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a  b  s  t  r  a  c  t

The  quality  of  dimensional  measurements  made  by  industrial  X-ray  computed  tomography  (CT) depends
on a  variety  of influence  factors  in  the  measurement  process.  In  this  paper,  the  effects  of  angular  misalign-
ments  of a flat-panel  detector  are  investigated.  First,  a forward  projection  model  is  applied  to  evaluate
distortions  of the radiographic  pixel coordinates  assigned  to X-ray  intensities  due  to  various  detector
rotation  angles.  Distortion  maps  are  presented  for  a set  of  representative  detector  rotations  and  the
sensitivity  of  image  distortions  to  each  rotation  is  discussed.  It is shown  from  a  simulation  study  that
detector  angular  misalignments  result  in  systematic  errors  of  the  reconstructed  volume.  The  distortion
model  is  inversely  applied  to generate  correction  maps  that  are  used  to correct  the  simulated  radio-
eometrical distortions
olumetric errors

graphs  from  a misaligned  detector.  A  new  volume  is reconstructed  from  the  corrected  radiographs  and
the new  deviations  are  compared  to the  uncorrected  results.  The  reduction  of  observed  volumetric  errors
after  radiographic  correction  validates  the efficacy  of the radiographic  distortion  model.  Additionally,
the  output  of this  study  can  contribute  to  the development  of  a geometrical  error  model  for  volumetric
measurements  made  by  CT.

Crown Copyright  © 2016  Published  by  Elsevier  Inc.  All  rights  reserved.
. Introduction

In X-ray CT, the accurate reconstruction of the measurement
olume is strongly dependent on the alignment of the system
eometry [1]. For typical industrial CT systems, the geometry is
efined by the relative position and orientation of the three main
omponents [2], namely the X-ray source (particularly, the X-ray
ocal spot), rotation axis, and detector. To determine the sensitiv-
ty of the reconstructed volume to the alignment of these three
omponents, the principles of X-ray CT are briefly revisited here.

The measurement volume is reconstructed by way  of applying
omographic (slice-wise) reconstruction to a collection of radio-
raphic images—or radiographs [3]. Typically, radiographs are
aken in sequence as a test object is rotated on a stage. The informa-
ion contained within each radiograph corresponds to the spatial

istribution of attenuated X-rays incident on the plane of the
etector. More specifically, the intensity registered by each pixel
orresponds to the intensity of those X-rays that traverse the path

∗ Corresponding author at: National Physical Laboratory, Hampton Road, Tedding-
on  TW11 0LW, Middlesex, United Kingdom. Tel.: +44 20 8943 7018.

E-mail address: massimiliano.ferrucci@npl.co.uk (M.  Ferrucci).

ttp://dx.doi.org/10.1016/j.precisioneng.2016.03.001
141-6359/Crown Copyright © 2016 Published by Elsevier Inc. All rights reserved.
from the X-ray source to the corresponding pixel. In the case of an
object within the measurement volume, the registered intensity at
each pixel will depend on the attenuation of X-rays by the object
along the source-to-pixel path. The intensity at each pixel will also
depend on scatter and other X-ray effects that are out of the scope
of this paper, but are discussed elsewhere in the literature [3].

Radiographs are taken at multiple rotation positions, provid-
ing a denser sampling of X-ray attenuation trajectories through
the measurement volume. The registered attenuation along all
X-ray paths is used by the reconstruction algorithm to gener-
ate a three-dimensional distribution of relative attenuation values
in the measurement volume. This volumetric model consists of
three-dimensional pixels, ‘voxels’, with assigned grey values, which
correspond to the relative attenuation at that voxel position. The
position of each voxel is given by the three-dimensional coordi-
nates of its centre. Subsequent processing of the volumetric data,
such as segmentation and surface sampling, can be used to gener-
ate a three-dimensional point cloud; dimensional measurements
can then be performed on the resulting coordinate points [1].
The accuracy of the extracted three-dimensional coordinates
is dependent on the alignment of the system geometry and
its stability during a scan. The grey value assigned to a voxel
representing a particular volumetric space is calculated from

dx.doi.org/10.1016/j.precisioneng.2016.03.001
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
http://crossmark.crossref.org/dialog/?doi=10.1016/j.precisioneng.2016.03.001&domain=pdf
mailto:massimiliano.ferrucci@npl.co.uk
dx.doi.org/10.1016/j.precisioneng.2016.03.001
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ig. 1. (a) The ideal geometrical alignment of a typical industrial cone-beam X-ray
ncrease  downward. The pixel position (u, v) = (1, 1) is located at the top left corne

he set of X-ray trajectories through that volumetric space. Each
rajectory through the measurement volume is determined from
he assumed positions of source and pixel. Also, knowledge of the
elative orientation of the measured object between radiographs
s determined from the rotation of the stage, which is typically
ssumed to be stable [2]. Deviations in the system geometry
rom its assumed state will introduce errors in the radiographic
ixel coordinates assigned to registered X-ray intensities. The
ropagation of these errors through the reconstruction algorithm
ill result in errors of the binning of grey values to individual

oxels and, consequently, errors in dimensional measurements
erformed on the reconstructed volume.

