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a b s t r a c t

This paper presents the application of a stabilized mixed pressure/velocity finite element formulation to

the solution of viscoplastic non-Newtonian flows. Both Bingham and Herschel–Bulkley models are con-

sidered.

The detail of the discretization procedure is presented and the Orthogonal Subgrid Scale (OSS) stabiliza-

tion technique is introduced to allow for the use of equal order interpolations in a consistent way. The

matrix form of the problem is given.

A series of examples is presented to assess the accuracy of the method by comparison with the results

obtained by other authors. The extrusion in a Bingham fluid and the movement of a moving and rotating

cylinder are analyzed in detail. The evolution of the streamlines, the yielded and unyielded regions, the

drag and lift forces are presented.

These benchmark examples show the capacity of the mixed OSS formulation to reproduce the behavior

of a Bingham and Herschel–Bulkley flows with the required accuracy.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

The aim of this paper is to present a continuum formulation

nd its correspondent discrete version for Bingham and Herschel–

ulkley confined flows, using mixed velocity/pressure linear finite

lements.

Bingham and Herschel–Bulkley are viscoplastic non-Newtonian

uids characterized by the presence of a threshold stress, the yield

tress. When the yield stress is exceeded the fluid flows; contrari-

ise, if this limit is not achieved, the fluid acts as a rigid material

35].

Bingham plastics are very common in industry. They can model

he behavior of a large number of materials, such as paints, and

any products in food industry (ketchup, mayonnaise, etc). Bing-

am conceived this rheological law while studying the behavior of

aints at the beginning of XX century [10]. The Herschel–Bulkley

odel is a generalization of the Bingham one, and it is less known.

t describes the behavior of pastes, gels, or drilling fluids. It can be

lso used for simulating debris flow ([64,79]). Both models have

severe discontinuity in their rheological behavior due to the ex-
∗ Corresponding author. Tel.: +34 93 401 07 94; fax +34 93 401 65 17.
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stence of the threshold yield stress, which poses some numerical

ifficulties.

The different procedures proposed in the literature to deal with

he discontinuity problem can be classified in two main categories:

variational reformulation using multipliers, or a regularization of

he constitutive law. In the first case, the nonlinear problem can

e rewritten in the form of a variational inequality model, follow-

ng the original work by Duvaut and Lions [40]. This is equiva-

ent to the existence of a symmetric second order tensor, called

ultiplier, whose value defines the rigid (if smaller than one) or

ielded zone (if equal to one). This approach was recently used

ogether with operator-splitting methods to numerically solve the

roblem ([37,52,53,83]). It can be demonstrated [42] that the so-

ution of the constrained variational inequality is equivalent to a

inimization problem of an equivalent variational equality form.

any authors solve this problem using augmented Lagrangian ap-

roaches ([43,92]). Usually these formulations are designed for fi-

ite elements, but a finite difference model can be found in [71].

or a comprehensive review on both operator-splitting methods

nd augmented Lagrangian approaches, the consultation of [42,51]

s recommended.

In the second case, a regularized constitutive model is used.

ifferent regularized formulations have been proposed: Bercovier
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and Engelman [7], Tanner and Milthorpe [88], and Beris [8], among

others. Tanner and Milthorpe were the first to propose a double

viscosity model, while Beris used a Von Mises yield criterion in the

unyielded zone and an ideal Bingham model in the yielded region.

In 1987, Papanastasiou [73] proposed a regularization valid both

for the unyielded and the yielded regions. Recently, Souza Mendes

and Dutra (SMD) [39] presented a modification to the model by

Papanastasiou. Among the most commonly used models, Figaard

and Nouar [41] prove that Papanastasiou’s model provides a better

convergence to the exact solution.

The main reason for regularizing the discontinuity of the exact

viscoplastic behavior is to allow its direct implementation in stan-

dard numerical solvers.

The movement of isothermal flows is governed by conservation

of linear momentum and mass, represented by the Navier–Stokes

equations. In the case of non-Newtonian fluids, the constitutive law

has a variable viscosity whose behavior is given by the rheological

models.

Traditionally viscoplastic flows are calculated using finite ele-

ments ([1,70,73,93]) but an attempt to use finite volumes was pro-

posed by Bharti et al. [9], and Tanner and Milthorpe [88] used

boundary elements.

In this work, a mixed velocity/pressure finite element formu-

lation for simplicial elements is developed. This means that both

velocity and pressure are interpolated piecewise linearly within

the finite element mesh. This is a frequent choice in fluid dynam-

ics because of their simplicity. On the one hand, this kind of linear

elements, called P1/P1, present a source of instability due to the

combination of the interpolation spaces of pressure and velocity

[29]. The Ladyzenskaja-Babuška-Brezzi condition is not satisfied

in such incompressible problem and spurious oscillations of the

pressure can compromise the solution [13]. On the other hand,

the convective term presents another source of instability for

convection-dominated problems. The use of a proper stabilization

technique is therefore needed to ensure stability and convergence

of the solution.

Nowadays the most effective stabilization techniques are based

on the concept of sub-scales. These were first introduced by Hughes

[49], who proposed an Algebraic Sub-Grid Scale (ASGS) technique

for the stabilization of a scalar diffusion–reaction equation. Cod-

ina generalized the approach for multi-dimensional systems [30].

The idea is to split the unknown in a part that can be solved by

the finite element approximation plus an unresolvable scale (i.e.

the sub-scale) that cannot be captured by the finite element dis-

cretization. The sub-scale is approximated in a consistent residual

fashion so that its variational stabilizing effect is captured. More

recently, Codina proposed to use a space orthogonal to the finite

element space for the subscale, introducing the Orthogonal Subgrid

Scale (OSS) stabilization technique ([31,32]). The main advantage of

OSS is that it guarantees minimal numerical dissipation on the dis-

crete solution, because it adds nothing to those components of the

residual already belonging to the FE subspace. This maximizes ac-

curacy for a given mesh, an issue always important and no less in

nonlinear problems.

OSS has been successfully applied to the Stokes problem, to the

convection–diffusion–reaction equations and to the Navier–Stokes

equations. Nowadays it is used in a wide range of different prob-

lems in fluid dynamics ([30,31,34,56–58,76,81]) and solid mechan-

ics ([17–22,27,28]). Castillo and Codina presented a three fields for-

mulation for visco-elastic [16], power law and Carreau-Yasuda [15]

fluids comparing ASGS and OSS. In the present work, the OSS sta-

bilization technique is applied to the Navier–Stokes equations to

model regularized Bingham and Herschel–Bulkley flows.

