu 

for i = 1, 2, and 0 = \lambda (1 + tan2(\varphi \ast 
i )) + \mu for i = 3, 4, 5, 6.

The two first equations yield (\lambda , \mu ) \not = (0, 0), and we easily infer that

\varphi \ast 
1 = \varphi \ast 

2 and \varphi \ast 
3 = \varphi \ast 

4 = \varphi \ast 
5 = \varphi \ast 

6.

Denoting by \varphi the angle \varphi \ast 
1 and by \psi the angle \varphi \ast 

3, it follows from the equality
constraint on the \varphi i's and from the area constraint that

\psi =
\pi 

4
 - \varphi 

2
and 2 tan(\varphi ) + 4 tan(\psi ) = A.

Let t = tan(\varphi /2). Since

tan(\psi ) = tan

\biggl( 
\pi 

4
 - \varphi 

2

\biggr) 
=

1 - tan(\varphi /2)

1 + tan(\varphi /2)
=

1 - t

1 + t
,

the second equation rewrites 4
\bigl( 

t
1 - t2 + 1 - t

1+t

\bigr) 
= A, and hence

t2
\biggl( 
1 +

A

4

\biggr) 
 - t+ 1 - A

4
= 0.

Since A \geqslant 2
\surd 
3, this equation has two real roots, and the largest one is

t =
1 +

\sqrt{} 
A2

4  - 3

2(1 + A
4 )

.

We then get

max
\Phi \in \Theta A

D1,2(\Phi ) = D1,2(\Phi 
\ast ) =

4t

1 - t2
.

Figure 10 illustrates the construction of the maximizing hexagon.
Case (ii): the diameter is realized by A1A4. Since OA1 = 1/ cos\varphi 1, OA4 =

1/ cos\varphi 4, and \widehat A1OA4 = \varphi 1 + 2\varphi 2 + 2\varphi 3 + \varphi 4, one has A1A
2
4 = D1,4(\Phi ), where

D1,4(\Phi ) =
1

cos2 \varphi 1
+

1

cos2 \varphi 4
 - 2 cos(\varphi 1 + 2\varphi 2 + 2\varphi 3 + \varphi 4)

cos\varphi 1 cos\varphi 4
,
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by using the Al-Kashi formula in the triangle A1OA4. Notice that for all \Phi \in \Theta , one
has
(3.7)

D1,4(\Phi ) \leqslant 
1

cos2 \varphi 1
+

1

cos2 \varphi 4
+

2

cos\varphi 1 cos\varphi 4
=

\biggl( 
1

cos\varphi 1
+

1

cos\varphi 4

\biggr) 2

= G(\varphi 1, \varphi 4)
2,

where G(x, y) = 1
cos(x) +

1
cos(y) for all x, y \in [0, \pi /2]2.

To solve the problem of maximizing D1,4 over \Theta A, we will maximize the mapping
\Phi \mapsto \rightarrow G(\varphi 1, \varphi 4)

2 over \Theta A and use (3.7) to prove that both the optimal values and
the maximizers of the aforementioned problems coincide. Hence, we investigate the
optimization problem

max
\Phi \in \Theta A

G(\varphi 1, \varphi 4).

With a slight abuse of notation, we denote by \Phi \ast a solution to this problem. Reasoning
similarly to Case (i), we first notice that one has necessarily \varphi \ast 

i \in (0, \pi 2 ). Applying
the Karush--Kuhn--Tucker theorem, we infer the existence of (\lambda , \mu ) \in \BbbR 2 such that

sin(\varphi \ast 
i )

cos2(\varphi \ast 
i )

= \lambda (1 + tan2(\varphi \ast 
i )) + \mu 

for i = 1, 4, whereas 0 = \lambda (1 + tan2(\varphi \ast 
i )) + \mu for i = 2, 3, 5, 6. By exploiting these

equalities, we get successively that \varphi \ast 
2 = \varphi \ast 

3 = \varphi \ast 
5 = \varphi \ast 

6, \mu =  - \lambda (1 + tan2(\varphi 2)) and
that \varphi \ast 

1 and \varphi \ast 
4 solve the equation

(3.8)
sin \theta 

cos2 \theta 
= \lambda (tan2 \theta  - tan2(\varphi \ast 

2)).

Notice that \varphi \ast 
1 \not = \varphi \ast 

2. Indeed, in the converse case, one has \varphi \ast 
1 = 0 = \varphi \ast 

2 = \varphi \ast 
3 = \varphi \ast 

5 =
\varphi \ast 
6 and then \varphi \ast 

4 = \pi , which is absurd. Similarly, one has \varphi \ast 
4 \not = \varphi \ast 

2. Equation (3.8)
hence rewrites

sin \theta 

cos2 \theta (tan2 \theta  - tan2(\varphi 2))
= \lambda .