In this paper, the effects of angular misalignments of a flat-panel
etector on volumetric measurements made by CT are studied.
irst, the geometry of a typical cone-beam X-ray CT system is
escribed. Then, a forward projection model [4] is adapted to gen-
rate radiographic distortion maps for various detector rotations.
n practice, uncertainty in the input parameters would result in an
ncertainty of the distortion maps. The scope of this study is to
valuate the effects of a misaligned detector; therefore, the input
arameters for the model are assumed to be exactly known. It is
hown by simulation that detector angular misalignments result in
ystematic dimensional errors of the reconstructed volume. The
imulation study is briefly discussed and the volumetric errors
re presented for various detector misalignments. The distortion
odel is then applied inversely to correct the radiographs from

ach simulated detector misalignment. A new, corrected volume
s reconstructed with the corrected radiographs. The deviations
rom ideal geometry in the corrected volumes are compared to the
eviations in the corresponding uncorrected volumes.

. Instrument geometry

Fig. 1a summarizes the X-ray CT instrument geometry assumed
or this paper. To begin, a right-handed global coordinate system
s defined. The magnification axis, also the Z axis, is given by the
ine connecting the centre of the X-ray focal spot to the centre of
he detector. The Y axis is parallel to the rotation axis of the object
tage. The X axis is orthogonal to both the Y and Z axes, thus forming

 Cartesian coordinate system. The origin is defined as the inter-
ection of the ideal magnification axis and the detector plane. The
ositive Z direction is towards the X-ray source, while the posi-
ive Y direction is upwards (opposite the direction of gravity). The
irection of the positive X axis follows the right-hand rule. The X-
ay source-to-rotation axis distance (SRD) is given by the distance
rom the centre of the X-ray focal spot to the intersection of the

otation and magnification axes, while the source-to-detector dis-
ance (SDD) is given by the distance from the X-ray focal spot centre
o the centre of the detector. Both SRD and SDD are positive values.
he detector is positioned on the opposite side of the rotation stage
stem. (b) The pixel column indices increase rightward, while the pixel row indices
e detector.

from the source, thus SDD is larger than SRD. SRD is not an input
parameter to the model but is mentioned here for reference.

The nominal alignment of the detector is as follows. The magnifi-
cation axis (Z) is normal to the plane of the detector. The vertical axis
of the detector (V) is antiparallel to the Y-axis, while the horizontal
axis of the detector (U) is parallel to the X-axis. The flat panel detec-
tor consists of M by N pixels, where M is the number of rows and N
is the number of columns (Fig. 1b). Ideally, the pixels are equally-
sized and equally-spaced in the plane of the detector; the variables
�u and �v correspond to the pixel width and height, respectively.
The centre of each pixel in the detector is assigned column (u) and
row (v) indices. The (u, v = (1, 1) position is at the top left corner of
the detector screen; the columns increase rightward (+X  direction
in the system coordinate frame), while the rows increase down-
ward (−Y direction in the system coordinate frame). The variables
uo and vo are the pixel column and row coordinates, respectively,
corresponding to the intersection of the magnification axis and the
detector; this feature is also known as the principal point—a term
commonly found in camera calibration for machine vision [5]. In
the case of an ideally aligned detector, the principal point is located
at the geometrical centre of the detector plane. Depending on the
number of pixel rows and columns (even or odd), the centre of the
detector can fall on a pixel or on the edge between adjacent pixels,
i.e. uo and vo can be non-integer values.

Angular misalignments of the detector are described by three
rotations: detector tilt � about the X-axis (Fig. 2, left), detector slant
ϕ about the Y-axis (Fig. 2, centre), and detector skew � about the
Z-axis (Fig. 2, right). Tilt � and slant ϕ are known as out-of-plane
rotations, while skew � is an in-plane rotation. Detector rotations,
in practice, are not constrained to occur about the central axes of the
detector plane [6]; such rotations can be modelled as a combination
of detector translation and rotation.

The effects of positional misalignments of the detector are not
investigated in this paper to allow for in-depth analysis of angu-
lar misalignments. The principal point is therefore located at the
detector centre. It should be noted, however, that the radiographic
error model presented here includes parameters for positional mis-
alignments of the detector. Positional misalignments in X and Y can
be modelled by adapting the principal point uo and vo, whereas a
misalignment in Z is modelled by adapting SDD.

A detector can be misaligned by more than one rotation angle
simultaneously. Various established conventions may be used for
rotating three-dimensional coordinates [7]; these conventions dif-
fer by the axes about which the rotations are performed and the
sequence in which the axes are rotated. In general, the application
of different conventions will not generate equivalent final three-

dimensional rotations. The convention used here is chosen to agree
with the convention used to simulate a rotation of the detector
in the analytical (ray-tracing) simulation software Scorpius XLab®.
More information on Scorpius XLab® can be found in the literature
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nt ϕ (middle), and in-plane skew � (right). Positive rotations are illustrated.
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Table 1
The non-varying geometrical parameters describing the CT system.