The structure of the paper is as follows. First, both the Bing-

ham and the Herschel–Bulkley models are presented. An overview

of the regularizations proposed in the literature is given. The
overning equations for a non-Newtonian fluid are presented in

heir strong form. The corresponding discrete model is presented

nd the stabilization using Orthogonal Subgrid Scales (OSS) is ex-

lained in detail. The matrix form of the problem is given. Sec-

ndly, the Bingham model is applied to two well known problems:

n extrusion process and a cylinder moving in a Bingham fluid

onfined between two parallel planes. Then, a cylinder moving in

n Herschel–Bulkley fluid is modeled in two different scenarios: a

ylinder moving with constant velocity and a cylinder moving and

otating around its axis. In all the cases the solution is compared

ith available results from other authors. Finally, some conclusions

n the performance of the proposed formulation are given.

. Viscoplastic fluids

In the present work, viscoplastic fluids are considered. These

re characterized by the existence of a threshold stress, the yield

tress (τ y), which must be exceeded for the fluid to deform. For

ower values of stress the viscoplastic fluids are completely rigid or

an show some sort of elasticity. Once the yield stress is reached

nd exceeded, viscoplastic fluids may exhibit a Newtonian-like be-

avior with constant viscosity (Bingham plastics fluids) or with rate

ependent viscosity (Herschel–Bulkley fluids among others).

Let us introduce, for later use, the equivalent strain rate γ̇ and

he equivalent deviatoric stress τ in terms of the second invari-

nts of the rate of strain tensor (ε = ∇su, being ∇su the symmet-

ic part of the velocity gradient) and of the deviatoric part of the

tress tensor (τ = 2 με(u), being μ the viscosity), respectively:

˙ = (2ε : ε)
1
2 τ =

(
1

2
τ : τ

) 1
2

(1)

.1. Herschel–Bulckley and Bingham fluids

The Herschel–Bulkley model [46] combines the existence of a

ield stress with a power law model for the viscosity

(γ̇ ) = kγ̇ n−1 + τy

γ̇
if τ ≥ τy (2a)

˙ = 0 if τ < τy (2b)

here k is the consistency parameter and n is the flow index. The

ield stress needs to be overcome for the material to flow. When

he yield stress is exceeded, the material flows with a nonlinear re-

ation between stress and rate of strain as in a pseudoplastic fluid,

f n > 1, or a dilatant one, if n < 1.

The deviatoric stress tensor is therefore

= 2

(
kγ̇ n−1 + τy

γ̇

)
ε(u) if τ ≥ τy (3a)

˙ = 0 if τ < τy (3b)

When the rate of deformation tends to zero this ideal rheolog-

cal model presents a singularity and the viscosity tends to infin-

ty (limγ̇ →0 μ(γ̇ ) = ∞). This aspect is a serious inconvenient when

reating the model numerically ([11]). For this reason, many au-

hors have proposed regularized versions of the Herschel–Bulkley

odel, such as the double viscosity Tanner and Milthrope model

88], the widely used Papanastasiou regularized model [73], or the

ouza Mendes and Dutra (SMD) model [39]. Tanner and Milthorpe

roposed a double viscosity model in function of a critical strain

ate to describe the elastic behavior for low strain rates [88]. Pa-

anastasiou [73] introduced an exponential regularization of the

iscosity

(γ̇ ) = k γ̇ n−1 + τy

γ̇
(1 − e−mγ̇ ) (4)
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Fig. 1. Bingham and Herschel–Bulkley models (red line) compared with the regularized model (black lines) for different values of m. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article).
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here m is a regularization parameter. When the rate of strain

ends to zero (γ̇ → 0) the viscosity depends on the flow pa-

ameter n: if n > 1, the limγ̇ →0 μ(γ̇ ) = mτy and, if n = 1, the

imγ̇ →0 μ(γ̇ ) = μ + mτy; but if n < 1, the limγ̇ →0 μ(γ̇ ) = ∞. This

eans that for pseudoplastic fluids the viscosity is unbounded and

truncation procedure is needed. The regularization proposed by

ouza-Mendez-Dutra solves this drawback applying the regulariza-

ion to all the terms of the viscosity so that limγ̇ →0 μ(γ̇ ) = mτy

or any value of n [39].

When n = 1 the Bingham model is recovered, and the consis-

ency index is equal to the plastic viscosity (k = μ0).

The Bingham model also presents the singularity due to the

erfectly rigid behavior below the yield stress. For Bingham plas-

ics, Eq. (4), becomes

(γ̇ ) = μ0 + τy

γ̇
(1 − e−mγ̇ ). (5)

Fig. 1 shows the comparison between the Herschel–Bulkley and

ingham ideal models and the regularized ones of Eqs. (4) and (5),

espectively.

The regularization proposed by Papanastasiou is used in the

urrent work.

. Governing equations

The problem of incompressible isothermal flow is defined by

he Cauchy’s equation of motion and the incompressibility con-

traint

(∂t u + u · ∇u) − ∇ · σ = f in �, t ∈ [0, T ] (6a)

· u = 0 in �, t ∈ [0, T ] (6b)

here � ⊂ R
d (d is the space dimension) is the domain in a time

nterval [0, T], ρ is the density of the fluid, and f are the volumet-

ic forces. The stress tensor is decomposed as σ = −pI + τ, where

is the pressure and I is the identity tensor and τ is the devi-

toric stress tensor. Therefore, ∇ · σ = −∇p + ∇ · τ . If the regular-

zed Bingham or Harschel–Bulkley model are used then

= 2μ(γ̇ )ε(u) (7)
s

ith μ(γ̇ ) defined by Eq. (4)) or Eq. (5), respectively. The problem

s fully defined with the boundary conditions:

(x, t) = u(x, t) on ∂�D, t ∈ [0, T ], (8a)

· σ(x, t) = t(x, t) on ∂�N, t ∈ [0, T ], (8b)

here ∂�D and ∂�N are the Dirichlet and the Neumann bound-

ries, respectively (∂�D ∩ ∂�N = ∅, ∂�D ∪ ∂�N = ∂� ).

Steady-state flows are modeled by dropping the time derivative

erm in Eq. (6a). Likewise, the convective term can be neglected

or low Reynolds numbers, as it is usually the case for viscoplastic

uids.

. Discrete model

The governing equations (Eqs. (6)) are solved using mixed sta-

ilized linear/linear finite elements for the spatial discretization.

