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Abstract: This study discusses a general framework to identify the unsteady features of a flow past

an oscillating aerofoil in deep dynamic stall conditions. In particular, the work aims at demonstrating

the advantages for the design process of the Spectral Proper Orthogonal Decomposition in accurately

producing reliable reduced models of CFD systems and comparing this technique with standard

snapshot-based models. Reynolds-Averaged Navier-Stokes system of equations, coupled with k − ω

SST turbulence model, is used to produce the dataset, the latter consisting of a two-dimensional

NACA 0012 aerofoil in the pitching motion. Modal analysis is performed on both velocity and

pressure fields showing that, for vectored values, a proper tuning of the filtering process allows

for better results compared to snapshot formulations and extract highly correlated coherent flow

structures otherwise undetected. Wider filters, in particular, produce enhanced coherence without

affecting the typical frequency response of the coupled modes. Conversely, the pressure field

decomposition is drastically affected by the windowing properties. In conclusion, the low-order

spectral reconstruction of the pressure field allows for an excellent prediction of aerodynamic loads.

Moreover, the analysis shows that snapshot-based models better perform on the CFD values during

the pitching cycle, while spectral-based methods better fit the loads’ fluctuations.

Keywords: dynamic stall; pitching; spectral POD; coherent structures; modal analysis

1. Introduction

Forward flight represents a critical operating condition for helicopters blades, and it
is well known that the most crucial aspect in helicopters rotors aerodynamics concerns
the composition of velocities between the advancement motion of the system and the
revolution of the rotor, which results in different conditions of the incident flow. The issue
involves a differential distribution of the pressure load, which increases over the advancing
blade, while simultaneously decreases for its retreating counterpart. As a consequence, an
imbalance of the overall moment is induced [1]. Therefore, the need to stabilise the attitude
of the system entails the imposition of active control, accounting for the variation of the
blades’ angle of attack. In these concerns, the most popular strategy consists in forcing the
blade with a pitching motion, the latter described by a periodic law harmonised with the
same period as the rotor revolution. In particular, the control system aims at increasing the
angle of attack all through the advancing phase (blade azimuth angle 0◦ < ϕ < 180◦) and at
decreasing it throughout the retreating part (180◦ < ϕ < 360◦) [2]. However, the incidence
variations can reach a certain angle of attack above the static stall condition, which may
promote the aerodynamic instability of the blade; thus, a dynamic stall occurs by producing
sudden excursions of the pressure load. In such conditions, forces and moments may reach
values considerably higher than those loads typical of the steady case, and the possible
coupling with the structure dynamics may lead to an earlier failure of the system. As a
result, this event represents a propulsive limit in helicopters engineering and explains such
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attention paid by researchers over the years to reach a more in-depth knowledge of its
occurrence [3]. Overcoming this constraint is necessary and more and more required by the
increased demand for higher performance in the helicopters field, especially in the military
context [4]. Although many control techniques were proposed to reduce the detrimental
outcomes of dynamic stall, there is still a lack of proper awareness of the phenomenon
which may drive the design process of oscillating wings, and the related subsystems [5].

Concerning the experimental side, although mentioned in previous works, the refer-
ence measurements performed for a better comprehension of the dynamic stall date back to
the late 1970s and, in particular, to the pioneering works of Martin et al. [6], Carr et al. [7]
and McAlister et al. [8] over a NACA 0012 aerofoil: The latter still being as milestones
for the topic. Later on, a detailed physical description of the dynamic stall occurrence
and attempts made to predict it was drawn by McCroskey [9]. Experiments conducted by
Leishman [10] on a NACA 23012 aerofoil section showed that the evolution of a secondary
vortex is typical of dynamic stall occurring at low Mach numbers. Wernert et al. [11]
analysed the unsteady dynamics of an oscillating NACA 0012 aerofoil with both Particle
Image Velocimetry (PIV) and laser-sheet visualisation, together with computations with
Baldwin-Lomax algebraic turbulence model and stressed the strong non-reproducibility of
the detached conditions during the downstroke phase. In this path, more recently, the work
of Gerontakos [12] has become the most popular experimental reference for the academic
community involved in computational modelling.