Geometrical parameter Value

Detector size 400 mm × 400 mm
Number of pixels (M × N) 2000 × 2000
Pixel size (�u × �v) 0.2 mm × 0.2 mm
Fig. 2. Potential detector angular misalignments include tilt � (left), sla

8]. All rotations are extrinsic and are performed about the fixed X,
, and Z axes of the global coordinate frame. The positive direction
f rotation is given by the right-hand screw rule (see Fig. 2).

. Radiographic distortions

Radiographic or pixel distortion is defined as the shift in the pixel
oordinates assigned to registered point intensities (X-ray photons)
rom the image plane of an aligned detector to the image plane of a

isaligned detector. The intensity of incident X-rays is registered
y pixel (u, v) in the aligned detector. On a misaligned detector, the
ame X-ray intensity is registered by pixel (ur, vr), as depicted in
ig. 3.

The difference in registered pixel position from the aligned
etector plane to the misaligned detector plane corresponds to the
ixel distortion for the pixel (u, v) in the aligned detector plane and

s given by the following equation:

u = ur − u, dv = vr − v (1)

Principles of forward projection may  be adapted to evaluate the
ixel distortion in the presence of various representative detector
otations. Similarly to the derivation provided by Yang et al. [4], the
alculation of du and dv is achieved by the following steps. First, the
x, y, z) coordinates of each pixel centre in the aligned detector are

etermined. Then, a set of straight lines from the X-ray focal spot
entre (given by a point) to the coordinates of each pixel centre
re generated. The intersections of the straight lines with the now
isaligned detector plane are subsequently determined. For each

ig. 3. An incident X-ray photon will be registered at different pixel coordinates on
he aligned and rotated detectors [(u, v) and (ur , vr ), respectively]. In this diagram,
he  rotated detector is a result of multiple rotations.
SRD 350 mm
SDD 1700 mm

intersection point on the rotated detector, the corresponding col-
umn  and row indices (ur, vr) are extracted. Finally, du and dv are
evaluated for each pair of (ur, vr) and (u, v).

Distortion maps may  be generated for various out-of-plane rota-
tions � and ϕ and in-plane rotations �. It is important to note
that the magnitude of detector rotations studied in this paper
is significantly larger than experimentally observed rotations in
test systems. Nevertheless, the magnitudes are chosen to clearly
present the geometrical behaviour in the radiographic distortions.
The values of other non-varying geometrical input parameters used
in the model are given in Table 1. The magnitude of the total dis-

tortion, i.e.
√

du2 + dv2, is plotted in colour for each pixel. The
direction of the distortion vector is given by the superimposed
arrows (decimated by 80 for clarity). Distortion statistics are pre-
sented for each applied rotation in Table 2.

3.1. Out-of-plane rotations � and ϕ

Distortion maps are presented for � = +5◦, +10◦ in Fig. 4 and
for ϕ = +5◦, +10◦ in Fig. 5. In the case of a detector tilt �, distortion
increases for rows further from mid-plane (row vo). Distortion is,
to first approximation, constant for all u in a given v. Note that the
trend of distortion increase for rows away from vo is not symmet-
rical about vo, as might be expected. Further, the general trend for
constant distortion across a row is modified by the local minimum,

which is evident on the vertical centerline of the distortion plot
for each test rotation in Fig. 4. The pixel distortions point towards
the local minimum for pixel rows occupying the same image half
as the local minimum. Equal and opposite rotations have mirrored

Table 2
Maximum, mean, and standard deviation � of the distortion magnitudes in the
presence of various detector rotations.

Rotation Distortion magnitude (pixels)

Maximum Mean �

� or ϕ ±10◦ 42.5 10.9 10.0
±5◦ 17.6 4.7 4.0

� ±2◦ 49.3 26.7 9.9
±1◦ 24.7 13.4 5.0
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Fig. 4. Distortion maps for varying values of �. Note the direction of U and V.
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Fig. 5. Distortion maps for varying v

istortions about the horizontal centre line in the case of detector
ilt � and about the vertical centre line in the case of detector
lant ϕ. Due to the simplified nature of the modelled geometry,
istortions due to detector slant ϕ can be expected to correspond
o distortions for tilts �, but mirrored in the line u = v.

The presence of local minima along the image centre lines can
e explained by the diagram in Fig. 6a, in which an X-ray path to

 detector with tilt � is shown on the YZ plane. The X-ray path
rom the source intersects the rotated detector at vr and the ideal
etector at v. The dotted arc has a radius of v and connects the two
ixel row positions vr and v. Therefore, vr = v and the pixel row

istortion dv = 0. Also, since the diagram is on the YZ plane, du = 0
see Fig. 4). Therefore, the total distortion for that particular pixel
ow is zero. The row position of this minimum changes with the
agnitude of �, as is shown by the diagonal zero line in Fig. 6b. In

ig. 6. (a) X-ray path diagram along YZ plane. Given detector tilt �, there exists an X-ray pa
etectors. (b) The pixel row position for this occurrence depends on the value of �, as is s
 of ϕ. Note the direction of U and V.

this figure, the horizontal zero line corresponds to the X-axis and
the vertical zero line is the distortion when � = 0.