The weak form of the problem is obtained using a Galerkin

echnique and the nonlinear terms of the momentum equation (i.e.

he convective and viscous terms of Eq. (6a)) are linearized using a

ecant Picard method. The velocity u needs to belong to the veloc-

ty space V ∈ [H1(�)]d of vector functions whose components and

heir first derivatives are square-integrable and the pressure p be-

ongs to the pressure space Q ∈ L2 of square-integrable functions.

Let Vh ⊂ V be a finite element space to approximate V, and

h ⊂ Q a finite element approximation to Q. Let � ⊂ R
d be the do-

ain in a time interval [0, T], and �e the elemental domain such

hat
⋃

�e = �, with e = 1, 2, . . . , nel where nel is the number of

lements.

Therefore, the standard Galerkin discrete problem is finding

h ∈ Vh and ph ∈ Qh such that

�
[ρ∂t uh · vh + ρ(uh · ∇uh) · vh + 2μ(γ̇ )∇suh : ∇svh

− ph∇ · vh − fh · vh]d� = 0 ∀ vh ∈ Vh (9a)

�
[qh∇ · uh]d� = 0 ∀ qh ∈ Qh (9b)

h and qh are the velocity and the pressure weight functions be-

onging to velocity and pressure spaces, respectively, and some of

he terms have been integrated by parts.

.1. Stabilized model

In this work, low-order simplicial elements are used with the

ame linear interpolation for the velocity and pressure fields. This
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implies that the Ladyzenskaja-Babusflka-Brezzi condition, also called

the inf-sup condition, is not respected and a stabilization technique

is needed to overcome the instability of the pressure that may

compromise the solution.

The stabilization employed is based on the subgrid scale ap-

proach proposed by Hughes ([14,48,50]). This proposes to split the

velocity field (u) into a part that can be represented by the finite

element mesh (uh) and another part that accounts for the unre-

solvable scale (u), that is, for the variation of the velocity that can-

not be captured by the finite element mesh. This corresponds to a

splitting of the space V into the space of the finite elements (Vh)

and the subgrid space (V), so that V = Vh ⊕ V .

The sub-scale u is approximated from the residual of the mo-

mentum equation and it is evaluated inside each element, assum-

ing the sub-scale to vanish on the boundary of each element. Dif-

ferent approximations of the sub-scale u define different stabiliza-

tion techniques.

In the present work, the Orthogonal Sub-grid Scale stabiliza-

tion technique is used. This method was proposed by Codina

([31–33]) as a modification of the Algebraic Sub-Grid Scale (ASGS).

In ASGS the sub-scale is taken proportional to the residual (Rh =
−ρ(uh · ∇uh) + ∇ · σh + fh) of the momentum equation, so that

u = −τ1 Rh, where τ 1 is a stabilization parameter. An application

of ASGS to non-Newtonian fluid models can be found in [57] and

[82]. Contrariwise, in the OSS the sub-scale is taken proportional

to the orthogonal projection of the residual onto the finite element

space

u = −τ1 P⊥
h (Rh) = −τ1(Rh − Ph (Rh)) (10)

where Ph(•) is the projection on the finite element space and

P⊥
h

(•) = I(•) − Ph(•) is the orthogonal projection.

Residual based stabilization techniques such as ASGS and OSS

do not introduce any consistency error, as the exact solution an-

nuls the added terms, so that the stabilized model converges to

the solution of the problem in continuum format. Also, if designed

properly, the convergence rate is not altered; that is, the subscale

terms must be appropriately dependent on the mesh size.

Constructing the subscale in the subspace orthogonal to the fi-

nite element subspace has several advantages over the many other

possibilities. The main one is that it guarantees minimal numeri-

cal dissipation on the discrete solution, because it adds nothing to

those components of the residual already belonging to the FE sub-

space. This maximizes accuracy for a given mesh, an issue always

important and no less in nonlinear problems.

Additionally, in transient problems, the term corresponding to

the time derivative belongs to the finite element space, and there-

fore, its orthogonal projection is null. This means that the mass

matrix remains unaltered by the stabilization method, maintaining

its structure and symmetry.

Moreover, if the residual can be split in two or more terms, e.g.

if the stress tensor is split into its volumetric and deviatoric parts

or if the residual includes a convective term, then the ”cross prod-

ucts” in the stabilization terms can be neglected. This has three

advantages: (i) it reduces the computational stencil, (ii) more se-

lective norms can be defined for stability control and (iii) it has

proved importance in problems involving singular or quasi-singular

points both in linear and nonlinear problems.

The part of the residual to be orthogonally projected can be ap-

propriately selected. For instance, in incompressible problems, only

the gradient of the pressure needs to be added to ensure control of

the pressure, with minimal numerical dissipation. These variants of

the OSS, that can be considered to belong to the family of term-by-

term stabilization methods, introduce consistency errors, but they

are of optimal order and the final convergence rate of the scheme

is not altered.
The discretized linearized problem, stabilized with OSS is, find
n+1
h

and pn+1
h

such that

�

[
ρ

δt

(
un+1

h
− un

h

)
· vh + ρ

(
un+1

h
· ∇un+1, i

h

)
· vh

+ 2μ(γ̇ )n+1, i∇sun+1
h

: ∇svh − pn+1
h

∇ · vh − fn+1
h

· vh

]
d�

+
∑

e

∫
�e

τ1ρ
(
un+1

h
· ∇vh

)

·
[
ρun+1

h
· ∇un+1

h
+ ∇pn+1

h
− fn+1

h
− ρv∗

h · yn+1
h

]
d� = 0∀ vh ∈ Vh

(11a)

�

[
qh∇ · un+1

h

]
d� +

∑
e

∫
�e

τ1∇qh

·
[(

ρun+1
h

· ∇un+1
h

+ ∇pn+1
h

− fn+1
h

)
− ρv∗

h · yn+1
h

]
d�

= 0∀ qh ∈ Qh

(11b)

here yh is the nodal projection defined as

h
n+1 = Ph

(
un+1

h
· ∇un+1

h
+ 1

ρ

(∇pn+1
h

− fn+1
h

))
(12)

n compact notation, the projection of Eq. (12) is the solution of

yh
n+1, v∗

h

)
=

(
un+1

h
· ∇un+1

h
+ 1

ρ

(∇pn+1
h

− fn+1
h

)
, v∗

h

)
(13)

or all v∗
h

∈ V∗
h
, being V∗

h
equal to Vh extended with the vectors of

ontinuous functions associated to the boundary nodes.

The stabilization parameter τ 1 in Eqs. (11a) and (11b) is defined

o to obtain a stable numerical scheme and an optimal velocity

f convergence. Consequently, τ 1 is calculated for each element as

32]

1 =
[

c1
μ

h2
e

+ c2
ρ|ue|

he

]−1

(14)

here h is the characteristic length of the eth element and |ue| is

he norm of velocity in the element. c1 and c2 are two coefficients

hat in the present work are chosen as c1 = 4 and c2 = 2 [32].