On the other hand, numerical modelling still struggles the inherent complexity re-
lated to the dynamics stall phenomenon, which is dominated by unsteadiness and flow
characters ranging from laminar to turbulent. As a consequence, satisfactory numerical
investigations became possible only with the gradual evolution of computing resources
and computational techniques applied to Computational Fluid Dynamics (CFD). Even
if Large-Eddy Simulations (LES) are increasingly feasible in the field of aerodynamics
problems, also accounting for moving objects [13–15], at present the solution of Unsteady
Reynolds-Averaged Navier-Stokes (URANS) equations, together with a turbulence closure
model, consists of the most widely spread approach. Standard closure techniques for the
URANS environment involve adopting one or two additional equations, from which the
corresponding names are referred to as 1- or 2-equation models. As regards the first class,
the literature shows promising results by the adoption of the Spalart-Allmaras model [16],
for both compressible [17,18] and incompressible cases [19,20]. A variant of the model was
proposed by Edwards and Chandra [21] the so-called Spalart Allmaras with Edwards mod-
ification (SAE). The different formulation of the turbulence production term has proved
that a proper tuning of the model may improve the prediction abilities of the standard
approach [22,23], even in the field of retreating blade stall [24]. A detailed 2D-based com-
parison study concerning the role of the seven different turbulence models can be found in
Singh and Páscoa [25] while similar analysis are provided by Wang et al. [26]. The latter
authors discussed the difference between standard k − ω and k − ω SST for a low-Reynolds
two-dimensional case experiencing dynamic stall evolution. The work was expanded by
Wang et al. [27] who accounted for the third dimension and compared standard URANS
computations with a Detached Eddy Simulation (DES) approach: in particular, the former
was coupled with either RNG k − ε and Transition SST (also known as γ−Reθ), while the
latter was solved together with k − ω SST. In Kai et al. [28] available experimental data are
reproduced through a 2D model. Simulations are conducted with overset mesh technique,
by solving URANS equations together with k − ω SST closure model. A further simulation
is performed with the addition of coupled plunging and pitching conditions to assess the
effects on the dynamic stall of the phase difference between the two motions. In recent
times, Marchetto and Benini [29] numerically addressed the pitching motion on a 2D RAE
2822 aerofoil. Attention was paid to the impact of height and chordwise location of Gurney
flaps on the loads during flow evolution.

In some way, recognising the organisation underlying a phenomenon is the first step
toward a better comprehension of the phenomenon itself. This lies in an enhanced ability
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to reproduce it even through simplified models which are, however, able to describe its
features as reliably as with the demanding CFD approach. It is in this spirit that, starting
from the 1970s, the identification of coherent structures in turbulent flows has become
a central issue for the research community [30]. To this end, a significant contribution
was given by Lumley [31] with the introduction of Proper Orthogonal Decomposition
(POD) in the context of fluid mechanics. The method extracts the coherent structures
through a modal decomposition, without the need to account for conditional criteria. The
minimisation of the projection error guarantees the energetic optimality in the sense of the
L2 norm [32]. Thus, from either numerical or experimental data, the optimal projection
basis is obtained by solving a classical eigenvalue problem. The energy modal ranking
allows for a selection of highly correlated modes which are isolated from the high-order
contributions, usually characterised by a significant signal-to-noise-ratio [33]. However,
since the turbulence complexity is still an open issue, the identification of organised
characters represents the first step toward a more-in-depth comprehension of its nature
and possible ways to control turbulent phenomena [34]. To this purpose, the great appeal
of POD lies in its being a linear procedure that, nevertheless, puts no linearity conditions
on the problem where it is applied to [35,36]. Different formulations of the theory were
devised over the years to enhance its suitability for turbulent issues and, currently, the most
popular POD-based technique is the so-called snapshot-POD by Sirovich [37]. More recently,
Sieber et al. [38] proposed a spectral variation of the procedure; thus, named Spectral
Proper Orthogonal Decomposition (SPOD). The method is grounded on the application
of finite impulse response filter along with the diagonals of the POD correlation matrix.
In particular, the methodology aims to redistribute the energy among the modes; thus,
increasing the signal-to-noise-ratio of the higher-order structures. As a result, it is possible
to recover new coherent structures that were previously hidden as the noise of the low-order
modes, resulting in a chance to extract novel dynamics and flow properties that were once
unknown. The method was already successfully adopted by Sieber et al. [39] in the modal
analysis of a swirl-stabilised combustor flow resulting from measurements with Particle
Image Velocimetry (PIV). In particular, the study showed the SPOD’s ability to extract
the coherent structures related to the swirl flames accurately. Similarly, Lückoff et al. [40]
addressed the impact of seven different actuators on the flow of a swirl-stabilised combustor
showing the SPOD capability to draw the differences between the flow dynamics connected
with two of the geometries. In Ribeiro and Wolf [33], the modal analysis is conducted on
a flow past a NACA 0012 aerofoil at a fixed incidence angle, solved with the LES approach.
The investigation focused on an extensive comparison between snapshot POD, spectral
POD and Fourier-POD regarding the extraction of organised flow features connected with
the noise generated on the computational domain. Ricciardi et al. [41] compared POD
and SPOD concerning the identification of coherent structures inside the cavity of landing
gear and accounting for a 3D-model DES database. The study proved that spectral POD
variation showed superior ability in recovering enhanced harmonic correlations of the
structures connected with the tonal noise in the cavity. Finally, a first attempt at studying
dynamic stall through SPOD can be found in Wen and Gross [1]. Here, Implicit Large-Eddy
Simulations were carried out over a Sikorsky SCC-A09 aerofoil undergoing three different
configurations of motion, respectively: pitching & surging, pitching & surging & rotation,
and pitching & surging & yawing.