We claim that the function h defined by

h : \theta \in [0, \varphi \ast 
2) \cup 

\Bigl( 
\varphi \ast 
2,
\pi 

2

\Bigr) 
\mapsto \rightarrow sin \theta 

cos2 \theta (tan2 \theta  - tan2(\varphi \ast 
2))

is one-to-one.3 As a result, one has \varphi \ast 
1 = \varphi \ast 

4, and we infer that

\varphi \ast 
1 = \varphi \ast 

4 = 2arctan

\left(  1 +
\sqrt{} 

A2

4  - 3

2(1 + A
4 )

\right)  and \varphi \ast 
2 = \varphi \ast 

3 = \varphi \ast 
5 = \varphi \ast 

6 =
\pi 

4
 - \varphi \ast 

1

2
.

Noticing that \varphi \ast 
1 +2\varphi \ast 

2 +2\varphi \ast 
3 +\varphi \ast 

4 = \pi and according to the previous considerations,
it follows that

max
\Phi \in \Theta A

D1,4(\Phi ) = D1,4(\Phi 
\ast ) =

\biggl( 
1

cos\varphi \ast 
1

+
1

cos\varphi \ast 
4

\biggr) 2

= G2(\varphi \ast 
1, \varphi 

\ast 
4) = max

\Phi \in \Theta A

G2(\varphi 1, \varphi 4).

Moreover, the maximal value of A1A4 is 2/ cos\varphi \ast 
1.

3Indeed, since h is negative on [0, \varphi 2) and positive on (\varphi \ast 
2, \pi /2), we can deal separately with the

intervals [0, \varphi \ast 
2) and (\varphi \ast 

2, \pi /2). On [0, \varphi \ast 
2), one has h(\theta ) = sin \theta 1+tan2 \theta 

tan2 \theta  - tan2(\varphi \ast 
2)
. It follows that h is the

product of the positive increasing sine function by \theta \mapsto \rightarrow 1+tan2 \theta 
tan2 \theta  - tan2(\varphi \ast 

2)
, which is negative decreasing.

The conclusion follows. On (\varphi \ast 
2, \pi /2), one has h(\theta ) = 1

sin \theta 

\bigl( 
1  - tan2(\varphi \ast 

2)

tan2 \theta 

\bigr)  - 1
, and therefore h is the

product of two positive decreasing functions, hence the result.
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Fig. 11. Hexagon maximizing A1A4 for A = 4
\surd 
3.

Case (iii): the diameter is realized by A1A3. Using computations similar to those
for A1A4, we get

A1A
2
3 = D1,3(\varphi ), with D1,3(\varphi ) =

1

cos2 \varphi 1
+

1

cos2 \varphi 3
 - 2 cos(\varphi 1 + 2\varphi 2 + \varphi 3)

cos\varphi 1 cos\varphi 3
.

Following along the same lines as Case (ii), and using the same notation, one shows
successively that for all \Phi \in \Theta A, D1,3(\Phi ) \leqslant G2(\varphi 1, \varphi 3) and

D1,4(\Phi 
\ast ) = max

\Phi \in \Theta A

D1,4(\Phi ) = max
\Phi \in \Theta A

G2(\varphi 1, \varphi 4) = max
\Phi \in \Theta A

G2(\varphi 1, \varphi 3).

Figure 11 illustrates the construction of the maximizing hexagon. As a consequence,
there holds that

max
\Phi \in \Theta A

D1,3(\Phi ) \leqslant max
\Phi \in \Theta A

D1,4(\Phi )

with equality if and only if there exists \Phi \ast \in \Theta such that \pi = \varphi \ast 
1+2\varphi \ast 

2+\varphi 
\ast 
3. Because

of the first equality constraint on the angles \varphi i, it follows that \varphi \ast 
2 = \varphi \ast 

4 + \varphi \ast 
5 + \varphi \ast 

6.
Now, writing the optimality conditions for the problem of maximizing D1,3 over \Theta A
as for Case (ii), we infer that \varphi \ast 

2 = \varphi \ast 
4 = \varphi \ast 

5 = \varphi \ast 
6. Thus, these angles are necessarily

equal to 0, which contradicts Lemma 3.1. This shows that Case (iii) cannot arise.
Comparison between the three cases. According to the previous analysis, one has

A1A4 > A1A3 for any optimal set K\ast . Notice, moreover, that max\Phi \in \Theta A
A1A2 =

2 tan(\Phi \ast ) and max\Phi \in \Theta A
A1A4 = 2

cos(\Phi \ast ) , with

\Phi \ast = 2arctan

\left(  1 +
\sqrt{} 

A2

4  - 3

2(1 + A
4 )

\right)  .

We then infer that the solution of problem (3.6) corresponds to Case (ii).
Therefore, the optimization problem has a unique solution (whenever A \geqslant 2

\surd 
3r20)

given by the hexagon with inner radius r0, which is tangent at every side to its inner
circle, such that the semicircle center angles are given by

\varphi \ast 
1 = \varphi \ast 

4 = 2arctan

\left(  1 +
\sqrt{} 

A2

4r40
 - 3

2(1 + A
4r20

)

\right)  and \varphi \ast 
2 = \varphi \ast 

3 = \varphi \ast 
5 = \varphi \ast 

6 =
\pi 

4
 - \varphi \ast 

1

2
.