. Matrix form

The solution system (11) is rewritten in matrix form as

1

δt
Un+1 + K(Un+1)Un+1 + GPn+1

+ Su(τ1; Un+1)Un+1 − Sy(τ1; Un+1)Yn+1 = Fn+1 (15a)

Un+1 + Sp(τ1)Pn+1 − Sz(Un+1)Yn+1 = 0 (15b)

(Un+1)Un+1 + Gπ Pn+1 = 0 (15c)

here U and P are the vectors of nodal velocities and pressures,

espectively, Y is the vector of nodal projections and F is the vector

f nodal forces.

Finally, the matrix operators of Eqs. (15)) are defined as

ab
i j =

(
Na, ρNb

)
δi j (16a)

(
Un+1

)ab

i j
=

(
Na, ρun+1

h
· ∇Nb

)
δi j +

(∇Na, 2μ∇sNb
)
δi j (16b)

ab
i =

(
Na, ∂iN

b
)

(16c)

a
i = (Na, fi) (16d)
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Fig. 2. Extrusion in a Bingham fluid. Slip lines according to Alexander [3].

D

C

G

S

S

S

S

6

6

6

E

m

t

2

t

t

g

u

t

M

M

p

g

I

s

r

t

d

t

t

p

w

Fig. 3. Extrusion in a Bingham fluid. Geometry and boundary conditions.
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ab
j =

(
Na, ∂ jN

b
)

(16e)

(
Un+1

)ab

i j
=

(
Na, un+1

h
· ∇Nb

)
δi j (16f)

π
ab
i =

(
Na, ∂iN

b/ρ
)

(16g)

The stabilization operators of Eqs. (15) are

u

(
τ1, Un+1

)ab

i j
=

(
τ1un+1

h
· ∇Na, ρun+1

h
· ∇Nb

)
δi j (17a)

y

(
τ1un+1

h

)ab

i j
=

(
τ1un+1

h
· ∇Na, ρNb

)
δi j (17b)

p(τ1)
ab =

(
τ1un+1

h
· ∇Na,∇Nb

)
(17c)

z(τ1)
ab
j =

(
τ1∂ jN

a, ρNb,
)

(17d)

. Numerical results: Bingham fluids

.1. Extrusion

.1.1. Description of the problem

The first example is the extrusion process of a Bingham fluid.

xtrusion is widely used in several industrial processes such as

etal forming, manufacturing, food production, etc. Real applica-

ions are usually in three dimensions; nevertheless, a plane strain

D analysis provides very useful information on the evolution of

he plastic region and gives an estimation of the forces required in

he process.

The slip-lines theory was first introduced by Prandtl at the be-

inning of the XX century [77]. This methodology was originally

sed in plane strain problems to estimate the stress field and

he related velocity field in perfect plastic materials with the Von

ises (or Tresca) yield criterion. The approach was generalized by

andel [62], who introduced other yield criteria and analyzed the

lane stress case [61].

The slip lines are tangent to the direction of the maximum tan-

ential stress and are the trajectories of the maximum shear stress.

n plain strain, the plastic flow coincides with the maximum shear

tress direction. Therefore, rigid-plastic material ”slips” in the di-

ection of the maximum shear stress lines.

In 1948, Hill [47] used the slip line theory to analytically solve

he problem of direct frictionless extrusion in a die with a 50% re-

uction of its section. In 1961, Alexander [3] demonstrated that if

he reduction of the die section is of 2/3, there exists a part of

he yielded region (the area ABDC in Fig. 2) in which the average

ressure coincides with the extrusion pressure p

p = 4

3

(
1 + π

2

)
τy (18)

here τ y is the yield stress.
The extrusion process can be numerically simulated using

ither a Lagrangian plastic flow or an elasto-plastic solid. In the

rst case, the elastic deformation is neglected and the material

ollows the Von Mises yield criterion and an associated flow rule.

ienkiewicz [93] and Oñate [72] applied this approach to analyse

he plain stress problem without hardening using a Lagrangian

esh moving with the material. In the second case, the elastic

trains are considered, which complicates the problem introducing

oth geometrical and material non linearities. In 1984, Lee [59]

ublished one of the first examples of an extrusion problem using

large deformation elasto-plastic approach. He used an updated

agrangian technique and the Von Mises yield criterion with

ardening.

A widely used alternative is to use an Eulerian viscoplastic flow

nd a Von Mises yield criterion ([38,45,55,74]). In this case, the

aterial follows a rigid-plastic law with a very low plastic viscosity

almost perfect plasticity). Once the yield stress is reached, a high

ocalization of the strain rate occurs. This can be identified with

he slip lines of Prandtl theory. This is the formulation used in this

ork with the objective of identifying the yielded and unyielded

egions, the evolution of the stream lines and of the slip lines. The

alculated pressure on the ram is compared with the analytical so-

ution given by Eq. (18).

.1.2. Model and results

The geometry and boundary conditions used are presented in

ig. 3. A reduction of 2/3 of the cross section is considered. A slip

ondition is imposed on the wall boundaries CDEF and C’D’E’F’, no

all laws are considered. This means that on CD and EF uy = 0

hile ux is left free and on DE ux = 0 while uy is left free. Symme-

ry conditions are imposed on AB (uy = 0). An increasing normal

tress is imposed on CC’. This represents the ram pressure that in-

reases linearly with time from p = 0 Pa at the initial time (t = 0

) to p = 5000 Pa at t = 1 s. The vertical component of velocity is

et to zero on CC’. The pressure is set to zero in point B, and the

orizontal velocity is left free in point E.

A 2D plane strain simulation is carried on. Exploiting the sym-

etry of the problem, only half of the domain is discretized using

821 nodes 5340 and linear/linear (P1/P1) triangular elements (see

ig. 4).

The material parameters are summarized in Table 1 where the

egularization coefficient employed for the Bingham model is also

iven.

The example is solved as a series of steady-state problems with

ncreasing ram pressure. Two scenarios have been taken into ac-

ount: with and without the convective term in the momentum

quation. Fig. 5 shows the velocity evolution on point P while the

ressure on the ram is increased, in comparison with the analyti-

al solution (continuous line). At t = 0.69 s the flow is fully devel-

ped and the yielded regions are completely defined. The numer-

cal pressure for yielding is Pnum = 3400 Pa, while the analytical

olution is Pan = 3428 Pa according to Eq. (18).