3.2. In-plane rotation �

Distortion maps in the presence of in-plane rotation � = +1◦,
+2◦ are presented in Fig. 7. The magnitude of distortions increases
with increasing distance from the detector centre. As expected, the
distortion direction at any pixel position is tangent to the radial
direction; that is, the distortions follow a circular trajectory with
the detector centre at the trajectory centre.
Table 2 summarizes the magnitude of the distortion for various
detector rotations.

The distortions in the presence of � = ±1◦ and � = ±2◦ are larger
than the distortions in the presence of � = ϕ = ±5◦ and � = ϕ = ±10◦,

th that will be registered by the same pixel coordinate in both the ideal and rotated
hown by the diagonal zero line.
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Fig. 7. Distortion maps for varying 

espectively. The sensitivity of distortion magnitude to rotation
ngle is depicted by Fig. 8, in which maximum and mean distortion
agnitude is plotted as a function of rotation angle.

. Volumetric deviations

The effects of angular misalignments of the detector are studied
n simulated CT scans of a test object. A cone-beam CT system is
imulated using Scorpius XLab®. The system geometry is character-
zed by the parameters in Table 1. The current of the X-ray source
s set to 0.1 mA  and the voltage is set to 100 kV. The test object
s a computer-modelled cylindrical array of aluminium spheres
Fig. 9). One hundred and twenty five spheres are separated into
ve layers along the cylindrical axis. Each layer consists of twenty

our spheres arranged in three concentric circles and one additional
phere located at the common centre. The diameter of the modelled
pheres is 5 mm.

The test object is placed within the system such that its cylin-
rical axis is coincident with the axis of rotation and its centre (the
entral sphere of layer C) is coincident with the intersection of the
otation and magnification axes. In this position and orientation,
he third layer of spheres is centred on the mid-plane (XZ); thus, two
f the layers are below this mid-plane and two are above it. For the
urpose of isolating the effects of geometrical errors, other influ-
nce factors, such as finite X-ray focal spot size, focal spot drift, and

lectronic noise and MTF  of the detector, were not simulated. The
est object is imaged at 3600 equally-spaced rotation positions over

 range of 360◦; the number of projections was chosen to reduce
he effects of insufficient projection data. Subsequent to collecting

ig. 8. Maximum (solid line) and mean (dotted line) pixel distortion magnitude as
 function of rotation angle for �, ϕ, and �.
 of �. Note the direction of U and V.

the full set of radiographs, the volume is reconstructed by filtered
backprojection (Feldkamp type) algorithms [9] included in the sim-
ulation software. Default settings for performing reconstruction
in Scorpius XLab® were used. Prior to the backprojection step, a
Shepp-Logan filter [10] is applied to the radiographic data. Bilin-
ear interpolation [3] is performed in the backprojection step. The
number of voxels in the reconstructed volume are 1999, 2000, and
1999 along X, Y, and Z, respectively. Voxel dimensions are 40.9 �m
along X and Z and 36.4 �m along Y.

Surfaces in the three-dimensional voxel model are determined
by applying a grey value threshold between the material of interest
(aluminium) and the background (air). Advanced (local) thresh-
olding on VGStudio MAX  with a search distance of 0.15 mm is
performed on a starting grey value, which was chosen to provide a
single continuous surface for each sphere object. The surface is sub-
sequently converted to a three-dimensional point cloud by way of
sampling the isosurface at intervals of 0.08 mm along all three coor-
dinate directions (using the surface extraction feature in VGStudio
MAX). For each sphere object in the point cloud, the centre of mass
(centroid) of all surface points is calculated. It should be noted
that sphere fitting is not used in determining the centroid of the
sphere object; it is shown later in this paper that certain detector
orientations resulted in form deviations of the scanned spheres.
For this purpose, the form of the reconstructed spheres is also used
to understand the effects of detector misalignments. Other studies
[11] use the volumetric grey value data to evaluate the centroid
of the sphere objects. This method eliminates the surface determi-
nation step, thereby removing the effects of thresholding [12] on
the centroid results. Here, surface data is used as it is necessary to
evaluate the form of the reconstructed spheres. Spheres are linear
least-squared fit to each object and the root-mean-square (RMS)
value of sphere fit residuals is used as the criterion for form devia-
tion. It should be noted that other definitions for sphere form exist.
The centroid and form deviation evaluated under each detector
misalignment are compared to the same features obtained under
ideal system geometry. Feldkamp artifacts due to insufficient radon
data at large cone-beam angles [13] could affect the centroid calcu-
lation. Given that both misaligned and ideal scan data are affected
by Feldkamp artifacts, their influence is not considered.

