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Abstract

Systems need to be updated to last for a long time in a dynamic environment,
and to cope with changing requirements. The update can be performed both
statically, by restarting the system, or dynamically. In both the cases, it is
important for updates to preserve the desirable properties of the system under
update, while possibly enforcing new ones.

Here we consider a simple yet general update mechanism, which replaces
a component of the system with a new one. The context, i.e., the rest of the
system, remains unchanged. We define contexts and components as Constraint
Automata interacting via either asynchronous or synchronous communication,
and we express properties using Constraint Automata too. Then we build most
general updates which preserve specific properties, considering both a single
property and all the properties satisfied by the original system, in a given context
or in all possible contexts. In order to apply our approach also to dynamic
update, we consider the state transfer problem, namely how to find the state in
which the new component should be started to ensure that the overall behaviour
is correct.

Keywords: Update, Constraint Automata, Property preservation, State
transfer

1. Introduction

Update is a relevant topic [1], both for automatic updates, as in the context
of adaptive systems [2] or autonomic computing [3], and for manual updates.
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Update may be triggered by different needs, e.g., to fix bugs, to satisfy changing
user requirements, or to match changes in the computing environment. Answer-
ing these needs is necessary since one wants systems to last for a long time in
a changing scenario. However, a main point, namely correctness of the system
after update, has received less attention till now, as remarked also in [4]. A real-
world example highlighting the importance of this aspect is the following: what
was called "one of the biggest computer errors in banking history", deducting
about $15 millions from over 100000 customers’ accounts, was due to a software
update [5].

In this paper we consider a very simple yet general update mechanism, which
replaces a part of the system with a new one. Formally, the system is seen as
a context C containing the component1 to be updated A, i.e., the system has
the form C[A]. An update replaces component A with a new component B,
thus the system upon update has the shape C[B]. The update can be performed
either statically, that is C[A] is shut down, and the new system C[B] starts
in the initial state, or dynamically, by replacing A with B without restarting
C (dynamic updates are also called live updates, or on-the-fly updates). In
this second case, when C[B] starts, C is in the same state as when A has been
removed.

In the simpler case of static update a basic question is: how to build a most
general new component B such that if system C[A] satisfies a given property Φ,
then also system C[B] satisfies the same property? This question is answered in
Section 3. Note that system C[B] may satisfy further properties that system C[A]
does not satisfy. The answer to the question above, which relates components
A and B, depends both on the context C and on the property Φ. From this
observation two generalisations emerge naturally. On one side, one may ask
how to build a most general new component B such that for a given context
C, all the properties satisfied by system C[A] are also satisfied by system C[B]
(Section 3). We call such an update correct for a given context w.r.t. any
property. On the other side, one may ask how to build a most general new
component B such that for each context C if system C[A] satisfies property Φ,
then system C[B] satisfies the same property (Section 4). We say that such an
update is correct (w.r.t. property Φ), hence it can be applied in any context.
Finally, one may combine the two generalisations asking how to build a most
general new component B to ensure correctness of update in any context and
w.r.t. any property (Section 4).

The questions above can be rephrased also for dynamic update, by requiring
that the system behaving first as C[A], and then as C[B], satisfies the desired
properties. Here there is an additional element coming into play, namely how
to select the state in which B starts, depending on the state of A just before the
update. This problem is known as the state transfer problem, and has been first

1Component should be intended in a broad sense as a part of the system with a well-
defined interface towards the rest of the system. In this sense, examples of components can
be a procedure body, a library, or an actual component in some component model.
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studied in [6]. The problem is notoriously hard and is normally dealt with by
manual tedious work, as reported, e.g., in [7, 8]. We will compute (Section 5)
a partial function that, for each state of A, tells us whether the update can be
safely performed or not and, in the first case, which states of B can be selected
as starting states.