If the convection term is included in the momentum equation

black dotted line in Fig. 5), it is necessary to increase the external

ressure in order to overcome the inertial effects once the yield

tress is achieved. This does not happen when the convective term
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Fig. 4. Extrusion in a Bingham fluid. Mesh used in the calculation: 2821 nodes and 5340 linear triangular elements.

Table 1

Extrusion in a Bingham fluid. Material parameters

and regularization coefficient.

Material properties

Plastic viscosity μ0 10−6 Pa · s

Density ρ 100 kg/m3

Yield stress τ y 1000 Pa

Regularization

Regularization coefficient m 1000 s

Fig. 5. Extrusion in a Bingham fluid. Pressure–velocity curve in point P (see Fig. 4).

Comparison between the analytical solution and the numerical results. (For inter-

pretation of the references to color in this figure text, the reader is referred to the

web version of this article).
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Fig. 6. Extrusion in a Bingham fluid. Evolution of the stream lines and of the yielded r

0.68 s.
s neglected (red dotted line in Fig. 5). In this case, once the slip

ines have developed, very large velocities are achieved with a very

mall increment of external pressure.

Fig. 6 presents the stream lines evolution during the extrusion

rocess. An abrupt change in the smoothness of the streamlines is

bserved when the slip lines appear (Fig. 6(c) and (d)). Fig. 6 also

hows the yielded (dark) and unyielded (fair) regions above and

elow the critical strain rate (γ̇crit = 0.01688 s−1, correspondent to

= τy).

The evolution of the velocity field is presented in Fig. 7. It can

e observed that while at t = 0.6 s almost all the domain is solid

nd just a very small region has reached the yield threshold, at

= 0.678 s the extrusion mechanism and the slip lines are fully

eveloped. These lines coincide with the slip lines of the classical

lastic theory [61].

.2. Flow around a cylinder between two parallel planes

.2.1. Description of the problem

The flow around a cylinder in a confined Bingham fluid is stud-

ed in this second example. The flow around an obstacle was ini-

ially studied considering a spherical object. This classical problem

n computational fluid dynamics has several practical applications

n different engineering fields: from segregation in food industry,

o transport of mud in geotechnical engineering or aerosols in en-

ironmental engineering, etc. The general problem is the suspen-

ion of large particles in a fluid with a yield threshold. The falling

r settlement of the particles can only occur if the gravity force

xceeds the yield limit ([23,78,86]).
egion (dark) for τy = 1000 Pa and γ̇crit = 0.01688 s−1 at t = 0.6, 0.677, 0.678 and
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Fig. 7. Extrusion in a Bingham fluid. Evolution of the velocity field for τy = 1000 Pa and γ̇crit = 0.01688 s−1 at t = 0.6, 0.677, 0.678 and 0.68 s.
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Fig. 8. Cylinder in a Bingham fluid. Geometry and boundary conditions.
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The viscoplastic flow around an obstacle has been widely stud-

ed both numerically and experimentally ([23,25,44,90]). For the

pecific case of Bingham plastics, many authors have proposed dif-

erent solutions for the flow around a sphere subjected to grav-

ty force between two parallel planes or in an infinite domain

[12,60,66,94]). Moreover, Roquet and Sarmito [80] studied the ef-

ect of an additional pressure gradient and Slijecpflcević and Perić

85] studied the movement of a sphere inside a cylinder.

Nowadays, there exists abundant literature on a sphere falling

ither in a pseudoplastic, viscoplastic or viscoelastic fluid for

ow Reynolds numbers [24]. Contrariwise, not many authors have

reated the movement of a cylinder in a non-Newtonian fluid.

The aim of this example is to define the yielded zones and the

ydrodynamic drag force in terms of the geometrical configuration

f the parallel planes and the cylinder.

.2.2. Non-dimensional forces

In this and the following examples a series of non-dimensional

uantities will be used to present the results. These quantities are

efined here.

Being x the direction of the flow and y its orthogonal direction

n the plane (see Fig. 8(a)), the drag force (FD) and lift force (FL)

cting on the cylinder can be calculated as

D = lR

∫ 2π

0

tx dθ = 4lR

∫ π/2

0
[σxx cosθ + σxy sinθ ]dθ (19)

nd

L = lR

∫ 2π

0

ty dθ = 4lR

∫ π/2

0
[σxy cosθ + σyy sinθ ]dθ (20)

here R = 1 m is the radius and l = 1 m is the height of the cylin-

er. The traction vector tT = (tx, ty) is defined by the stress com-

onents in the xy plane (i.e., σ xx, σ yy, σ xy) and of angle θ between

he normal to the cylinder and the x axis as tx = σxxcosθ + σxysinθ
nd ty = σxycosθ + σyysinθ .

The non-dimensional drag and lift coefficients in the specific

ase of a Bingham fluid are

∗
D = FD

μV l
; F∗

L = FL

μV l
(21)

An information on the relevance of the yield stress in the re-

istance that the flow provides to the movement of the cylinder
s given by the drag coefficient F
′

D. This is by definition the ratio

etween the drag force and the yield stress

′
D = FD

τy
(22)

Finally, the last non-dimensional quantity used in the paper is

he non-dimensional yield stress τ ∗
y associated to the drag force

∗
y = 2τyπR2

FD

. (23)

.2.3. Model and results

The cylinder with radius R = 1 m is located between two infi-

ite parallel planes. The distance between the planes is 2H and the

enter of the cylinder is at distance H from both of them. The sys-

em of reference is attached to the center of the cylinder and it is

onsidered fixed (Fig. 8(a)). The planes are moving with velocity V

s well as the lateral sides of the computational domain, located
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Table 2

Cylinder in a Bingham fluid. Material parameters and regular-

ization coefficient.

Material properties

Plastic viscosity μ0 1 Pa · s

Yield stress τ y 0, 0.05, 0.5, 5, 50, 500 Pa

Bingham number Bn 0, 0.1, 1, 10, 100, 1000

Regularization

Regularization coefficient m 1000 s

Table 3

Cylinder in a Bingham fluid. Domains and meshes considered.

Case H : R L : R Nodes Elements

M1 2 : 1 12 : 1 783 1401

M2 4 : 1 24 : 1 3494 6623

M3 10 : 1 60 : 1 5371 10,245

M4 50 : 1 250 : 1 13513 25,473

Fig. 10. Cylinder in a Bingham fluid. Stream lines and yielded (fair) and unyielded

(dark) region for different Bingham numbers. On the left H : R = 4 : 1, on the right

H : R = 10 : 1.

c

i

sufficiently far from the cylinder. No slip is assumed on the sur-

face of the cylinder and inertial effects are ignored (Re ≈ 0). The

flow has double symmetry, with respect both to the vertical and to

the horizontal axes. For this reason, just a quarter of the domain is

analyzed (see Fig. 8(b)) [8,75]).