4.1. Detector tilt,  �

The following tilts of the detector about the X-axis are simu-
lated: � = +10◦, +5◦, −5◦, and −10◦. In Fig. 10, centroid deviations

are presented as vectors superimposed on the nominal centroid
positions. The deviation vectors are scaled by a factor of 20 for visu-
alization in the measurement volume. Centroid deviations are not
symmetrical about the XZ mid-plane. A local minimum is evident
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Fig. 9. A cylindrical array of aluminium spheres was  modelled for the purpose of samplin
view.

Table 3
Mean centroid deviation magnitude by sphere layer in the presence of detector tilt
�.

Mean centroid deviation magnitude/mm

� Layer A Layer B Layer C Layer D Layer E

+10◦ 0.29 0.19 0.01 0.38 0.99
+5◦ 0.19 0.07 0.01 0.14 0.38
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4.4. Multiple rotations

CT scans in the presence of multiple detector rotations are sim-
ulated. The first three combinations included rotations about two

Table 5
Maximum, mean, and standard deviation of centroid deviation magnitude for all
sphere objects in the presence of detector rotations.
−5◦ 0.38 0.14 0.01 0.07 0.19
−10◦ 0.99 0.38 0.01 0.19 0.29

bove the mid-plane for positive tilt angles and below the mid-
lane for negative tilts. This behaviour corresponds to the local
inimum observed in Fig. 4. The data in Table 3 confirms the

on-symmetrical behaviour about the mid-plane. Deviations due
o equal and opposite rotations are mirrored about the XZ plane.

.2. Detector slant, ϕ

The following slants of the detector about the Y-axis are sim-
lated: ϕ = +10◦, +5◦, −5◦, and −10◦. The deviations in centroid
oordinates for the cases ϕ = +10◦ and ϕ = −10◦ are plotted in Fig. 11;
he magnitude of plotted deviations is scaled by a factor of 20 for
isualization in the measurement volume. The results for ϕ = ±5◦

xhibit the same behaviour as the ϕ = ±10◦ cases, respectively, only
t smaller magnitudes; for this reason, the ϕ = ±5◦ plots are not pre-
ented. Horizontal (XZ) deviations are radially outward, i.e. away
rom axis of rotation and vertical (Y) deviations point towards the

id-plane (Fig. 11, centre). The magnitude of deviations generally
ncreases with increasing distance of the sphere from the axis of
otation; this behaviour is evident from the data in Table 4.

.3. Detector skew, �

The following skews of the detector about the Z-axis are sim-

lated: � = +2◦, +1◦, −1◦, and −2◦. The centroid deviation diagram

s not shown for detector skew since the deviation vectors were
ot noticeable at a scaling factor of 20. Instead, the statistics for

able 4
ean centroid deviation magnitude by distance from rotation axis in the presence

f detector slant ϕ.

Mean centroid deviation magnitude/mm

ϕ Centre Ring 1 Ring 2 Ring 3

+10◦ 0.01 0.13 0.26 0.34
+5◦ 0.02 0.04 0.06 0.08
−5◦ 0.01 0.04 0.06 0.08
−10◦ 0.01 0.13 0.26 0.34
g the measurement volume. (Left) 3D view, (centre) lateral view, (right) top-down

centroid deviation due to each detector rotation are summarized
in Table 5.

A closer look at the reconstructed volume suggests that cen-
troid deviation is not the most suitable criterion for determining
the effects of detector skew. The reconstructed volumes in the pres-
ence of detector tilt � = +10◦, detector slant ϕ = +10◦, and detector
skew � = +2◦ are presented, respectively, in Fig. 12 top, centre, and
bottom. On the left, a grey-value slice along the XY plane (prior
to the application of a surface threshold) is shown. A magnified
portion of the grey-value image is shown in the centre of Fig. 12;
in the presence of detector slant and skew, the sphere object is
reconstructed as two  overlapping sphere objects, each individually
having a lower material attenuation value than the overlapping
section. An appropriate grey-value threshold is applied to generate
a surface for the overlapping portion, as this section has compa-
rable grey-values to the ideally-reconstructed sphere objecfts. A
three-dimensional view of the reconstructed sphere objects after
grey-value thresholding is presented in Fig. 12, right.