The copious production related to dynamic stall agrees upon the fact that the phe-
nomenon is not yet entirely ascertained. This supports the intention to address the problem
through novel approaches that were not previously considered. The definition of a new
procedure that provides novel insights into the issue is expected by the research commu-
nity, in that this would represent a solid backbone for the design of lifting rotors. In this
regard the SPOD results in a promising strategy. The present work aims at introducing this
enhanced tool as one of crucial importance in the investigation of dynamic stall, providing
new insights into the flow dynamics and extracting previously hidden structures that may
lead to a better knowledge of its nature. In this path, this novel technique emerges from
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the previous approaches as a further step towards an improved and reliable magnification
on the innermost organisation of the turbulence dynamics. According to the expertise
gained by the authors, this investigation represents the first attempt to provide a detailed
framework for a proper tuning of the spectral decomposition in the context of oscillating
aerofoils. The SPOD is applied to the numerical database obtained from simulations of
a two-dimensional NACA 0012 aerofoil undergoing pitching motion, by decomposing the
velocity and the pressure fields. The flow configuration is that of a case study of interest
for the research group, in that it is currently part of an enhanced design preliminary study.
Thus, the main intention is to assess the effects of the filter on the dynamics of a flow in
deep dynamic stall conditions when this is applied to both vector- and scalar-valued fields.
The analysis is performed by inspection of time and spatial behaviour of the modes and by
reconstruction of the database with a low-order approach.

The paper is organised as follows: In Section 2, the main properties of the POD and
SPOD are outlined. Section 3 focuses on the geometrical model and the computational
domain. The solver is introduced as well, and simulations setups are drawn. Section 4
presents the results. Numerical solutions from simulations are first discussed, then the
modal analysis is thoroughly addressed. Finally, Section 5 provides the conclusive remarks
and the future developments.

2. Spectral Proper Orthogonal Decomposition

Turbulent flows are characterised by a broad spectrum of time and spatial scales
whose evolution has always drawn the attention of the research community [34]. Although
addressed as an organised phenomenon already from the late 1950s, the first mention of
coherent structures underlying turbulence should be referred to the work from Brown
and Roshko in 1971 [30]. At that time, Lumley [31] had already introduced the Proper
Orthogonal Decomposition (POD) as an unbiased tool to extract organised characters from
turbulent flows, which became, henceforth, widespread.

In the present work, the spectral variation of the POD proposed by Sieber et al. [38]
is employed. A detailed mathematical assessment of the method can be found in Sieber
et al. [42] while here the authors follow a brief description. The technique stems from the
snapshot POD [37], where a signal u(x, t) is divided into its ensemble average u(x) and
a fluctuating component u′(x, t). Thus, the signal is expanded as a spatial modes series

u(x, t) = u(x) + u
′(x, t) =

1

Ns

Ns

∑
j=1

uj +
Ns

∑
n=1

a(n)(t)φ(n)(x) (1)

where φ(n) denotes the modal components and a(n) the time coefficients. Here Ns denotes
the number of snapshots, i.e., the collection of time instants for which the flow variable
is defined.

The determination of the optimal projection basis is then addressed as a classical
constrained optimisation problem. From the calculus of variations theory, it is possible
to prove that the problem can be reformulated in terms of an eigenvalue problem for the
correlation matrix. In particular, the correlation between two snapshots should be intended
in the sense of the L2 inner product, (·, ·), as:

(

u(x, ti), u(x, tj)
)

=
∫

D
u(x, ti) u(x, tj) dD (2)

where D denotes the variable domain of definition. As a result, in a discrete path the
snapshot correlation yields to the correlation matrix as:

C =
1

Ns ∑
Np

i Wi,i

UT W U (3)
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Here U is the snapshots matrix, i.e., the matrix which collects all the u′(x, t) fluctuations
as Ns columns while W is a diagonal matrix containing the cells volume weighting, trans-
ferred at all the Np nodes. Such theoretical arrangement accounts for the computations of

the time-coefficients a(n) which are subjected to the following eigenvalues problem

Ca
(n) = λ(n)

a
(n) n = 1, . . . , Ns (4)

thus, being the eigenvectors of the C matrix. Here the eigenvalues, λ(n), are also known
as modal energies, representing the fraction of the initial signal which belong to the
corresponding reconstructed mode. Spatial modes (or coherent structures) are recovered
from projection of the original signal onto the basis of time coefficients as

φ(n)(x) =
1

Nsλ(n)