Fig. 8(b) shows a schematic description of the boundary condi-

tions used. A no slip condition is applied on line AB, orthogonal

velocity and tangential stresses are zero on lines BC and AD. The

velocity is fixed on ED and on the upper wall where the vertical

component uy = 0 and the horizontal one ux = V = 1 m/s. Pressure

is set to zero on C to determine univocally the pressure field. The

length of the domain (L in Fig. 8(b)) is sufficiently large to ensure

that the flow is completely developed.

The properties of the material are summarized in Table 2. The

Bingham number (Bn) in Table 2 is a non-dimensional quantity

representing the ratio between the yield and the viscous stresses

and it is calculated as Bn = τy(2R)/μ0V where τ y is the yield

stress, H is the radius of the die, μ0 is the plastic viscosity and V

is the velocity of the fluid. A range of yield stresses (and, therefore,

of Bingham numbers) is taken into account.

Different relations H : R and L : R have been considered to as-

sess the effect of the domain size on the results. These are summa-

rized in Table 3. In all the cases a more refined mesh is considered

close to the cylinder (see Fig. 9).

The results obtained in terms of yielded regions, drag force and

stream lines are coherent with those obtained by Mitsoulis [66]. In

Fig. 10 the yielded and unyielded regions are shown for different

Bingham numbers for two different geometrical ratios H : R = 4 : 1

and H : R = 10 : 1. Fig. 10(a) and (f) show the streamlines in the

Newtonian case (i.e., Bn = 0). In the first case, the larger relative

dimension of the cylinder leads to a steeper gradient of velocity in

the y direction. For Bingham numbers Bn > 10, the drag force is

independent from H : R. The yielded/unyielded regions, the recir-
Fig. 9. Cylinder moving in a Bingham fluid. Unstructur
ulation and stagnation regions appear similarly to what happens

n the case of a sphere. It is worth observing that as Bn increases:

• The yielded region around the cylinder decreases
• The unyielded region surrounds the cylinder. This process is

more evident in the case H : R = 10 : 1, confirming that the

wall effect is not negligible in the case H : R = 4 : 1.
• The recirculation islands immersed in the yielded region appear

and get closer to the cylinder in a symmetric way. They finally

adhere to the cylinder for Bn = 100.
ed mesh of case M3 with H : R = 10, L : R = 60.
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Fig. 11. Cylinder in a Bingham fluid. Drag coefficient. Comparison between the current work and other numerical solutions. (For interpretation of the references to color in

this figure in the text, the reader is referred to the web version of this article).
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Fig. 12. Cylinder in an Herschel–Bulkley fluid. Geometry and boundary conditions.
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• The stagnation zone appears at the side of the cylinder.
• The stagnation zone get smaller than the recirculation one.

The dimension and shape of the polar caps appearing in the

tagnation regions are similar to the results presented in [8] and

91].

There is little information on the drag coefficient of a cylin-

er moving in a viscoplastic fluid. Roquet and Saramito [80] and

itsoulis [66] present some studies on this specific problem. In

ig. 11(a) the non-dimensional drag coefficient, Eq. (21), is plot-

ed versus the Bingham number for the different cases analyzed

nd the results are compared with those of Mitsoulis showing a

ood agreement. It is worth observing that, as the Bingham num-

er increases, the non-dimensional drag coefficient increases and

ecomes independent from the relation H : R (for H : R > 2). When

n → 0, the non-dimensional drag reaches the value of the drag of

Newtonian fluid and when Bn → ∞ it tends to F∗
D

= 1.14Bn. This

imit was also identified by Mitsoulis and Huigol [69]. The results

btained in this work are in the range of the limit values obtained

y Adachi and Yoshioka [2] with their max and min theorem.

Fig. 11(b) shows that for high values of the non-dimensional

ield stress the drag increases. The growth is progressively more

teep as it gets to the critical limit of τ ∗
y = 0.128 (the red vertical

ine of Fig. 11(b)). At this value of the yield stress, the drag force

alances with the buoyancy force.

. Numerical results: Herschel–Bulkley fluids

.1. Flow around a cylinder in an infinite medium

.1.1. Description of the problem

The problem treated in this section is similar to the one pre-

ented in Section 6.2, but now the medium is infinite the flow fol-

ows the Herschel–Bulkley model. This is a complex and seldom

tudied phenomenon. In the literature there exist some studies on

sphere moving in a tube filled with a Herschel–Bulkley fluid at

e ≈ 0 ([5], [6]). Some experimental results were provided by At-

pattu [4] and, more recently, some experiments were performed

n the flow around several spheres at low Re (Re < 1) confirm-

ng the difficulties on managing very low velocities ([63], [86]).

ome authors have studied the movement of cylinders of different

izes inside a tube [68] and the flow around objects with different
hapes with Re in the range [10−1–10−8] [54]. Mitsoulis provided a

eview of the results obtained for different problems on Bingham

nd Herschel–Bulkley flows [67] where the flow around a sphere

n a viscoplastic medium is mentioned.

The flow around a cylinder in a Herschel–Bulkley pseudoplastic

uid in an infinite domain was studied by De Besses [36]. Tanner

87] presents numerical results for a cylinder moving in a pseudo-

lastic fluid (governed by a power law, without yield threshold) in

n infinite domain. The problem in a confined domain was stud-

ed by Missirlis et al. [65] and [84]. Barthi et al. [9] included also

ilatant fluids (0.6 < n < 2).

All the works mentioned are based on finite elements, except

harti et al. [9], where finite volumes were employed, and Tanner

nd Milthorpe [88], who used boundary elements. Sivakumar [84]

ompared finite elements and finite volumes results demonstrating

he equivalence of both approaches.

The case of non-inertial flow of a Newtonian fluid around a

ylinder in an infinite domain has no analytical solution; the rea-

on being related to the shape of the streamlines far away from

he cylinder, what is known as the Stoke’s paradox [89]. The
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Table 4

Cylinder in an Herschel–Bulkley fluid. Material parameters and

regularization coefficient.

Material properties

Yield stress τ y 1, 10, 100 Pa

Generalized Bingham number Bn∗ 1, 10, 100

Flow index n 0.25, 0.5, 0.75, 1, 2

Regularization

Regularization coefficient m 1000 s

Fig. 13. Cylinder in an Herschel–Bulkley fluid. Unstructured mesh.