4. Proof of Theorem 2.9. Before solving problem (1.3), we first investigate
the following auxiliary problem:

(4.1) max\{ d(K), | K| = A, r(K) = r, Diam(K) = D\} ,

where (A,D, r) denote the triple of positive numbers.
To help the forthcoming analysis and since several cases must be distinguished, let

us plot in Figure 12 some elements of the Blaschke--Santal\'o diagram for the diameter
and inradius, the area being fixed.
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√
3r

1

2

3

4

Fig. 12. Left: Blaschke--Santal\'o diagram for (r(K),Diam(K)) under the condition A = | K| =
4\pi . Right: zoom on the right part of the diagram.

Remark 4.1. Let us comment on the construction of Figure 12. The lower part of
the boundary consists of two pieces. The first one is obtained by using that for every
convex set K, one has

| K| < 2Diam(K)r(K)

with equality if and only if int(K) = \emptyset (see [6]), and the (straight) right one is obtained
by using that Diam(K) \geqslant 2r(K) with equality if and only if K is a ball. The part of
the boundary shown as a solid line is determined by using the second item of Theorem
2.7. Finally, the upper part of the boundary is obtained by using (2.5) in Remark 2.5.

First, notice that, according to the so-called isodiametric inequality, one has
r \leqslant Diam(K)/2 \leqslant 

\sqrt{} 
A/\pi and Diam(K) \leqslant Diam(GA,r) for every convex body K

having as inradius r and area A, where the 2-cap body GA,r has been introduced in
Definition 2.4.

The main ingredient of the proof of Theorem 2.9 is the following lemma about
the maximization of the density functional d(\cdot ), whose proof is postponed to the end
of this section for the sake of clarity.

Lemma 4.2. Let A > 0 and D > 0.

1. Let r \in 
\bigl( 
0,
\sqrt{} 
A/2

\surd 
3
\bigr] 
and D = Diam(HA,r). One has

max\{ d(K), r(K) = r, Diam(K) \leqslant D, | K| = A\} = 1.

2. Let r \in 
\bigl( 
0,
\sqrt{} 
A/2

\surd 
3
\bigr] 
and D > Diam(HA,r) or (r,D) \in \{ (r,D) | r >\sqrt{} 

A/2
\surd 
3 and D \in [4/

\surd 
3r,Diam(GA,r)]\} . Then, one has

max\{ d(K), r(K) = r, Diam(K) = D, | K| = A\} =
A

| HD,r| .

3. Let (r,D) \in \{ (r,D) | r >
\sqrt{} 
A/2

\surd 
3 and D \leqslant min\{ 4/

\surd 
3r,Diam(GA,r)\} \} .

Then, one has

max\{ d(K), r(K) = r, Diam(K) = D, | K| = A\} =
A

| H\ast 
r | 
.

Let us come back to the solution of problem (1.3).
Let us distinguish between several cases, depending on the possible values of r(K)

and Diam(K). For that purpose, let us notice that

sup
K\in \scrA r0,A

Jt(K) = max
1\leqslant i\leqslant 4

sup
K\in \scrA i

r0,A

Jt(K)
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with the following partition of \scrA r0,A:

\scrA 1
r0,A = \{ K \in \scrA r0,A | r(K) = r, r0 \leqslant r \leqslant 

\sqrt{} 
A/(2

\surd 
3) \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{D}\mathrm{i}\mathrm{a}\mathrm{m}(K) \leqslant DHA,r )\} ,

\scrA 2
r0,A = \{ K \in \scrA r0,A | r(K) = r, r0 \leqslant r \leqslant 

\sqrt{} 
A/(2

\surd 
3) \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{D}\mathrm{i}\mathrm{a}\mathrm{m}(K) \in (DHA,r , DGA,r ]\} ,

\scrA 3
r0,A = \{ K \in \scrA r0,A | r(K) = r, r >

\sqrt{} 
A/(2

\surd 
3) \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{D}\mathrm{i}\mathrm{a}\mathrm{m}(K) \in (4/

\surd 
3r,DGA,r )\} ,

\scrA 4
r0,A = \{ K \in \scrA r0,A | r(K) = r, r >

\sqrt{} 
A/(2

\surd 
3) \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{D}\mathrm{i}\mathrm{a}\mathrm{m}(K) \leqslant 4/

\surd 
3r\} ,

where we introduce the notations DHA,r
= Diam(HA,r) and DGA,r

= Diam(GA,r) for
the sake of readability. \scrA i

r0,A
corresponds to zone 1 in Figure 12.

Let us investigate each problem separately.