The questions above are very general, and the detailed answer depends on
the choice of the model for components and contexts, of the composition oper-
ators, and of the formalism for expressing properties. We consider here com-
ponents, contexts and properties represented as Constraint Automata [9, 10],
which have been used in the literature, e.g., to give a formal semantics to REO
connectors [11] and Rebeca actors [12]. We use sets of prefix-closed finite and
infinite traces as semantic framework. We concentrate on safety properties, thus
prefix-closed sets of traces are enough. We consider both asynchronous and syn-
chronous composition for components and contexts. We leave the systematic
exploration of the research space above to future work. We illustrate the main
results of our approach by means of a simple running example. All the oper-
ations on Constraint Automata were computed using the tool GOAL [13]2, an
interactive tool for defining and manipulating automata, which we extended to
deal with Constraint Automata.

The present paper is an extended and revised version of [14], which con-
centrated on static update. Here we also consider dynamic update, hence the
state transfer problem. We also provide more efficient constructions for update
in a given context (both for a single property and for all properties) when the
selected context is input-deterministic. The present paper includes full proofs
of all the results, which were absent in [14]. Finally, the whole paper has been
carefully revised, and extended with additional examples and a more detailed
description of related work.

2. Constraint Automata

We model components, contexts and properties as (nondeterministic) Con-
straint Automata (CAs) [9], defined below. Throughout the paper we assume
a finite set Data of data values which can be communicated and a finite set
of states for the CAs. As in [9], the finiteness assumption is needed for the
effectiveness of our constructions.

Definition 1 (Constraint Automata).
A Constraint Automaton A is a tuple 〈Q,N, q0,−→〉 where:

1. Q is a finite set of states;

2GOAL files for the examples and intermediate results to compute them are available
at http://www.cs.unibo.it/~lanese/work/ic2018-adaptation-examples.zip. GOAL inter-
prets CAs as Finite State Automata, hence minimisation and determinisation produce the
correct result, but other operations such as (synchronous and asynchronous) joins do not.
Our extension allows one to perform joins on CAs correctly.
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Figure 1: The CAs for Example 1.

2. N is a finite set of nodes representing the interface between the CA and
the outside world;

3. q0 ∈ Q is the initial state;
4. −→⊆ Q × CIO(N) × Q is the transition relation, where CIO(N) is the set

of concurrent I/O operations c : N 7→ Data∪ {⊥} mapping every node in
N to an element of Data, or to ⊥ if no data is written/read. We require
that in c there is always at least one node where data is read/written (that
is, c is never the constant function with value ⊥).

We write transitions of a CA in the form q
c−→ p, where p and q are states and c

is a concurrent I/O operation (CIO). A run of a CA is a finite/infinite sequence
ρ = q0

c0−→ q1
c1−→ . . . such that q0 is the initial state and, for every i, qi

ci−→ qi+1 is
a transition of the CA. In this case, we say that ρ accepts the trace w = c0c1 . . . .
We write q0

w
=⇒ qn for a finite run starting in q0, ending in qn, and accepting

word w. The language of a CA A, denoted L (A), is the set of traces accepted
by A. Since a prefix of a run is again a run, languages are closed under prefix.
Given a state qA of a CA A, we denote by L (qA) the set of traces accepted by
A when starting in state qA (instead of q0). We write wi for the prefix of w of
length i.

Given a CIO c ∈ CIO(N), we define Nodes(c) as the set of nodes through
which data flow, formally Nodes(c) = {n ∈ N | c(n) 6= ⊥}. The domain
restriction of a CIO c on a subset of nodes N ′ ⊆ N is written c ↓N ′ . Given two
disjoint sets of nodes N1 and N2, and two CIOs c1 ∈ CIO(N1) and c2 ∈ CIO(N2),
we define their union as the unique CIO c1 ∪ c2 ∈ CIO(N1 ∪ N2) such that
(c1 ∪ c2) ↓N1

= c1 and (c1 ∪ c2) ↓N2
= c2.

Example 1. We introduce here our running example, on which we illustrate
the main results of the paper.