Ns

∑
k=1

a(n)(tk)u
′(x, tk) (5)

The results obtained from the decomposition may then be adopted for the definition
of a reduced-order model, as suggested by Equation 1. Thus, the energetic ranking based
on the eigenvalues provides a natural criterion to select the modes containing the most
correlated and energetic characters of the signal. Accordingly, the normalised cumulative
sum of the energy, δ, is used as a leading parameter in getting a quantitative datum
concerning the number of modes Nr which should be retained for the signal reconstruction;
the latter holds as:

δ(Nr) =
∑

Nr
n=1 λ(n)

∑
Ns
n=1 λ(n)

(6)

The procedure described so far for the snapshot POD is revisited by Sieber et al. [38] in
a spectral variation and, in this sense, is called Spectral Proper Orthogonal Decomposition
(SPOD). This novel technique is based on the application of a low-pass filter, along with
the diagonals of the correlation matrix. The filter, g, is of size 2N f + 1. The problem is then
re-assessed for the modified correlation matrix, S, the latter defined as:

Si,j =

N f

∑
k=−N f

gkCi+k,j+k (7)

Thus, an eigenvalues problem is solved as in POD and, for the sake of clarity, the
nomenclature is re-defined for the energies µ(n), the time coefficients b(n), and spatial
modes ψ(n). The role of the filter consists of increasing the modal signal-to-noise-ratio by
redistributing the energy among the modes ensuring the preservation of whole dynamic
content. As a result, for the first modes, the values of µ(n) are lower than the corresponding
values of λ(n). Furthermore, the method provides a tool to continuously shift from the
snapshot POD (N f = 0) to the Discrete Fourier Transform (DFT) (N f = Ns). Sieber et al.
[38] also propose a method to couple modes connected with periodic structures, which can
be interpreted as a single complex quantity, b̃(t), defined as:

b̃(t) = bi(t) + ibj(t) (8)

The technique adopts the Dynamic Mode Decomposition (DMD) of the time coeffi-
cients to identify and rank the pairs according to the harmonic correlation. In addition,
the pair energy and corresponding weighted averaged frequency are computed. Both the
techniques stem from the correlation matrix’s computation, as the weighted inner product
of the snapshot matrix. Although the weighting matrix, W, is diagonal, the dense nature of
U makes it impossible to take advantage of the convenient compact storage framework
for the computation of Equation (3). This may raise scepticism about the applicability of
the analysis in three-dimensional problems, where the rows of the snapshot matrix may
reach dimensions that are prohibitive for common computational resources. Anyhow,
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(a)

(b)

(c)

Figure 2. Magnification of the structured region of the computational domain (a): the red region

represents the overlapping cells of the two blocks. Two further zooms of the grid show the leading

(b) and the trailing edges (c), respectively.

The set of the simulations aim at tracing the unsteady behaviour of the flow during
pitching, focusing in particular, on deep dynamic stall conditions. In particular, the aerofoil
pitch angle is varied through a monochromatic sinusoidal law which holds as:

α(t) = α0 + α1 sin(Ωt) (9)

k =
Ω c

2 U∞
(10)

Here α(t) is the time-depending pitch angle, α0 its offset and α1 denote its amplitude. k
is the reduced frequency of the system and Ω its angular frequency. The reference Reynolds
number Re = ρ∞U∞c/µ∞ is based on the flow free stream density ρ∞ and viscosity µ∞ and
the free stream speed U∞. The simulation data initially follow the experimental assessment
of Lee and Gerontakos [43]. Then a case study setup is adopted to run simulations from which
data are extracted for the spectral analysis. As stated in the introduction, such workflow
falls in the context of a preliminary investigation aiming to improve the definition of
the design parameters for an applicative configuration. For this reason, the numerical
assessment has been primarily tested on the well-documented low-Mach conditions [43].
However, being the latter very far from real applications, a test case configuration is further
analysed. A complete summary of the simulated conditions is listed in Table 1.
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Table 1. Flow conditions employed for simulations.

Parameter Symbol Exp. Setup [12] Case Study Setup

Mean angle of attack [◦] α0 10 13.18
Pitch amplitude [◦] α1 15 9.55
Reduced frequency k 0.1 0.135
Pitching angular frequency [rad/s] Ω 18.67 275
Free stream velocity [m/s] U∞ 14 152.73
Reynolds number Re 1.35·105 1.57·106

Concerning the boundaries, the latter are prescribed as follow: A far-field condition
is chosen for the outflow edges, while symmetry is enforced at the ends of the aerofoil
span. To solve the flow between the overlapping zones, the free edges of the two blocks
corresponding to the overset region are set as Chimera boundary condition. The Chimera
boundaries technique is efficiently implemented in TAU [44–47] and in this case allowed
for building a customised refinement without the need to impose motion on the whole grid.
According to this technique, also known as simply overset grid, multiple blocks are built
with overlapping common zones. A hole is cut on blocks where non-penetrable surfaces
are identified, then the information is transferred between different blocks by interpolating
over the overlapping cells at the boundary of the hole [48]. It is essential to consider that
such grid structure favours a higher resolution in the wake region and provides greater
accuracy in heading the detached flow dynamics, which was not achievable with a simple
O-grid. In particular, the latter would have required a much denser grid overall and,
consequently, higher demand for computational resources. Instead, splitting the domain
into blocks allowed for adopting an unstructured grid for a more significant part of the
far-field domain.