Fig. 14. Cylinder in an Herschel–Bulkley fluid. Drag force coefficient in terms of the

relation L : R.

Table 5

Cylinder in an Herschel–Bulkley fluid. Domains

and meshes considered.

Case L : R Nodes Elements

M1 100 : 0.5 9367 18351

M2 500 : 0.5 9500 18601

M3 1000 : 0.5 9571 18729

c

n

a

e

b

7

c

F

paradox does not present for pseudoplastic fluids (n ≤ 1) and it

is still unclear if it is present or not for dilatant flows (n > 1).

In the case of a flow in a finite domain the analytical solution

does exist for all values of the flow index n ([26], [88]).
Fig. 15. Cylinder in an Herschel–Bulkley fluid. Drag force
The objective of the current work is to study the flow around a

ylinder in an infinite Herschel–Bulkley fluid domain. The determi-

ation of the drag force, the yielded and unyielded zones, as well

s the recirculation and stagnation zones is carried out for differ-

nt generalized Bingham numbers. The generalized Bingham num-

er for an Herschel–Bulkley fluid is defined as Bn∗ = τy

k

(
H
V

)n
.

Non inertial Re ≈ 0 is assumed in all the examples.

.1.2. Non-dimensional forces

The non-dimensional drag and lift coefficients in the specific

ase of a Herschel–Bulkley fluid are defined as

∗
D =

FD

Rl

k

(
V

R

)n = FD

kR1−nV nl
; F ∗

L =
FL

Rl

k

(
V

R

)n = FL

kR1−nV nl
(24)
and Drag coefficient for different flow indexes n.
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Fig. 16. Cylinder in an Herschel–Bulkley fluid. Yielded (grey) and unyielded (col-

ored) regions and flow streamlines. Recirculation zones on y axis and stagnation

zones (with polar caps) on x axis.

w

t

7

t

S

t

L

s

l

o

c

o

i

Fig. 18. Cylinder in a dilatant Herschel–Bulkley fluid (n = 2). Yielded (grey) and un-

yielded (colored) regions and flow streamlines. Recirculation region on y axis and

stagnation zone (with polar caps) on x axis.
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here k is the consistency index of the fluid, V is the velocity of

he cylinder and n is the flow index of the Herschel–Bulkley model.

.1.3. Model and results

Fig. 12 shows the geometry and boundary conditions used in

he current example. The geometry is similar to that considered in

ection 6.2, but in this case the semi-width of the domain, L, is

aken sufficiently large not to influence the results. The minimum

for this is smaller for Bingham than for Newtonian fluids and yet

maller for Herschel–Bulkley fluids.

The system of reference is fixed to the cylinder; therefore ve-

ocity boundary conditions are imposed on the external boundary

f the domain (sides CE and ED in Fig. 12). A no slip boundary

ondition is imposed on the surface of the cylinder. The radius

f the cylinder is R = 0.5 m and the velocity in the x direction

s V = 1 m/s Due to the double symmetry of the problem, just a
Bn∗ = 100 n =
0.25 −1

Bn∗ = 100 n =
0.50 −1 0.7

Bn∗ = 10 n =
0.25 −1

Bn∗ = 10 n =
0.50 −1 0.7

Bn∗ = 1 n =
0.25 −1

Bn∗ = 1 n =
0.50 −1 0.7

Fig. 17. Cylinder in an Herschel–Bulkley fluid. Dependency of the unyiel
uarter of the domain is simulated and symmetry conditions are

mposed.

The mesh used in the simulation is showed in Fig. 13.

Table 4 summarized the material properties of the model

nd the coefficients employed. Pseudoplastic (n ≤ 1) and dilatant

erschel–Bulkley fluids are considered. The particular case of Bing-

am plastics (n = 1) is also taken into account. A regularization co-

fficient m = 1000 s is used in all the simulations.

It can be observed in Fig. 14 that the non-dimensional drag co-

fficient (F∗
D

) grows with the flow index n, independently from the

eometrical ratio, for L : R ≥ 50 : 0.5 (Table 5). This means that it

s sufficient to consider a domain with that minimum geometrical

atio to ensure insensitivity of the flow from the artificial domain

oundaries. It is evident form the results that the drag coefficient

s linearly related to the flow index n for n ≥ 0.5.

The case of a pseudoplastic Herschel–Bulkley fluid is studied

rst. Fig. 15(a) and (b) present the non-dimensional drag, F∗
D
, and
Bn∗ = 100 n =
5 −1

Bn∗ = 100 n =
1.00 −1

Bn∗ = 10 n =
5 −1

Bn∗ = 10 n =
1.00 −1

Bn∗ = 1 n =
5 −1

Bn∗ = 1 n =
1.00 −1

ded regions in terms of the Bingham number and the flow index.
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Fig. 19. Cylinder in a dilatant Herschel–Bulkley fluid (n = 2). Growth of the un-

yielded regions in terms of Bn∗ .

Fig. 21. Moving and rotating cylinder in an Herschel–Bulkley fluid. Geometry and

boundary conditions.

Table 6

Moving and rotating cylinder in an Herschel–Bulkley fluid. Ma-

terial parameters and regularization coefficient.

Material properties

Consistency index k 1 Pa · sn

Yield stress τ y 100 Pa

Flow index n 0.25

Regularization

Regularization coefficient m 1000 s
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the drag force over the yield stress, F
′

D
= FD/τy, respectively, versus

the generalized Bingham number (Bn∗ = 0.1, 1, 10, 100), for differ-

ent flow indexes (n = 0.25, 0.5, 0.75, 1). The drag coefficient grows

as Bn∗ increases (Fig. 15(a)) and the yield stress effect is higher for

higher values of Bn∗ (Fig. 15(b)).

The differences in the yielded and unyielded regions for differ-

ent generalized Bingham numbers Bn∗ are evident in Fig. 16 where

the yielded region is plotted in grey for a Bn∗ = 10 (Fig. 16(a)) and

for a Bn∗ = 100 (Fig. 16(b)). The increment of the Bn∗ induces a

shape and volumetric change of the yielded region which reduces

significantly especially in the direction of the flow.

The stagnation and recirculation regions in terms of Bn∗ and n

are shown in Fig. 17. The stagnation regions are very sensitive to

the Bn∗ while being almost insensitive to the value of the flow

index n. In the stagnation region triangular shaped polar caps,

similar to those obtained studying the falling of a sphere in [8],

can be observed.