We consider a system which allows the user to read and write information
from/to two one-bit registers, denoted as Ra and Rb. The system is the compo-
sition of four components, represented in Figure 1: two registers (only register
Ra is shown, Rb is analogous), a scheduler Sch that determines which register
is active, and a synchroniser Syn that communicates with the registers and the
scheduler and proposes to the outside world the nodes r (read) and w (write) to
access the active register. Labels on edges represent CIOs, written as semicolon-
separated sets of assignments. Each assignment n = d specifies that the data
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value d is communicated on node n. No communication occurs on nodes that
do not appear in the label.

Registers are two-state CAs. Register Ra communicates with the synchro-
niser on nodes ra (read Ra) and wa (write Ra), while register Rb on nodes rb
and wb. The scheduler interacts with the synchroniser on node s. Essentially,
the two registers are scheduled in round-robin order Ra, Rb. The synchroniser
is a one-state CA that forwards the external operations to the currently active
register.

As already said, we use CAs also to describe properties, which are prefix-
closed sets of (finite or infinite) traces. We represent a property as a CA Φ
accepting the corresponding set of traces. As a consequence the natural defini-
tion of the satisfaction relation between systems and properties is as follows.

Definition 2 (Satisfaction Relation). A CA A satisfies a property Φ, written
A |= Φ, iff L (A) ⊆ L (Φ).

CAs interpreted as sets of traces are as expressive as the safety linear µ-
calculus [15, 16] and, as a consequence, more expressive than the safety fragment
of temporal logics like LTL [17]. Alternatively, one could interpret CAs as trees,
so to be more expressive than the safety fragment of the linear µ-calculus and of
branching-time temporal logics like CTL. In this setting the natural notion of
satisfaction would be simulation. We have chosen sets of traces over trees and
trace inclusion over simulation (or other more complex behavioural relations)
for simplicity and we leave the exploration of the alternatives to future work.

2.1. Composition of CAs
We consider here a particular type of composition, where a component is

embedded in a context. We examine two forms of synchronisation between
the context and the component: synchronous and asynchronous. Formally, we
assume to have two CAs: A (the component) and C (the context). We also
assume two disjoint finite sets of nodes U and O. Communication between the
component and the context goes through U , while communication between the
context and the external world goes through O.

In the asynchronous case [10], at every step the context communicates either
with the component via nodes in U , or with the external world via nodes in O, or
with both of them at the same time. In the synchronous case [18], at every step
the context communicates with both the component and the external world.

The embedding of A in C is defined by means of two operations on CAs [10]:
(synchronous or asynchronous) projection and (synchronous or asynchronous)
join. We start by defining the two forms of join.

Definition 3 (Asynchronous Join). The asynchronous join of two CAs A =
〈QA, NA, qA0 ,−→A〉 and C = 〈QC , NC , qC0 ,−→C〉 is defined as the CA A ./a C =
〈QA ×QC , NA ∪NC , (qA0 , qC0 ),−→a〉 such that:

• (q, p)
c−→a (q′, p′) if Nodes(c) ∩ NA 6= ∅, Nodes(c) ∩ NC 6= ∅, q

c ↓NA−−−−→A q′

and p
c ↓NC−−−→C p′;
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• (q, p)
c−→a (q′, p) if Nodes(c) ∩NC = ∅ and q

c ↓NA−−−−→A q′;
• (q, p)

c−→a (q, p′) if Nodes(c) ∩NA = ∅ and p
c ↓NC−−−→C p′.

Definition 4 (Synchronous Join). The synchronous join of two CAs A =
〈QA, NA, qA0 ,−→A〉 and C = 〈QC , NC , qC0 ,−→C〉 is defined as the CA A ./s C =
〈QA ×QC , NA ∪NC , (qA0 , qC0 ),−→s〉 such that:

• (q, p)
c−→s (q′, p′) if Nodes(c) ∩ NA 6= ∅, Nodes(c) ∩ NC 6= ∅, q

c ↓NA−−−−→A q′

and p
c ↓NC−−−→C p′.