Solution of problem supK\in \scrA 1
r0,A

Jt(K). Let r \in [r0,
\sqrt{} 
A/(2

\surd 
3)] and K \in \scrA 1

r0,A

such that r(K) = r. According to Lemma 4.2, one has

Jt(K) \leqslant t+ (1 - t)

\surd 
\pi DHA,r

2
\surd 
A

= t+ (1 - t)

\surd 
\pi 

2
\surd 
A

\biggl( 
1

3r

\Bigl( 
2A+

\sqrt{} 
A2  - 12r4

\Bigr) \biggr) 
with equality if K = HA,r. Moreover, the mapping r \mapsto \rightarrow 1

3r

\bigl( 
2A+

\surd 
A2  - 12r4

\bigr) 
is

decreasing on (0,+\infty ). As a consequence, we infer that

max
K\in \scrA 1

r0,A

Jt(K) = Jt(HA,r) = t+ (1 - t)

\surd 
\pi 

2
\surd 
A

\biggl( 
1

3r0

\biggl( 
2A+

\sqrt{} 
A2  - 12r40

\biggr) \biggr) 
,

and the maximum is reached by the p-hexagon HA,r0 .
Solution of problem supK\in \scrA 2

r0,A\cup \scrA 3
r0,A

Jt(K). Let K \in \scrA 2
r0,A

and r = r(K) such

that r \in [r0,
\sqrt{} 
A/(2

\surd 
3)]. According to Lemma 4.2, one has

(4.2) Jt(K) \leqslant t
A

| HD,r| + (1 - t)

\surd 
\pi D

2
\surd 
A
.

Let us first maximize the function in the right-hand side by solving the problem

(4.3) max
(D,r)\in \scrZ 

\psi t,A(r,D), where \psi t,A(r,D) = t
A

| HD,r| + (1 - t)

\surd 
\pi D

2
\surd 
A
,

with

\scrZ = \{ (r,D) | r0 \leqslant r \leqslant 
\sqrt{} 
A/(2

\surd 
3) and D \in (DHA,r

, DGA,r
)

or r >

\sqrt{} 
A/(2

\surd 
3) and D \geqslant 4/

\surd 
3r\} .

This corresponds to dealing with zones 2 and 3 of Figure 12. First, note that

d\psi t,A
dr

(r,D) =
 - tA(2D

\surd 
D2  - 4r2  - D2 + 8r2)

\surd 
D2  - 4r2

\bigl( 
2Dr  - r

\surd 
D2  - 4r2

\bigr) 2 .
Moreover, if D2 \leqslant 8r2, we conclude directly that 2D

\surd 
D2  - 4r2 - D2+8r2 is positive.

In the converse case, the sign of 2D
\surd 
D2  - 4r2 - D2+8r2 is also the sign of 4D2(D2 - 

4r2)  - (D2  - 8r2)2, namely 3D4  - 64r4. Notice that, in that zone, one has D \geqslant 
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4r/
\surd 
3 \geqslant r

\sqrt{} 
8/
\surd 
3, which means precisely that 3D4  - 64r4 > 0. In all cases, we then

have 2D
\surd 
D2  - 4r2  - D2 +8r2 > 0, and we infer that

d\psi t,A

dr (r,D) < 0. It follows that
either D = DHA,r

or r = r0. The case D = DHA,r
has been investigated when solving

problem supK\in \scrA 1
r0,A

Jt(K) above. As a consequence, one has necessarily r = r0 at

the maximum.
It then remains to investigate the variations of the criterion with respect to the

parameter D at r = r0. One has

d2\psi t,A
dD2

(r0, D) =  - 
2At

\Bigl( \sqrt{} 
D2  - 4r20(14r

2
0  - 5D2) + 4D(D2  - 3r20)

\Bigr) 
r0(D2  - 4r20)

3/2(2D  - 
\sqrt{} 
D2  - 4r20)

3
.

Note that
\sqrt{} 

D2  - 4r20(14r
2
0 - 5D2)+4D(D2 - 3r20) = r30

\bigl( \surd 
X2  - 4(14 - 5X2) + 4X(X2  - 3)

\bigr) 
,

with X = D/r0. Recall that the function X \mapsto \rightarrow 
\surd 
X2  - 4(14  - 5X2) + 4X(X2  - 3)

has a unique zero X0 on [4/
\surd 
3,+\infty ). Moreover, a tedious but easy analysis yields

that
\surd 
X2  - 4(14 - 5X2)+ 4X(X2  - 3) \geqslant 0 on [4/

\surd 
3, X0] and

\surd 
X2  - 4(14 - 5X2)+

4X(X2  - 3) < 0 elsewhere.
It follows that the mapping D \mapsto \rightarrow d

dD\psi t,A(r0, \cdot ) is decreasing on [4
\surd 
3r0, X0r0] and

increasing on [X0r0,+\infty ). Its minimal value is

d\psi t,A
dD

(r0, X0r0) =
 - A\gamma 0
r30

t+ (1 - t)

\surd 
\pi 

2
\surd 
A
,

where \gamma 0 is defined by (2.9).