As a result of the behaviour observed in Fig. 12 and the mag-
nitude of centroid deviations in Table 5, form deviation seems to
be a more appropriate criterion to determine the complete effects
of detector slant ϕ and detector skew �. Given the symmetrical
behaviour observed in Table 5, form deviation statistics are only
shown for positive rotation angles (Table 6). The results support
the sensitivity statements made in Section 3. Also, detector slant
contributes more strongly to form deviations than detector tilt.
Rotation Centroid deviation magnitude/mm

Maximum Mean �

� +10◦ 1.05 0.37 0.34
+5◦ 0.42 0.16 0.13
−5◦ 0.42 0.16 0.13

−10◦ 1.04 0.37 0.34

ϕ +10◦ 0.40 0.23 0.10
+5◦ 0.10 0.06 0.02
−5◦ 0.10 0.06 0.02

−10◦ 0.40 0.23 0.10

� +2◦ 0.11 0.04 0.03
+1◦ 0.04 0.02 0.01
−1◦ 0.04 0.01 0.01
−2◦ 0.11 0.04 0.03
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Fig. 10. Centroid deviations in the presence of detector tilt �. Dev

Table 6
The root-mean-square of the sphere fit residuals over all spheres in the volume is
used as criterion for form deviation. Here the mean and standard deviation � of
the  RMS are shown for positive values of each detector angle. Maximum values are
omitted due to the presence of noise particles, which result in outliers of the surface
data.

Rotation RMS  of sphere fit residuals/mm

Mean �

� +10◦ 0.02 0.02
+5◦ 0.01 2.66 × 10−3

ϕ +10◦ 0.10 0.06
+5◦ 0.05 0.04

� +2◦ 0.23 0.07
+1◦ 0.13 0.04
iation vectors are scaled by a factor of 20 for visualization.

axes, while the last two combinations included rotations about all
three axes. Negative rotations are covered in the final three-axis
combination.

(�, ϕ, �) = (+5, + 5, 0) ; (+ 5, 0, + 1) ; (0, + 5, + 1) ; (+ 5, + 5, + 1) ;
(− 5, − 5, − 1)

The statistics for centroid and form deviations due to multiple
rotations are summarized in Table 7.

5. Radiographic correction
The authors of reference [14] observed an improvement in
tomographic image quality after correcting for geometrical errors
in the radiographic data. Here, the approach of correcting radio-
graphic data prior to reconstruction is evaluated quantitatively and
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Fig. 11. Centroid deviations in the presence of various detector slants ϕ. Deviation vectors are scaled by a factor of 20 for visualization.

Table 7
Centroid deviation and form deviation statistics in the presence of multiple rotations.

Rotation Centroid deviation magnitude/mm RMS  of sphere fit residuals/mm

� ϕ � Maximum Mean � Mean �

+5◦ +5◦ 0.44 0.16 0.13 0.06 0.03
+5◦ +1◦ 0.42 0.16 0.13 0.13 0.04

+5◦ +1◦ 0.21 0.08 0.05 0.13 0.05
+5◦ +5◦ +1◦ 0.63 0.19 0.17 0.12 0.05
−5◦ −5◦ −1◦ 0.44 0.16 0.12 0.15 0.05
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Fig. 12. Reconstructed volume in the presence of detector tilt � = +10◦ , detector slant ϕ = +10◦ , and detector skew � = +2◦ . Left: grey-value slice along XY-plane before grey-value
t nal vi
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hresholding. Centre: magnified portion of grey-value image. Right: three-dimensio

n the context of reducing dimensional measurement errors. Since
he approach is applied to simulated data, the angular misalign-

ents of the detector are known precisely. In a test system, detector
isalignments can be measured either with reference instruments

r by imaging a reference object. Uncertainty in the experimen-
al measurements would result in an uncertainty of the applied
orrection.

Distortion correction maps were generated for each simulated
etector misalignment and applied to the corresponding radio-
raphic data. Correcting the radiograph consists of shifting the
ixel position assigned to an intensity value by an amount cor-
esponding to the distortion correction at that pixel position. The
mwarp function in MATLAB’s image processing toolbox is used to
erform the re-binning of intensity data for all radiographs. The
unction includes options for interpolating the shifts between pix-
ls; linear interpolation was used in this study. As an example, a
adiograph taken with a detector skew � = +2◦ is shown in Fig. 13,
eft; the imaged cylindrical array is slightly tilted. To ensure that
he border pixels are preserved after the correction procedure, the
adiographic images were initially padded by 50 pixel on each side

ith repeated border intensity values. The result of not padding the

mage data prior to correction is shown in Fig. 13, centre. The inten-
ities from the original border pixels are shifted inward towards
he centre of the image. Since there is no data to replace the border
ew of the reconstructed sphere objects after applying grey-value thresholding.

pixels, they are automatically assigned a zero intensity value. As a
result of the padding step, it is important that the border pixels only
include background (air) intensity data. Subsequent to padding the
image and applying the pixel shifts, the image is cropped back to
its original size (Fig. 13, right).

New volumes are reconstructed from the corrected radiographs.
The same procedures defined in Section 4 for determining centroid
and form deviations are used here.

5.1. Individual rotations

The statistics for centroid deviation in the corrected volumes are
presented for individual rotations in Table 8. Form deviation statis-
tics are summarized for positive individual rotations in Table 9.
The percentage change from the uncorrected form deviation is also
presented.