Given a CA B with nodes from a set U ∪O, the projection on O removes the
nodes in U from the interface of B and hides the communications occurring at
those nodes. In the synchronous projection at every step the CA B communi-
cates with the environment via nodes in O, while in the asynchronous projection
the CA B can take internal steps before communicating with the environment.

We first define the synchronous projection.

Definition 5 (Synchronous Projection). The synchronous projection of a CA
B = 〈Q,U ∪ O, q0,−→B〉 on O is defined as the CA B ↓O = 〈Q,O, q0,−→s〉 such
that q c−→s p iff there exist d ∈ CIO(U ∪O) such that d ↓O = c and q d−→B p.

To define the asynchronous projection, we need the relation  ∗O⊆ Q × Q,
which is the smallest relation such that:
• q  ∗O q for each q ∈ Q;
• if q  ∗O p and p c−→ r with Nodes(c) ∩O = ∅, then q  ∗O r.

Definition 6 (Asynchronous Projection). The asynchronous projection of a
CA B = 〈Q,U ∪ O, q0,−→B〉 on O is defined as the CA B ⇓O = 〈Q,O, q0,−→a〉
such that q c−→a p iff there exist d ∈ CIO(U ∪ O) and r ∈ Q such that d ↓O = c

and q  ∗O r
d−→B p.

The asynchronous embedding C[A]a and the synchronous embedding C[A]s
of the component A = 〈QA, U, qA0 ,−→A〉 in the context C = 〈QC , U ∪O, qC0 ,−→C〉
are defined as

C[A]a = (A ./a C)⇓O C[A]s = (A ./s C) ↓O

The above definitions hide all the nodes of the component A and expose only
the nodes from the external interface O of the context C. In the following, we
will drop the subscript a or s to refer to both kinds of embedding.

Example 2. We can now build the system outlined in Example 1 by embedding
the scheduler Sch into the context, which is obtained by embedding the two reg-
isters Ra and Rb (in any order) into the synchroniser Syn. All the embeddings
are asynchronous, hence the resulting system is Syn[Ra]a[Rb]a[Sch]a. Out of
the 24 possible states, 8 become unreachable after the join, and other 8 after the
projection. By removing the unreachable states, we get the system represented in
Figure 2. The states are tuples (si, va, vb), where si is the state of the scheduler
and va and vb are the values of the registers Ra and Rb, respectively.
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Figure 2: Embedding of the scheduler in the context.

Trace inclusion is a congruence w.r.t. the embedding of CAs, as formally
stated by the following lemma. This result holds since we consider sets of traces
which are closed under prefixes.

Lemma 1. Given two components A and B, for every context C we have that
if L (A) ⊆ L (B) then L (C[A]a) ⊆ L (C[B]a) and L (C[A]s) ⊆ L (C[B]s).

Proof. Let us prove the asynchronous case (the synchronous case is analo-
gous). Assume that L (A) ⊆ L (B), and suppose towards a contradiction that
L (C[A]a) 6⊆ L (C[B]a). Then there exists a trace w ∈ L (C[A]a) such that
w 6∈ L (C[B]a). The trace is obtained from a run ρ = (s0, q0)

c0−→ (s1, q1)
c1−→ . . .,

which is the composition of a run ρC of C and a run ρA of A. By hypothesis,
there exists a run ρB of B with the same labels as ρA. By composing ρB with the
above run ρC we get a run of C[B]a with label w, against our hypothesis3.

2.2. Determinisation and complementation of CAs
Given a nondeterministic CA A, by using the standard subset construction

for finite word automata it is possible to obtain an equivalent deterministic CA
Subset(A) that, in the worst case, is exponentially larger than A. This also
shows that deterministic and nondeterministic CAs recognise the same class of
languages. We can exploit this result to prove that the language of a CA A is
determined by its finite traces.

Lemma 2. Given a CA A = 〈Q,N, q0,−→〉 and an infinite trace w, we have
that w ∈ L (A) if and only if for every i ∈ N, wi ∈ L (A).

3This run may not be maximal, but this is not a problem for us since our sets of traces are
closed under prefixes.