The recirculation zone on the y axis increases when Bn∗ or n in-

crease. The yielded thin layer between these regions and the cylin-

der reduces for higher values of Bn∗, and increases with n. The

no slip condition on the cylinder does not allow this ”boundary

layer” to disappear even for very high values of Bn∗. The effect

of an alternative slip boundary condition on the cylinder can be

found in [36]. While the recirculation regions obtained match very

well with those obtained by De Bresse in [36], the polar caps are

significantly smaller. This is the consequence of the OSS stabiliza-

tion technique used, that allows to solve with a high level of detail

these critical parts of the domain.

The case of a dilatant Herschel–Bulkley fluid is considered next.

The flow index is taken n = 2. The magnitude of the velocity field
Fig. 20. Cylinder in a dilatant Herschel–Bulkley fluid n = 2. Drag coe
s smaller in the dilatant case than in the pseudoplastic one. As

hown in Fig. 18, the yielded region has the shape of two circles in-

ersected along the x axis and it reduces when Bn∗ increases much

ore faster than in the pseudoplastic case.

The polar caps start to be visible for Bn∗ ≥ 1 while the recircu-

ation regions are always present. These are bigger and more sep-

rated from the cylinder than in the corresponding pseudoplastic

ase (Fig. 19).

The drag coefficient in the dilatant case follows a similar de-

endency with Bn∗ and τ y as in the pseudoplastic case, but its ab-

olute value is much lower (Fig. 20).

The shape of the stagnation and the recirculation regions are in

ood accordance with those obtained in [8] and [2] also, although

n the latter the shape of the zones was more rounded.

.2. Flow around a moving cylinder rotating around its axis

.2.1. Description of the problem

The last example simulates a rotating cylinder moving between

arallel planes in a Herschel–Bulkley fluid.

The principal objective is to study the yielded and unyielded re-

ion, to define the localization pattern of the strain rate and to see

he evolution of the stream lines at different velocities of rotation.
fficient versus the Bingham number Bn∗ and the yield stress.



E. Moreno et al. / Journal of Non-Newtonian Fluid Mechanics 228 (2016) 1–16 13

Fig. 22. Moving and rotating cylinder in an Herschel–Bulkley fluid. Unstructured

mesh used for the calculation.
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.2.2. Model and results

The geometrical setting is similar to the one described in

ection 6.2, but with the cylinder rotating around its axis. The

roblem is therefore antisymmetric with respect to the vertical

xis y (Fig. 21). This implies that only half of the domain needs to
Fig. 23. Moving and rotating cylinder in an Herschel–Bulkley fluid

Fig. 24. Moving and rotating cylinder in an Herschel–Bulkley fluid. Streamlin
e simulated (the shaded area in Fig. 21), provided suitable bound-

ry conditions are imposed on the plane of antisymmetry. The ref-

rence system is moving with the cylinder; therefore, on the outer

oundary of the domain ux = V = 1 m/s is imposed in the x direc-

ion, while uy = 0 m/s. A no slip boundary condition is imposed on

he surface of the cylinder.

Table 6 summarizes the properties of the material and the reg-

larization parameter used. The flow index of the Herschel–Bulkley

odel is n = 0.25, which corresponds to a highly pseudoplastic

uid.

The aspect ratio of the computational domain is H : R = 10 : 1

nd L : R = 30 : 1. The unstructured mesh used in the example is

hown in Fig. 22(a); it is composed of 9425 nodes and 18,345 lin-

ar triangular elements. The average size of the elements on the

urface of the cylinder (see Fig. 22(b)) is of 0.01 m, whereas on the

ertical line (from B to C and from G to C’ in Fig. 21) the element

ize varies from 0.01 m to 0.04 m.

Four different velocities of rotation (VROT) have been studied: 0,

.5, 1.0 and 5 m/s. The symmetry with respect to the x axis ob-

erved for VROT = 0 m/s (Fig. 23(a)) is lost when the cylinder starts

otating. Under these circumstances only symmetry with respect to
. Localization of strain rate for different rotational velocities.

es and yielded and unyielded regions for different rotational velocities.
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Fig. 25. Moving and rotating cylinder in an Herschel–Bulkley fluid n = 0.25. Drag

and lift for different rotational velocities.
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the vertical axis y is maintained (Fig. 23(b)–(d)). This is confirmed

by the streamlines (Fig. 24(a)–(d)).

The increment of the velocity of rotation makes one of the slip

lines progressively disappear while the other moves closer to the

cylinder. On one side of the cylinder the rotational velocity adds

to the linear velocity, while it is opposed on the opposite side. For

high values of the rotational velocity (Fig. 23(d)) the rate of strain

localization concentrates around the cylinder.

The slip lines of Fig. 23 correspond to the change of slope in

the streamlines (Fig. 24) that reduces their relative distance.

Fig. 24(a)–(d) shows the complex evolution of the yielded and

unyielded regions as the velocity of rotation increases. The recir-

culation zone increases arriving to define a semi circle for VROT =
1 m/s and it disappears for VROT = 5 m/s, leaving a thin layer of

unyielded material close to the surface while the size of the re-

circulation region under the cylinder increases. The growth of the

stagnation region culminates for VROT = 1 m/s and no polar caps

are present for higher velocities.

The drag decreases as the velocity of rotation increases

(Fig. 25). On the contrary, the lift coefficient, which is null when

the cylinder is not rotating, increases with the velocity of rotation.

It is worth noting that the drag is substantially higher than the lift

in all the cases.

8. Conclusions

In the present work a mixed stabilized finite element formula-

tion for Bingham and Herschel–Bulkley fluids is presented. The im-
lementation of an OSS stabilization technique allows to use equal

rder interpolation of velocity and pressure (i.e., P1/P1 linear el-

ments), avoiding both the pressure and velocity oscillations and

eading to a stable and accurate solution.

On the one hand, being OSS a residual based stabilization tech-

ique, no consistency error is introduced. On the other hand, con-

tructing the subscale in the subspace orthogonal to the finite ele-

ent one leads to a minimization of the numerical dissipation on

he discrete solution.

The extrusion process of a Bingham fluid with the section re-

uced by 2/3 shows a correct definition of the slip lines according

o Pradtl’s theory. A cylinder moving between two parallel planes

s the second example studied. The comparison with the results

btained by other authors leads to the conclusion that the pre-

ented technique reproduces correctly the yielded and unyielded

egions, as well as calculates the correct drag for different Bing-

am numbers and geometrical relations. Pseudoplastic and dila-

ant cases of Herschel–Bulkley are are also used to study a cylinder

oving in an infinite domain and a cylinder moving and rotating

round its axis. Also in these cases, the polar caps and recirculation

egions are correctly reproduced.
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