The computations are performed using the TAU-solver by DLR. The solver has been
extensively validated by previous publications [44,49–51] both performing 2D and 3D
Navier-Stokes analysis. In the present work, the Unsteady Reynolds-Averaged Navier-
Stokes (URANS) system of equations is solved using explicit dual time stepping. The
convective fluxes are discretised through a central difference scheme with scalar dissipation,
while turbulent scalars employ an upwind scheme. Time-integration takes advantage of
a backward Euler relaxation method combined with Lower-Upper Symmetric Gauss-Seidel
(LU-SGS) linear solver.

Concerning the turbulence model, both the 1-equation Spalart-Allmaras model with
Edwards modification (SAE) and the 2-equation k − ω Shear Stress Transport (SST) model
by Menter (2003) are used. Unsteady simulations are initialised from a steady-state condi-
tion; the latter solved up to 3000 iterations. Four complete pitching periods are computed,
thus showing flow stabilisation starting from the third. Pitching cycles are discretised
with 3600 time-steps, each solved for a maximum of 300 inner iterations. Stop criterion for
iterations is set at a condition where root mean square of the residuals is equal to 1 · 10−5,
and monitoring the relative fluctuation on the density, re-normalised at the beginning
of each time step. This strategy for monitoring the residuals is chosen to promote the
convergence of the single time step, especially for the ones related to the most critical flow
conditions at the highest incidences. In this regard, the maximum number of inner itera-
tions guarantees convergence for those steps, though being oversized for the remainder.
The choice of the time discretisation is consistent with sampling at least 100 flow events
over a single pitching cycle. The chosen physical time size evolves almost 155 times in
the convective time scale of the flow, based on the most critical boundary conditions, i.e.,
tc = c/U∞ = 9.8 · 10−4 s.

Figure 3 shows the non-dimensional vorticity field distribution corresponding the
instant where α(t) = 19.7◦. The configuration preludes the Leading Edge Vortex (LEV)
sheds into the wake; thus it slightly advances the dynamic stall condition.
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However, a similar fluctuation can also be detected in the k − ω SST plot. In any case,
both the turbulence closures depart from the experimental flow evolution. Measurements,
in fact, show to nearly recover the linear trend, though with lower values, while the
numerical model is affected by the flow structures developing during the phase of fully
detached flow. In particular, when considering the SAE model, it is possible to see an
intense excursion of the loads between 20◦ and 10◦ that leads the flow to reach greater
load values than the ones predicted by the static theory. This is incompatible with the
known character of the flow during this phase and may be considered as clear evidence of
the inability of the present model to reconstruct the phenomenon of dynamic stall. The
concluding part of the downstroke is characterised by a general approach between the
numerical results and experiments, especially in what concerns drag and moment loads.
In fact, from the lift coefficient, it is possible to see how measurements suggest that the
flow recovers the static theory behaviour only after the null angle of attack. At the same
time, the hysteresis detectable in the negative incidence phase highlights that the flow is
still subject to unsteady and possibly 3D characters. This behaviour is not recovered by
numerics, where the hysteresis is missing, and the flow evolution follows the linear theory.
The present results from the 2-equation model are found in good agreement with other
published numerical assessments based on the same experimental data-set [25,26].

4.2. Simulation with Case Study Conditions

After analysing the response of the numerical model against the experimental data of
Lee and Gerontakos [43], the 2-equations k−ω SST turbulence model is selected to simulate
the case study conditions for the design (see Table 1 for the details). The grid’s quality
regarding this simulation was determined based on the evolution of the y+ throughout the
pitching cycle. As reported in Figure 5, the maximum value reached at the end of each time
step is limited to 1.8, even for the most critical conditions experienced by the flow. Such
value falls in every RANS simulation’s best-practice and is consistent with the selected
turbulence model, which generally requires a maximum of y+ on the walls around the unity.
For this reason the present mesh has been considered capable of accurately heading the
system’s dynamics. It is necessary to clarify that this simulation setup involved shocked-
induced effects as the boundary layer’s driving factors thickened at the leading edge;
then promoting the dynamic stall [52]. However, these events do not result in coherent
structures in the decomposition process (discussed later on) giving minor importance to
the declared purpose of the present work: i.e., to present a possible novel framework to be
applied in the context of numerical data-set concerning oscillating aerofoils.