5.2. Multiple rotations

The statistics for centroid deviation in the corrected volumes are

presented for multiple rotations in Table 10. Sphere form statis-
tics are summarized for positive multiple rotations in Table 11.
The percentage change from the uncorrected sphere form is also
presented.
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Fig. 13. The pixel positions assigned to intensity values in the original radiograph are shifted according to the distortion correction map for the given detector misalignments.
Left:  The original radiograph in the presence of a skew � = 2◦; notice the tilted orientation of the imaged cylindrical array. Centre: Result of not padding the radiograph before
performing correction. Intensity values for border pixels are shifted inward, while there are no intensity values to replace to occupy the original pixels—thus, those ‘empty’
border  pixels are assigned zero intensity. (Right) The result of shifting the pixels after padding and subsequent cropping.

Table 8
Maximum, mean, and standard deviation � of centroid deviation magnitude for individual rotations after radiographic correction. The percent change from the uncorrected
deviation values is also shown.

Centroid deviation after correction/mm

Angles Maximum Change (%) Mean Change (%) � Change (%)

� +10◦ 5.73 × 10−2 −94.5 1.76 × 10−2 −95.3 1.42 × 10−2 −95.8
+5◦ 2.39 × 10−2 −94.3 9.64 × 10−3 −93.9 4.27 × 10−3 −96.7
−5◦ 2.21 × 10−2 −94.8 9.55 × 10−3 −93.9 3.72 × 10−3 −97.1

−10◦ 5.37 × 10−2 −94.9 1.65 × 10−2 −95.5 1.37 × 10−2 −96.0

ϕ +10◦ 3.28 × 10−2 −91.8 1.34 × 10−2 −94.2 6.32 × 10−3 −93.9
+5◦ 1.97 × 10−2 −80.8 9.14 × 10−3 −84.4 3.83 × 10−3 −83.9
−5◦ 2.70 × 10−2 −74.1 9.61 × 10−3 −83.7 4.35 × 10−3 −82.4

−10◦ 3.13 × 10−2 −92.2 1.34 × 10−2 −94.2 5.73 × 10−3 −94.5

� +2◦ 7.19 × 10−2 −36.2 3.70 × 10−2 +3.0 1.27 × 10−2 −55.6
+1◦ 2.61 × 10−2 −30.8 1.32 × 10−2 −14.1 5.26 × 10−3 −30.8
−1◦ 2.67 × 10−2 −33.4 1.32 × 10−2 −11.3 5.03 × 10−3 −31.0
−2◦ 6.72 × 10−2 −38.8 3.70 × 10−2 +3.1 1.30 × 10−2 −55.9

Table 9
Mean and standard deviation � of the RMS  of sphere fit residuals over all spheres for individual rotations after radiographic correction. The percent change from the
uncorrected RMS  values is also shown.

RMS of sphere fit residuals after correction/mm

Angles Mean Change (%) � Change (%)

� +10◦ 2.82 × 10−3 −82.8 6.59 × 10−4 −96.0
+5◦ 2.58 × 10−3 −59.3 3.85 × 10−4 −85.5

ϕ +10◦ 2.77 × 10−3 −97.1 6.03 × 10−4 −99.0
+5◦ 2.44 × 10−3 −94.7 2.91 × 10−4 −99.2

� +2◦ 2.48 × 10−3 −98.9 3.92 × 10−4 −99.4
+1◦ 2.44 × 10−3 −98.1 3.16 × 10−4 −99.3

Table 10
Maximum, mean, and standard deviation � of centroid deviation magnitude for multiple rotations after radiographic correction. The percent change from the uncorrected
deviation values is also shown.

Angles Centroid deviation after correction/mm

� ϕ � Maximum Change (%) Mean Change (%) � Change (%)

+5◦ +5◦ 2.51 × 10−2 −94.3 1.13 × 10−2 −92.8 4.61 × 10−3 −96.4
+5◦ +1◦ 3.03 × 10−2 −92.7 1.12 × 10−2 −92.9 4.90 × 10−3 −96.1

+5◦ +1◦ 3.27 × 10−2 −84.5 1.41 × 10−2 −82.5 6.31 × 10−3 −87.2
+5◦ +5◦ +1◦ 2.30 × 10−2 −96.4 1.11 × 10−2 −94.1 4.10 × 10−3 −97.6
−5◦ −5◦ −1◦ 4.64 × 10−2 −89.4 1.60 × 10−2 −90.0 8.44 × 10−3 −93.2

Table 11
Mean and standard deviation of the RMS  of sphere fit residuals over all spheres for multiple rotations after radiographic correction. The percent change from the uncorrected
RMS  values is also shown.