The minimal value of
d\psi t,A

dD (r0, \cdot ) is then nonnegative whenever t \in [0, tA,r0 ] and
negative whenever t \in (tA,r0 , 1], where tA,r0 is given by (2.8). If t \in [0, tA,r0 ], we infer
from the above analysis that D \mapsto \rightarrow \psi t,A(r0, D) is increasing on (DHA,r

, DGA,r
) and

the maximum is achieved at D = DGA,r
.

If t \in (tA,r0 , 1], the minimal value of
d\psi t,A

dD \psi t,A(r0, \cdot ) is negative. Notice, moreover,
that

d\psi t,A
dD

(r0, 4r0/
\surd 
3) = lim

D\rightarrow +\infty 

d\psi t,A
dD

(r0, D) =
(1 - t)

\surd 
\pi 

2
\surd 
A

.

Combining this information about
d\psi t,A

dD yields the existence4 of z1t,r0,A \in [4/
\surd 
3, X0)

and z2t,r0,A \in [X0,+\infty ) such that the mapping D \mapsto \rightarrow \psi t,A(r0, \cdot ) is increasing on

(4/
\surd 
3r0, z

1
t,r0,A

r0), decreasing on (z1t,r0,A, z
2
t,r0,A

), and increasing on (z2t,r0,A,+\infty ).

Now, using that Diam(HA,r0) = 1
3r0

\bigl( 
2A +

\sqrt{} 
A2  - 12r40

\bigr) 
and that the mapping

[2
\surd 
3,+\infty ) \ni A \mapsto \rightarrow 1

3r0

\bigl( 
2A+

\sqrt{} 
A2  - 12r40

\bigr) 
is increasing, we claim that

A

r20
\geqslant 2X0  - 

\sqrt{} 
X2

0  - 4 \Leftarrow \Rightarrow DHA,r0
\geqslant X0r0.

Since \psi t,A(r0, \cdot ) decreases on [X0r0, z
2
t,r0,A

] and increases on (z2t,r0,A,+\infty ), we infer

4Moreover, z1t,r0,A and z2t,r0,A are the two solutions of the equation d\psi t,A/dD(r0, r0z) = 0 with

unknown z on [4/
\surd 
3,+\infty ):

2
\surd 
z2  - 4 - z

\surd 
z2  - 4(2z  - 

\surd 
z2  - 4)2

=
(1 - t)

\surd 
\pi r30

2tA3/2
.
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that, under the smallness condition (2.10) on r0, one has successively

max
(D,r)\in \scrZ 

\psi t,A(r,D) = max
D\in (DHA,r0

,DGA,r0
)
\psi t,A(r0, D)

= max\{ \psi t,A(r0, DHA,r0
), \psi t,A(r0, DGA,r0

)\} .

To solve the problem arising in the right-hand side, let us introduce

\Delta r0,A(t) = \psi t,A(r0, DGA,r0
) - \psi t,A(r0, DHA,r0

).

One computes

\Delta r0,A(0) =

\surd 
\pi 

2
\surd 
A
(DGA,r0

 - DHA,r0
), \Delta r0,A(1) = A

\Biggl( 
1

| DGA,r0
|  - 

1

| DHA,r0
| 

\Biggr) 
.

Let Mt,r0,A = max\{ \psi t,A(r0, DHA,r0
), \psi t,A(r0, DGA,r0

)\} . Hence, since \Delta r0,A is affine,
\Delta r0,A(0) > 0, and \Delta r0,A(1) < 0, we infer the existence of t\ast A,r0 \in [0, 1] such that
on [0, t\ast A,r0 ], Mt,r0,A = \psi t,A(r0, DGA,r0

) and on (t\ast A,r0 , 1], Mt,r0,A = \psi t,A(r0, DHA,r0
).

Notice that, by construction, one has \Delta r0,A(t
\ast 
A,r0

) = 0 leading to the expression (2.11)
of t\ast A,r0 , and one has necessarily t\ast A,r0 \geqslant tA,r0 according to the analysis of the case
where t \in [0, tA,r0 ].

Let us come back to the solution of problem supK\in \scrA 2
r0,A\cup \scrA 3

r0,A
Jt(K). We proved

that, under the smallness assumption (2.10) on r0, GA,r0 and HA,r0 are the only
possible solutions of problem max(D,r)\in \scrZ \psi t,A(r,D). Noting that (4.2) is an equality
whenever K is either equal to GA,r0 or HA,r0 , we infer to the end that

max
K\in \scrA 2

r0,A\cup \scrA 3
r0,A

Jt(K) =

\biggl\{ 
Jt(GA,r0) if t \in [0, t\ast A,r0 ],

Jt(HA,r0) if t \in (t\ast A,r0 , 1].