Figure 5. Maximum value of y+ as a function of time for the case study configuration. The values of

the last cycle are reported against the physical time, which is non-dimensionalised with the pitching

period, T, and shifted to cover a normalised scale bar.
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In particular, the obtained results in this secondary arrangement show a smoother
behaviour of the loads’ curves (Figure 6), which reflects the presence of a lower number
of turbulent structures developing throughout. According to the coefficients’ trends, the
flow’s evolution presents some similarities with previous results. In particular, the linear

behaviour 1 follows the same trace until the steady-state angle of attack is reached

(Figure 6a). Here, again, the slope of the curve briefly flattens 2 before becoming even
greater than in the linear trend. This condition also induces a drop of the moment curve
(Figure 6c). The reason for this can be ascribed to the gradual thickening of the boundary
layer that generates the leading edge vortex, whose low-pressure core travels down to the
trailing edge throughout the motion. As it passes the centre of pressure of the aerofoil,
the negative effect of the moment drastically increases. This process continues in full
attachment conditions, which explains the protracted trend of the loads. After lift stall

occurs, with the vortex shedding at α = 19.7◦ 3 , the load along the z axis shows an
almost monotonic behaviour. Differently, the sudden formation of a trailing edge vortex
affects both the drag (Figure 6b) and moment loads. The appearance of a trailing edge

vortex is depicted by a second peak in the two plots 4 and in particular, for the moment
load, this value represents the maximum negative excursion. The concluding part of the
upstroke phase is influenced by a brief re-attachment of the circulating flow. In fact, in
the neighbourhood of the maximum incidence, the three aerodynamics coefficients show

a rapid, though limited, excursion 5 . As can be seen from the flow distribution, this event
is generated by a circulation bubble that extends over the whole aerofoil and has a low-
pressure core located beyond the centre of pressure. The remainder of the flow evolution

6 develops with conditions typical of full detachment. Here, the small fluctuations seem
to be mostly related to the numerics and not to the physics of the system.

4.3. Spectral Proper Orthogonal Decomposition

The above-discussed simulations are used to perform the modal analysis according to
the SPOD method by Sieber et al. [38]. In particular, the flow variables are extracted for the
last 2 cycles from the inner pitching block; a choice that is motivated since further investiga-
tions made by decomposing the whole computational domain showed that the dynamics
of the most relevant modes remains unaltered. The sampling process is performed every
36 time-steps. After extracting the ensemble mean, the correlation matrix is computed
accounting for the velocity fluctuations, considering both the u′ and w′ components. Then,
the spatial coherence of the modes is discussed through the modes related to w′. According
to Sieber et al. [38], three filter sizes, N f , are chosen. In particular, the POD analysis (N f = 0)

is compared to the two N f = {30, 63}T SPOD’s levels. The former level corresponds to the
time needed by the main vortex to form and shed past the observation domain; the latter,
to time spent by the flow to reach full detachment conditions. The following Gaussian
distribution

gi = e

−





3 i

N f





2

(11)

is used for the filtering process.









Designs 2021, 5, 11 16 of 25

Pure POD (Figure 8a) clearly extracts a dominant frequency at the second harmonic of
the motion, i.e., St = 0.034. However, the broadband pair’s content accounts for a broader
frequency domain and, as already anticipated in Figure 7b, the correlation of the real and
imaginary modal components is marginal. Accordingly, the phase diagram (Figure 8b)
provides no indications on the common time evolution of the single modes. On the other
hand, the time constraint introduced by the application of the filter (SPOD with N f = 30)
allows for a more refined definition of the pair’s dynamic. This can be stated based on
two effects depicted by the analysis of the time domain and, in particular, looking at the
frequency response. In this regard, Figure 8c shows how the dominant modal contribution
is now identified at the eleventh harmonic. It is important to note that this result combines
two simultaneous actions: the suppression of the other responses and the enhancement
of the PSD connected with the newly recognised evolution. Besides, a secondary effect
is deducible from Figure 8d. Here, it is possible to read a circular shape is detectable,
a structure which is typical of harmonic correlation recovered by purely spectral analysis
as the Discrete Fourier Transform (DFT). The fact suggests how the two pair components
are now much more correlated during the time evolution. The application of a higher
filter width (N f = 63) is made to address the actual impact of the SPOD. To this end, the
PSD of the pair (Figure 8e) highlights the filter role in further extracting the structures’
natural evolution. This aspect is depicted by the additional suppression of the broadness
of the band. At the same time, the response at the eleventh harmonic is not discarded,
but somewhat slightly re-enforced: a result that confirms the SPOD’s ability to inspect
the innermost characters of the evolving dynamics properly. Again, the phase portrait
(Figure 8f) depicts a stronger affinity with a circular outline. Both the PSD and phase
diagrams show, in this case, that the filter size is shifting the decomposition toward a
purely spectral analysis. However, the multi-frequency content suggests that the energetic
optimality typical of POD is not entirely compromised, which draws the convenience of
the present approach in dealing with the stall dynamic.