7



Proof. The only if direction follows from the fact that traces are closed under
prefix. Let us consider the other implication. We can assume without loss of
generality that A is deterministic. Hence, there exists a unique run ρi accepting
wi. Run ρi is a prefix of ρj for every j > i. We can build the accepting run ρω
for w by taking the limit of all runs ρi. Hence w ∈ L (A).

In the next sections, we will need to complement CAs. Unfortunately, CAs
are not closed under complementation. We solve the problem following the
approach in [10]. We can complement Subset(A) by enriching it with a set of
final states F ⊆ Q and a Büchi acceptance condition. We say that a finite
run is accepting whenever the last state of the run is final, while an infinite
run is accepting if the set of final states F is visited infinitely often. We call
the resulting CA a CA with final states. Formally, given a deterministic CA
A = 〈Q,N, q0,−→A〉 we can build a CA A = 〈Q⊥, N, q0,−→A, F 〉 with final
states accepting the complement language as follows:

• Q⊥ = Q ∪ {q⊥} where q⊥ is a distinguished sink state not included in Q;

• F = {q⊥} (only the sink state is final);

• q c−→A q′ iff q
c−→A q′;

• q c−→A q⊥ for all q ∈ Q and c ∈ CIO(N) such that there is no q′ such that
q

c−→A q′;

• q⊥
c−→A q⊥ for all c ∈ CIO(N).

In the following we will need to compute expressions of the form C[A], whose
result is again a CA with final states. This can be done by first using the
construction for standard CAs, and then choosing as set of final states of the
result QC × {q⊥}, where QC is the set of states of C and q⊥ is the sink state of
A.4

We will also exploit the following operations on deterministic CAs with final
states. Prefix(A) denotes the CA (without final states) obtained by removing
all non-final states from the CA A with final states and taking the connected
component including the initial state. Notably, L (Prefix(A)) is the maximal
prefix-closed language included in L (A). Also, Switch(A) is the CA with final
states obtained from a deterministic CA A with final states by selecting as final
states the non-final states of A, and vice versa.

We will use CAs with final states as intermediate steps in our constructions,
and recover CAs without final states by using function Prefix. Hence, when not
otherwise stated, CAs do not have final states.

4This construction is not correct for general CAs with final states, but it is correct in this
restricted case [10].
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3. Updates Correct for a Given Context

We start this section with a formal definition of correct update.

Definition 7 (Correct Update). Given a system C[A], an update replacing
component A with a new component B is correct w.r.t. a property Φ iff whenever
C[A] |= Φ also C[B] |= Φ.

We assume that components A and B have the same interface, that is, the
same set of nodes. This is not restrictive since one can always add nodes that
are never used.

This section considers both the cases “all properties, given context” and
“given property, given context”. We show that they can be both reduced to
instances of the following problem: given a context C and a specification S rep-
resenting the correct behaviour of the whole system, find which are the possible
new components B such that C[B]x |= S, with x ∈ {a, s}. By definition of |=,
these are the solutions of the following language inequation:

L (C[X ]x) ⊆ L (S) (1)

Among all new components B satisfying the inequation we select one generating
the largest language, and we call it amost general solution of the inequation. We
denote it as MGCAx(C,S). Such a solution is unique up to language equivalence.

Lemma 3. For each context C and specification S, Inequation (1) has a unique
most general solution up to language equivalence.

Proof. Given a solution B of the inequation, thanks to congruence (Lemma 1)
any CA generating the same language also is a solution. Hence, we can work up
to language equivalence. Assume now that there are two most general solutions
B1 and B2 which are not comparable. Consider the CA U such that L (U) =
L (B1) ∪ L (B2) built using the standard union construction for finite state
automata. Let us prove that C[U ] |= S. Suppose towards a contradiction that
this is not the case. Then there exists a trace w ∈ L (C[U ]) such that w 6∈ L (S).
The trace is obtained from a run ρ = (s0, q0)

c0−→ (s1, q1)
c1−→ . . ., which is the

composition of a run ρC of C and a run ρU of U . By hypothesis, ρU is either
a run of B1 or a run of B2. As a consequence, ρ is either a run of C[B1] or of
C[B2]. Hence, the trace w belongs to L (S), against our hypothesis.