Estimate of supK\in \scrA 4
r0,A

Jt(K). According to Lemma 4.2, one has

(4.4) Jt(K) \leqslant t
A

| H\ast 
r | 

+ (1 - t)

\surd 
\pi D

2
\surd 
A

= t
A
\surd 
3

2r2
+ (1 - t)

\surd 
\pi D

2
\surd 
A
.

Since D \mapsto \rightarrow tA
\surd 
3

2r2 +(1 - t)
\surd 
\pi D

2
\surd 
A

is increasing, we infer that the solutions of the problem

max
(r,D)\in \^\scrZ 

t
A
\surd 
3

2r2
+ (1 - t)

\surd 
\pi D

2
\surd 
A
,

with \^\scrZ = \{ (r,D) | 
\sqrt{} 
A/(2

\surd 
3) \leqslant r \leqslant 

\sqrt{} 
A/\pi and 2r \leqslant D \leqslant 4/

\surd 
3r\} , satisfy necessar-

ily D = 4r/
\surd 
3. According to Lemma 4.2, we deduce successively that

max
K\in \scrA 4

r0,A

Jt(K) = max
(r,D)\in \^\scrZ 

t
A
\surd 
3

2r2
+ (1 - t)

\surd 
\pi D

2
\surd 
A

\leqslant max
K\in \scrA 2

r0,A\cup \scrA 3
r0,A

Jt(K).

Moreover, we have proved that every solution of the last problem in the right-hand
side must satisfy r(K) = r0, proving that the last inequality is in fact strict.

This concludes the proof of Theorem 2.9.

Proof of Lemma 4.2. We investigate the three different cases.
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Case 1. For r \in 
\bigl( 
0,
\sqrt{} 
A/2

\surd 
3
\bigr] 
(zone 1 of Figure 12), since HA,r is admissible and

since d(K) \leqslant 1 for every convex body K, the first equality is obvious by choosing
K = HA,r.

Case 2. Let us deal with zones 2 and 3 of Figure 12. We first assume that

r \in 
\bigl( 
0,
\sqrt{} 
A/2

\surd 
3
\bigr] 
and D \geqslant Diam(HA,r). Let K be a maximizer for the problem

max\{ d(K), r(K) = r, Diam(K) = D, | K| = A\} .

Denoting by KT the smallest convex set tiling the plane and containing K, one has

Diam(KT ) \geqslant D, r(KT ) \geqslant r.

Then, by using Theorem 2.7 and by monotonicity of | HD,r| with respect to D and r,
we have

| KT | \geqslant | HDiam(KT ),r(KT )| \geqslant | HD,r| .

As a consequence, we infer that d(K) = | K| 
| KT | \leqslant A

| HD,r| . Notice that the mapping

A \mapsto \rightarrow Diam(HA,r) is increasing on its definition set. Using this remark and according
to Remark 2.5, since D \in [Diam(HA,r),Diam(GA,r)], we have | GD,r| \leqslant A \leqslant | HD,r| .
Moreover, there holds that GD,r \subset HD,r by construction. Let us show that (GD,r)T =
HD,r. Since

Diam((GD,r)T ) \geqslant D and r((GD,r)T ) \geqslant r,

one has | (GD,r)T | \geqslant | HD,r| , showing that (GD,r)T = HD,r. Now, consider a convex
set K of area A chosen such that GD,r \subset K \subset HD,r. Then, since (GD,r)T = HD,r,
one has KT = HD,r by continuity and d(K) = A

| HD,r| . Therefore, the supremum is

reached, hence the conclusion.
Now, assume that

(r,D) \in \{ (r,D) | r >
\sqrt{} 
A/2

\surd 
3 and D \in [4/

\surd 
3r,Diam(GA,r)]\} .

Then, a convex set K with inradius r and area A cannot be tiling according to
Theorem 2.7. Nevertheless, one checks easily that the diameter of the hexagon HD,r

is equal to D if and only if D \geqslant 4/
\surd 
3r. Therefore, the same argument as below allows

one to conclude similarly.

Case 3. If (r,D) \in \{ (r,D) | r >
\sqrt{} 
A/2

\surd 
3 and D \leqslant min\{ 4/

\surd 
3r,Diam(GA,r)\} \} 

(zone 4 of Figure 12), then the diameter of HD,r differs from D. Indeed, this is an
easy consequence of the first item of Theorem 2.7.

We claim (see below for a proof), moreover, that the regular hexagon H\ast 
r is the

tiling convex set with inradius r and area A having the lowest diameter, or similarly
that the regular hexagon H\ast 

r is the tiling convex set with inradius r and diameter D
having the lowest area.

Let K be a convex set such that r(K) = r and Diam(K) = D, with (r,D)
belonging to the zone described above. One has Diam(KT ) \geqslant D and r(KT ) \geqslant r. As
a consequence of the claim above, one has necessarily Diam(KT ) \geqslant D(H\ast 

r(KT )). Since

KT is tiling, one has

| KT | \geqslant | HDiam(KT ),r(KT )| \geqslant | H\ast 
r | 

according to Theorem 2.7 and the claim above. It follows that for every convex K in
the aforementioned zone of the Blaschke diagram, one has d(K) \leqslant A

| H\ast 
r | 
.
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Let K be a convex set of area A such that GDiam(KT ),r(KT ) \subset K \subset H\ast 
r . We infer

from the previous analysis that KT = H\ast 
r , and d(K) = A/| H\ast 

r | , so that it maximizes
the density.