Thus, the inspection of the spatial modes is necessary to show how the action of
the spectral analysis on the coherent structures is consistent with what discussed the
corresponding time coefficients. As already evidenced by Taira et al. [54], travelling
structures are usually described by a pair of real singles modes, whose coherent zones
are shifted in the spatial domain according to the specific wavelength. In this sense, the
resolution and periodicity of the coupled modes’ structures may be assumed as a measure
of the related spatial coherence.

Figure 9 reports the distribution of the (single) spatial modes corresponding to the
SPOD time coefficients ψ(5) and ψ(6). Consistently with the previous analysis, the POD
demonstrates a clear inability to correlate the dynamics of the two coupled modes since
the spatial organisation of the structures of mode 5 (Figure 9a) depicts a generally inclined
directionality that lacks the mode 6 (Figure 9b). Furthermore, the evolution provided by
Figure 9a broadly distributes the wake, even over the aerofoil, denoting poor definition of
the structures. Conversely, the structures showed by ψ(6) have a much more refined shape
evolving from the middle chord to the wake. However, no periodicity can be traced with
the spatial distribution of its paired mode. On the contrary, the effect of the first SPOD’s
level is markedly in favour of the correlation of the two single dynamics. This is inferred
based on the spatial distribution of the corresponding modes. Here, mode 5 (Figure 9c)
acts as the advancing mode: as a consequence, the same pattern of the structures can be
detected in mode 6 (Figure 9d), though shifted back toward the aerofoil. The fact denotes a
phase delay in the spatial propagation, in line with expectations for coupled structures.
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and ψ(6) coefficients. Moreover, one may notice that the filter has a negligible impact
on the dominant flow structures and, to draw a connection with the corresponding time
coefficients, this aspect is consistent with the reduced effect on the response of the eleventh
harmonic already discussed and explains why the disturbances are referred to as spurious
tracks connected with different frequencies. To conclude, time and spatial characters agree
upon the superiority of the SPOD, when compared with POD. The enhancement provided
by the former is proved by its ability to extract and adequately describe the full nature of
the dynamic contents that would be otherwise hidden.

4.4. Comparison between Decompositions of Pressure and Velocity Field

As next step of the investigation the authors convey in drawing the suitability of the
method when adopted for the study of a scalar field. Thus, the modal analysis is performed
concerning the pressure database and following similar considerations as for the previous
discussion. In particular, the filter widths for the SPOD are chosen as N f = {35, 63}T .
Figure 10 summarises the results for the three different decompositions, concerning the
energy of the paired modes as a function of the non-dimensional frequency.

As for the velocity fluctuations, the distribution of the modal dynamics on the POD
spectrum is less populated (Figure 10a); the reason is always connected to the high energetic
content of the first pair. This feature, in particular, recovers most of the cumulative sum
of the eigenvalues, denoting how the pressure fluctuations are drastically affected by the
low-order dynamics of the system motion. Although this pair of modes depicts the highest
correlation among the other in the spectrum, the forthcoming inspection of the spatial
structures will instead reveal a low coherence between the dynamics. One may argue
that the forced coupling procedure may have the drawback of recognising paired modes
even when they do not share common dynamic evolutions. The strong dependency of the
modal representation on the first pair is further proved by applying the N f = 35 SPOD
(Figure 10b). In this case, the energetic content of the first harmonic is not significantly
affected, and the same holds for the average response frequency. However, the other two
selected pairs demonstrate a marked sensibility of the corresponding dynamics towards
the time constraint of the spectral decomposition. Although they show enhanced harmonic
correlation, the mean response frequency changes drastically. In particular, the variations
are from St = 0.135 to St = 0.08 for the second pair and from St = 0.24 to St = 0.135 for
the third.