Since U is a solution of Inequation (1) more general than both B1 and B2

we have a contradiction. The thesis follows.

In Inequation (1), when S is the system before the update C[A] we are in
the setting “all properties, given context”, while when S is a CA representing a
given property Φ we are in the setting “given property, given context”.

We discuss in Section 3.1 how to solve Inequation (1), we apply it to compute
most general updates in Section 3.2, and we present more efficient solutions in
the case of input-deterministic contexts in Section 3.3.
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3.1. Solving the Inequation
Inequation (1) has been studied by the logic synthesis and controller design

communities, where it is known as the “unknown component problem” [18]. The
following result is part of the theory developed in [18, 19].

Theorem 1. B is a solution of Inequation (1) iff L (B) ⊆ L (C[S]).

Our synchronous embedding is a particular case of the synchronous compo-
sition in [18, Chapter 2]5, thus the theory therein can be directly applied. Un-
fortunately, this is not the case for the asynchronous embedding. However, [19]
generalises the theory in [18] to any composition operator satisfying suitable
properties. We show in Appendix A that our asynchronous embedding satisfies
those properties. As a consequence, the thesis follows also in the asynchronous
case, now from [19, Theorem 3.1].
The literature does not provide, for our setting, a constructive way of building
a most general CA satisfying the language inequation above. We propose one
below. One would expect that for x ∈ {a, s} a most general CA is C[S]x.
However, since CAs are not closed under complementation, such a CA in general
cannot be built. We show that MGCAx(C,S) = Prefix(Switch(Subset(C[S]x))) is
the best possible approximation which is a CA. We recall that C[S] can be built
as described in Section 2.2. Let us start by showing two auxiliary results.

Lemma 4. Let A be a CA with final states. Then L (A) ⊆ L (Subset(A)).

Proof. Take w ∈ L (A). If w is a finite trace, then w ∈ L (Subset(A)) follows
from the correctness of the subset construction for finite traces. If w is an
infinite trace, then there exists a run ρ of A that visits final states infinitely
often. Hence, there is a corresponding run of Subset(A) that visits final states
infinitely often, from which we can conclude that w ∈ L (Subset(A)).

Lemma 5. For every deterministic CA A with final states we have that:
L (Prefix(Switch(A))) ⊆ L (A).

Proof. Take w ∈ L (Prefix(Switch(A))). Since Prefix and Switch preserve de-
terminism, there exists a unique accepting run ρ of Prefix(Switch(A)) over w.
Since the Prefix operator removes non-final states, the run ρ is made of final
states only. The same run is also the unique run of Switch(A) over w. Hence
ρ is the unique run in A over w, and it is composed by non-final states only.
Thus, w 6∈ L (A).

We can now prove the correctness of our construction.

Theorem 2. MGCAx(C,S) is a most general CA such that L (MGCAx(C,S)) ⊆
L (C[S]x), for every x ∈ {a, s}.

5We remark that the definition in [18, Chapter 2] is at the level of sets of traces, while we
give the definition at the level of CAs.
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Proof. Let B = MGCAx(C,S). To prove the thesis we have to show that B
satisfies L (B) ⊆ L (C[S]x), and that any other CA B′ satisfying L (B′) ⊆
L (C[S]x) is such that L (B′) ⊆ L (B).

We start from the first condition. By noticing that Subset(C[S]x) is deter-
ministic we can apply Lemma 5 obtaining L (Prefix(Switch(Subset(C[S]x)))) ⊆
L (Subset(C[S]x)). By Lemma 4 we have that L (C[S]x) ⊆ L (Subset(C[S]x)),
which is equivalent to L (Subset(C[S]x)) ⊆ L (C[S]x). The fact that L (B) ⊆
L (C[S]x) follows by concatenating the two inclusions.