To conclude, it remains to prove the claim above. For a given r > 0, we investigate
the problem

inf\{ Diam(T ), T tiling, and r(T ) \geqslant r\} .
Notice first that, by mimicking the arguments used to prove Theorem 2.7, one shows
that there exists a solution T \ast to this problem, and necessarily r(T \ast ) = r.

Moreover, according to Theorem 2.7, the solution of the more constrained problem

inf\{ Diam(T ), T tiling, r(T ) = r, and | T | = A\} ,

with A \geqslant 2
\surd 
3r2, is the p-hexagon described in Definition 2.3. Then, by writing

inf\{ Diam(T ), T tiling, and r(T ) \geqslant r\} 
= inf
A\geqslant 2

\surd 
3r2

inf\{ Diam(T ), T tiling, r(T ) = r, and | T | = A\} ,

and using that the area of the p-hexagon introduced in Definition 2.3 is an increasing
function of the diameter (see Remark 2.8), we infer that T \ast is such that | T \ast | = 2

\surd 
3r2.

In other words, T \ast = H\ast 
r and we are done.

5. Conclusion and perspectives. In this paper, we solve several problems in
convex geometry, paying attention to the class of plane tiling domains. These problems
were motivated by issues in biology related to the shape of eggs of some crustaceans.
Of course, the three-dimensional situation is certainly more relevant, but a complete
mathematical analysis, like in this paper, seems out of range. Nevertheless, some
numerical simulations will be done for this problem.

We foresee investigating a related issue in a forthcoming paper, namely the precise
determination of the Blaschke--Santal\'o diagram; see Figure 12 for the area, diameter,
and inradius (sometimes known as the A,D, r problem).

Appendix A. Existence of \bfitK \bfitT . Since the set of convex bodies contained in
a compact D is itself compact for the Hausdorff topology and since the restriction of
the Lebesgue measure to this set is continuous [7], it is enough to show that the set of
convex tiling domains T , with r(T ) \geqslant \varepsilon > 0, is closed for the Hausdorff topology. To
prove this claim, let (Tn)n\in \BbbN be a sequence of convex tiling domains converging to T .
Then T is necessarily convex. Since Tn is tiling for every n, there exists a sequence
(\tau n,i)i\in \BbbN of affine isometries such that \BbbR 2 \subset \bigcup i\in \BbbN \tau n,i(Tn); in other words,

\forall R > 0, D(0, R) \subset 
\bigcup 
i\in \BbbN 

\tau n,i(Tn).

Without loss of generality, we assume that every domain Tn contains the origin
and the distance of \tau n,i(Tn) (ith copy of Tn) to the origin is nondecreasing with respect
to i for a given n.

Let D = sup(Diam(Tn)), R > 0, and let N = N(R,D, \varepsilon ) be the minimal number
of squares with circumradius \varepsilon to tessellate a disk of radius R +D. Then, we claim
that

D(0, R) \subset 
N\bigcup 
i=0

\tau n,i(Tn) \subset D(0, R+ 2(N + 1)D)
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for every n \in \BbbN .
Indeed, every copy \tau n,i(Tn) contains such a square Ci, and any copy that contains

a point of D(0, R) is necessarily included in D(0, R +D), and so Ci \subset D(0, R +D).

Let K be the smallest integer such that D(0, R) \subset \bigcup Ki=0 \tau n,i(Tn). Then,
\bigcup K
i=0 Ci is the

disjoint union of sets included in D(0, R+D). A volume comparison yields K \leqslant N so
that we have the first inclusion. The second one is straightforward since the distance
of
\bigcup N
i=0 \tau n,i(Tn) to the origin cannot be greater than 2(N + 1)D.
To show that T is tiling, let us decompose \tau n,i as \tau n,i = rn,i + tn,i, where rn,i is

a rotation and tn,i is a translation assimilated (with a slight abuse of notation) to a
vector such that \| tn,i\| \leqslant R + 2(N + 1)D for all n \in N and i \leqslant N . Applying a com-
pactness argument yields the existence of \tau i and \varphi : \BbbN \mapsto \rightarrow \BbbN such that \tau \varphi (n),i \rightarrow \tau i as
n\rightarrow +\infty . Therefore, one has \tau \varphi (n),i(T\varphi (n)) \rightarrow \tau i(T ) as n\rightarrow +\infty . Furthermore, since
int(\tau \varphi (n),i(T\varphi (n)))\cap int(\tau \varphi (n),j(T\varphi (n))) = \emptyset for i \not = j, we get int(\tau i(T ))\cap int(\tau j(T )) = \emptyset 
and the sequence

\bigcup N
i=0 \tau \varphi (n),i(T\varphi (n)) converges to

\bigcup N
i=0 \tau i(T ). Finally, by the stability

of the inclusion for the Hausdorf metric, one has D(0, R) \subset \bigcup Ni=0 \tau i(T ).
Using that the last inclusion holds true for every R > 0, we infer that T is a

convex tiling domain.