Angles RMS  of sphere fit residuals/mm

� ϕ � Mean Change (%) � Change (%)

+5◦ +5◦ 2.58 × 10−3 −95.8 3.32 × 10−4 −98.9
+5◦ +1◦ 2.55 × 10−3 −98.0 3.89 × 10−4 −99.1

+5◦ +1◦ 2.58 × 10−3 −98.1 3.57 × 10−4 −99.3
+5◦ +5◦ +1◦ 2.66 × 10−3 −97.7 4.62 × 10−4 −99.1
−5◦ −5◦ −1◦ 2.78 × 10−3 −98.2 4.49 × 10−4 −99.1
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. Conclusion

A forward projection model [4] is adapted to evaluate dis-
ortions in the pixel coordinates assigned to X-ray intensity data
ue to angular misalignments of a detector. It is observed in this
tudy that the magnitude of pixel distortions is more sensitive to
etector rotations about the Z-axis (skew, �) than about the X- or
-axes. For example, in the presence of detector tilt � = 10◦ (about
he X-axis) or detector slant ϕ = 10◦ (about the Y-axis), the maxi-

um distortion was 42.5 pixel; a detector skew � = 2◦ resulted in
 maximum distortion of 49.3 pixel. Similarly, the average distor-
ion over the entire 2000 × 2000 pixel image space was  10.9 pixel
n the presence of detector tilt � = 10◦ or detector slant ϕ = 10◦;
he average distortion in the presence of detector skew � = 2◦ was
6.7 pixel.

Commercial software Scorpius XLab® is used to simulate CT
cans of a computer generated cylindrical array of aluminum
pheres. Scans are simulated under ideal geometry and in the
resence of various detector misalignments. Centroid position and
phere form in the reconstructed volumes are used as criteria for
valuating the effects of detector misalignments on the measure-
ent volume. It is shown that tilts of the detector about the X

xis contributed mostly to centroid deviations; these deviations
enerally increased with increasing distance of the sphere from
he mid-plane. On the other hand, detector slants about the Y
xis contributed significantly to both centroid and sphere form
eviations; the effects of detector slant increased with increasing
phere distance from the rotation axis. Detector skew about the

 axis contributed mostly to sphere form deviation; the effects of
etector skew increased with increasing distance from the centre
f the volume. Systematic deviations observed in the volumetric
ata can be used to inform the development of dedicated ref-
rence objects for estimating detector misalignments in a test
ystem.

The distortion model is applied inversely to correct radiographic
ata from a misaligned detector. New volumes are reconstructed
rom the corrected radiographs and the centroid and form devi-
tions are compared to the uncorrected values. After distortion
orrection, deviations in centroid position in the presence of detec-
or tilt were reduced by 93% to 97%, while deviations due to detector
lant were reduced by 74% to 94%. On the other hand, devia-
ions in centroid position due to detector skew are reduced by
0% to 40%. The RMS  of sphere fit residuals was reduced by 95%
o 99% in the presence of detector slant and skew, while it was
educed by 50% to 80% in the presence of detector tilt. Similar
eductions were observed for the data in the presence of multi-
le detector rotations. The observation of such reductions validates
he efficacy of the radiographic distortion model presented in this
aper.

The methodology presented here can be useful for a user to cor-
ect for detector rotations in their CT system, without requiring
nvolvement from the instrument manufacturer. However, several
imitations exist. For example, the proposed method assumes the
alues of the detector rotations are known in advance. Some meth-
ds to determine detector position and orientation exist in the
iterature [2]. Additionally, to enable corrections, measurements
hould be avoided at the extremities of the reconstructed volume;
hat is, the projection of the measured object should not occupy
he border pixels of the radiographic image (see Section 5). Finally,
he radiographic correction procedure has been validated under
trictly-controlled, e.g. noiseless, simulation conditions. There is
oncern that pixel interpolation used in the re-binning of radio-

raphic intensities (the MATLAB function imwarp, in this study)
ould result in loss of valuable projection data. An alternative
ethod to correct for known geometric misalignments involves
odifying the geometrical parameters used in the backprojection

[

eering 45 (2016) 230–241

step of the reconstruction algorithm [15]. However, the ability to
modify the reconstruction algorithm is currently limited to very
experienced users.

The model used to generate the correction maps assumes that
input parameters are exactly known. In practice, uncertainty in
the input parameters will influence the output of the correc-
tion methodology. If the model is applied to generate correction
maps, the uncertainty in the input parameters will propagate
into uncertainty in the applied corrections. The same is true if
the tomographic reconstruction algorithm is modified. Uncertainty
in the CT geometry used to backproject radiographic intensities
will result in uncertainty of the position and intensity of the
reconstructed grey values. To ensure traceability of measurements,
all error sources must be accounted for and their contribution
to measurement uncertainty must be quantified in a traceable
way. Therefore, it is important that any input parameter be cal-
ibrated, i.e. measured in a traceable manner with a statement
of uncertainty. However, while methods to measure instrument
geometry exist [2], a dedicated calibration procedure is not yet
available.

Future work includes experimentally applying the correction
methodology to a test system with detector rotations. Other pixel
interpolation methodologies in the radiographic re-binning step
will be investigated to reduce potential data loss. Future research
includes investigating the applicability of modified tomographic
reconstruction algorithms to reduce the effects of a misaligned
CT system. Uncertainty in the applied corrections is an impor-
tant step to assessing measurement uncertainty in CT; therefore,
the evaluation of this uncertainty is also considered in future
work.
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