The application of the second filter shows a less effective action on the response of
the second pair, while the third is again significantly influenced, with the mean Strouhal
number shifted to St = 0.09 (Figure 10c). Furthermore, a fourth highly correlated pair is
extracted around the tenth harmonic. In general, although the filter enhances the correlation
of the time coefficients, it also affects the peak response by gradually suppressing the
responses at the higher frequencies. This is a different behaviour than that described for
the velocity field where, instead, the action of the filter allowed for a better identification of
the dominant frequency by suppressing the responses, whether they be higher or lower.
This aspect reflects how the pressure field analysis is more hardly manageable, since the
selection of the filter is not univocal and thus may lead to misleading interpretations of
the results.
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However, it should be noted that the SPOD introduces some faulty components in terms of
moment coefficient (Figure 12f), where the smoother trace depicted by the POD (Figure 12e)
better approaches the CFD values. As regards the lift and the drag coefficients, the two
aerodynamics coefficient are more satisfactorily reproduced by SPOD (Figures 12b,d)
which is able to recover a better description of either the variations and the values of the
coefficients. Especially for the lift coefficient, it is possible to see how the POD method
(Figure 12a) tends to smoothen the evolution of the loads and underestimates the peak
value corresponding to the dynamic stall event. On the contrary, the POD shows a superior
behaviour in the drag peak’s reconstruction (Figure 12c) while the SPOD depicts a delayed
angle for the occurrence of the phenomenon. Finally, both the two reconstruction methods
miss the second observable peak in either the drag and moment plots: this fact may
prove that the event connected with this load fluctuations relates to higher harmonics
than those described by the modes here retained. To conclude, from this first analysis it
is possible to state that the POD better estimates the effective values of the loads, though
at delayed angles, while the SPOD better predicts the grade of the fluctuation but with
a lower precision of the values. Similar words may be spent for the moment coefficient,
especially for the part with negative values. The remainder of the curve shows instead
a very similar behaviour.

5. Conclusions

The unsteady flow evolution of a pitching 2D NACA 0012 aerofoil is numerically
investigated through Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations.
Computations are performed to tune either the Spalart-Allmaras turbulence model with
Edwards modification (SAE) and k −ω SST model against the experimental data of Lee and
Gerontakos [43]. Both the two closures show a general difficulty to reproduce the pitching
phenomenon, anticipating the detachment of the Leading Edge Vortex (LEV); a result that
agrees with previous references [25,26,28]. However, since the k − ω SST turbulence model
shows more stable behaviour, especially regarding the downstroke phase, the model is
selected for a case study simulations setup.

The CFD results are post-processed thought advanced stochastic tools and, in particu-
lar, both the Proper Orthogonal Decomposition (POD) by Sirovich [37] and the Spectral
Proper Orthogonal Decomposition (SPOD) by Sieber et al. [38] are adopted. The SPOD
method differs from the POD in filtering the diagonals of the correlation matrix and, in
particular, the study demonstrates how a proper choice of the filter size allows for the ex-
traction of new dynamic contents developing throughout the flow evolution. The different
behaviour of the two techniques is observed concerning the post-processing of vector- and
scalar-valued fields. In particular, the analysis shows how the SPOD method acts better for
the velocity reconstruction while the POD better performs for pressure decomposition. The
computation of the aerodynamic loads from a reduced-order reconstruction of the pressure
field, compared to original CFD, benchmarks the ability of both the POD and the SPOD to
recover the inherent characters of the pitching cycle.

The application of SPOD on the corresponding database shows that the filter allows
for the extraction of the eleventh harmonic dynamic. In particular, for the velocity field,
a wider window size enhances the response and correlation of the coherent structures
around that frequency. On the contrary, the effects on the dynamics of the pressure field
depict marked variations depending on the filter size. In conclusion, the aerodynamics
loads’ reconstruction demonstrates that low-order models based on SPOD better perform
in recovering the incidence of the oscillations occurring during the pitching cycle. However,
this comes at the expense of the energetic optimality of the decomposition and, as a result,
the POD-based low-order model is more reliable in reconstructing the actual values of the
loads. Anyhow, forthcoming investigations are meant to dissolve the uncertainty about the
behaviour of the analysis when applied to flows evolving with different Reynolds numbers.
This broader study will draw a complete insight into how the results provided by this
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novel approach may represent an essential aid for the design process of rotorcrafts, facing
a wide range of operating envelopes.

Future investigations on 3D models will also include the evolution of lower scales of
turbulence. Thus, the consistency of the method will be analysed for flows where more
advanced CFD techniques allow for the identification of a broader spectrum of unsteady
dynamics’ characters. As a further step, the intention is to take advantage of the modes for
building a reduced-order model and, thus, to prove how this can help in predicting the
performance in the preliminary phase of the design process.
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Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics

DES Detached Eddy Simulation

DFT Discrete Fourier Transform

DLR Deutsches Zentrum für Luft- und Raumfahrt

DMD Dynamic Mode Decomposition

ILES Implicit Large-Eddy Simulations

LES Large-Eddy Simulations

MPI Message Passing Interface

PIV Particle Image Velocimetry

POD Proper Orthogonal Decomposition

PSD Power Spectral Density

SAE Spalart-Allmaras with Edwards modification

SPOD Spectral Proper Orthogonal Decomposition

SST Shear Stress Model

URANS Unsteady Reynolds-Averaged Navier-Stokes
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