Appendix B. Proof of Theorem 2.2. Let us first consider the case of tiling
domains.

Case of tiling domains. Let K be a tiling domain, and set D = Diam(K). There
exists a family \{ \tau i\} i\in \BbbN of isometries such that \BbbR 2 =

\bigcup 
i\in \BbbN \tau i(K). For R > 2D, define

P (R) =
\bigcup 
\tau i(K)\subset D(0,R) \tau i(K).

Then, by maximality of the diameter, and since K is tiling, one has necessarily
D(0, R - D) \subset P (R), and therefore \sharp \{ i, \tau i(K) \subset D(0, R)\} | K| \geqslant \pi (R - D)2 and

2R\sqrt{} 
\sharp \{ i, \tau i(K) \subset D(0, R)\} Diam(K)

\leqslant 
2R
\sqrt{} 
| K| \surd 

\pi (R - D)Diam(K)
.

Letting R\rightarrow \infty , we obtain

lim sup
R\rightarrow +\infty 

2R\sqrt{} 
\sharp \{ i, \tau i(K) \subset D(0, R)\} Diam(K)

\leqslant 
2
\sqrt{} 
| K| \surd 

\pi Diam(K)
.

Finally, passing to the infimum over all packings yields

D\prime 
\infty (K) \leqslant 

2
\sqrt{} 
| K| \surd 

\pi Diam(K)
.

The conclusion follows by combining this estimate with (2.2).
We now investigate the general case.
General case. In view of proving (2.3), we will use the following result due to

Kuperberg and Kuperberg [9].

Proposition B.1. Every convex set K \in K is contained in a tiling hexagon
Kkup satisfying | Kkup| /| K| \leqslant 2/

\surd 
3. Moreover, Kkup is a p-hexagon, in other words

a hexagon with two opposite parallel sides having the same length.5

Let K \in \scrK , and consider the tiling Kkup provided by Proposition B.1. We define
a packing of K by placing adequately a copy of K in each cell of Kkup. Denoting by

5Recall that every p-hexagon tiles the plane.
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Fig. 13. The hexagon Hd,r.

\{ \tau i\} i\in \BbbN the family of isometries used to define this packing, we deduce that

D\prime 
\infty (K) \leqslant lim sup

R\rightarrow \infty 

2R\sqrt{} 
\sharp \{ i, \tau i(Kkup) \subset D(0, R)\} Diam(K)

=
Diam(Kkup)

Diam(K)
lim sup
R\rightarrow \infty 

2R\sqrt{} 
\sharp \{ i, \tau i(Kkup) \subset D(0, R)\} Diam(Kkup)

=
2
\sqrt{} 

| Kkup| \surd 
\pi Diam(K)

\leqslant 

\sqrt{} 
2\surd 
3

2
\sqrt{} 

| K| \surd 
\pi Diam(K)

by using the computation above in the case of tiling sets and Proposition B.1.
The expected conclusion follows.

Appendix C. Diameter of \bfitH \bfitA ,\bfitr and area of \bfitH \bfitD ,\bfitr . To avoid any confusion
with the notation we will use within this proof, let us denote temporarily by d the
diameter of the hexagon Hd,r we will consider and by a its area. Let us introduce the
points A, B, C, D, and O, as plotted on Figure 13.

The area | Hd,r| is equal to four times the area of the pentagon ACBDO, which
is the sum of the area of ACO and the area of CBDO, which is twice the area of

the triangle BDO. Hence, one has | Hd,r| = 4 \times (| ACO| + 2| BDO| ). Let \theta = \widehat COD.
One has sin \theta = 2r/d. Then, we compute | ACO| = dr

4 cos \theta = r
4 \times 

\surd 
d2  - 4r2. In

the orthonormal basis (O;
 -  - \rightarrow 
OD
OD ,

 -  - \rightarrow 
OA
OA ), the coordinates of B are (r, r 1 - cos(\theta )

sin(\theta ) ), and since

\theta = arcsin(2r/d), we get | BDO| = r
4 (d - 

\surd 
d2  - 4r2).

Finally, we get that | Hd,r| = 2rd  - r
\surd 
d2  - 4r2. By inverting the relation a =

2rd - r
\surd 
d2  - 4r2 (whenever a \geqslant 2

\surd 
3r2 and d \geqslant 2r), we get that

d = \alpha (a, r) =
1

3r

\Bigl( 
2a+

\sqrt{} 
a2  - 12r4

\Bigr) 
,

hence the expression of Diam(Ha,r) with respect to the parameter a.
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