To prove that B is a most general CA, take any CA B′ satisfying L (B′) ⊆
L (C[S]x). Take any trace w ∈ L (B′). Since B′ is a CA, its language is prefix
closed and thus all prefixes of w belong to L (B′). We have two cases: either
w is finite or it is infinite. When considering only finite traces, we have that
L (Switch(Subset(C[S]x))) = L (C[S]x) since automata on finite traces can be
complemented by applying the subset construction and then switching final and
non-final states. Since w and all its prefixes are in L (C[S]x), then they are also
in L (Switch(Subset(C[S]x))). Hence, w ∈ L (Prefix(Switch(Subset(C[S]x)))) =
L (B).

Assume now that w is infinite. Since L (B′) is prefix closed, all the finite
prefixes of w are in L (B′). By the argument above we have that they are also
in L (B). From Lemma 2 w ∈ L (B) and the thesis follows.

3.2. Computing Most General Updates
Theorems 3 and 4 below show that MGCAx(C,S) for x ∈ {a, s} is a most

general update correct for a given context C, for a suitable instantiation of S.
The former considers any property representable as a CA, the latter a given
property Φ.

Theorem 3.
Given a system C[A]x with x ∈ {a, s}, B = MGCAx(C, C[A]x) is a most general
CA such that replacing A with B is a correct update w.r.t. any property.

Proof. By Theorem 2 we have that L (B) ⊆ L (C[C[A]x]x). Hence, by Theo-
rem 1 we also have that B satisfies Inequation (1), that is, that L (C[B]x) ⊆
L (C[A]x). Take any property Φ. By definition C[A]x satisfies Φ iff L (C[A]x) ⊆
L (Φ). By transitivity L (C[B]x) ⊆ L (Φ), that is replacing A with B is a correct
update w.r.t. any property.

To prove that B is a most general update, assume that there is a correct
update X such that B is not more general than X , that is L (X ) 6⊆ L (B).
By Theorems 1 and 2 we have that B is a most general CA that satisfies In-
equation (1). Hence, we have that L (C[X ]x) 6⊆ L (C[A]x). Consider C[A]x as
property. By definition we have that C[A]x |= C[A]x but C[X ]x 6|= C[A]x, against
the hypothesis that replacing A with X is a correct update for any property.

11



s0
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s = a

s = b

s = b

s = a

Figure 3: Most general scheduler Sch∀ of Example 3.

Example 3. We can apply Theorem 3 to obtain a most general update for
the case “given context, all properties” of the system in Example 1, where we
consider the scheduler Sch as the component to be updated, and Syn[Ra][Rb]
as the context. The trivial application of the construction we propose would
lead to a CA with more than 30 states. However, it is possible to minimise it
(up to language equivalence), obtaining the CA Sch∀ in Figure 3, where s0 is
the initial state. The solution recognises the traces where one of the sequences
abababa . . . and bababab . . . is communicated on node s. This implies that, e.g.,
replacing the original scheduler with a new one activating the registers in round-
robin order Rb, Ra is a correct update. This matches the intuition, since the two
registers are identical and swapping when they are accessible has no visible effect.
Instead, using a scheduler that, e.g., always activates Ra and never activates Rb

is not correct. A property falsified by this incorrect update is, for instance, P1
= “if w=1 is executed at the first step, then at the third step r=0 cannot be
executed”.

Theorem 4. Given a system C[A]x with x ∈ {a, s} and a property Φ such that
C[A]x |= Φ, B = MGCAx(C,Φ) is a most general CA such that replacing A with
B is a correct update w.r.t. Φ.

Proof. Given that C[A]x |= Φ, replacing A with X is a correct update w.r.t. Φ
iff C[X ]x |= Φ. This amounts to say that L (C[X ]x) ⊆ L (Φ). By Theorem 1
we have that any correct update X must be such that L (X ) ⊆ L (C[Φ]x) and
by Theorem 2 we have that a most general CA respecting the condition is
B = MGCAx(C,Φ).

Example 4. Consider the property P1 = “if w=1 is executed at the first step,
then at the third step r=0 cannot be executed” from Example 3. It can be for-
malised by the CA Φ in Figure 4a. There, we use ? to denote 0, 1 or ⊥, and we
assume that at least one node in each constraint has non ⊥ value. The system
of Example 1 satisfies Φ. We want to characterise the updates that preserve Φ.

We can apply Theorem 4 to obtain the most general scheduler SchΦ depicted
in Figure 4b. Notice that it accepts the following computations:
• any computation of length at most 2: in this case the third step is never
reached, and the property is trivially satisfied;

• any computation that starts with s = a, s = b, s = a or s = b, s = a, s = b:
in this case the value 1 written in the register at the first step is not changed
in the second step, and it is made available in the third step.

12
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(a) CA Φ for P1.
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(b) Most general scheduler SchΦ.

Figure 4: CAs of Example 4.
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r = 1

w = 0; r = ?
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(a) CA Ψ for P2.
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s = a

s = b
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s = b
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s = a

s = a
s = b

s = b

s = a
s = b

s = a

s = b

s = a

(b) Most general scheduler SchΨ.

Figure 5: CAs of Example 5.

Note that the construction used in Theorem 4 does not depend on A. How-
ever, if C[A] does not satisfy the property Φ then every update is trivially correct,
since the premise in the definition of correct update (Definition 7) is false. If
the property Φ does not hold for C[A], then the same construction can be used
to compute a most general update ensuring it, as shown by Theorem 5 below.
Ensuring a new safety property after the update can be used, e.g., to fix a bug
or close a security vulnerability.

Theorem 5. Given a system C[A]x with x ∈ {a, s} and a property Φ, B =
MGCAx(C,Φ) is a most general CA such that replacing A with B ensures that
Φ holds in C[B]x.

Proof. Analogous to the proof of Theorem 4.

Example 5. Consider the property P2 = “if w=1 is executed at the first step,
then at the fourth step r=0 cannot be executed”, represented by the CA Ψ in
Figure 5a. This property does not hold in the system of Example 1. We can
use Theorem 5 above to build the most general scheduler SchΨ in Figure 5b,
which accepts either computations of length at most 3, where the property is
trivially satisfied since the fourth step is never executed; or computations where
the register active at the first step is disabled at the second and third step, and
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Figure 6: Most general scheduler Sch∀,Ψ of Example 6.

activated again at the fourth step. In the latter case the property is satisfied
since the value 1 written at the first step is preserved and made available again
at the fourth step.

The result above ensures that the selected property Φ holds, but it does
not preserve the properties that hold in C[A]. In order to enforce both the
properties of C[A] and the new property Φ one should consider as specification
a CA whose language is the intersection of the language of Φ and of C[A]. Since
Φ and C[A] have the same set of nodes, the language of the synchronous join
Φ ./s C[A] corresponds to the intersection of the language of language of Φ and
of C[A]. Hence, we do not need to introduce a separate operator to compute
the intersection of two CAs.

Theorem 6. Given a system C[A]x with x ∈ {a, s} and a property Φ, B =
MGCAx(C,Φ ./s C[A]x) is a most general CA such that replacing A with B
ensures that Φ and all the properties of C[A]x hold in C[B]x.

Proof. Analogous to the proof of Theorem 4.

Example 6. Consider again the property P2 = “if w=1 is executed at the first
step, then at the fourth step r=0 cannot be executed”, represented by the CA Ψ in
Figure 5a. We can now use Theorem 6 above to build the most general scheduler
Sch∀,Ψ in Figure 6, that respects both property P2 and all the properties of the
original system in Figure 2. Notice that the result is the intersection (i.e., the
synchronous join) of the scheduler Sch∀ in Figure 3 and the scheduler SchΨ in
Figure 5b, and includes only traces of length at most 3. This is due to the fact
that any computation longer than 3 of the original system falsifies property P2.

We now move to the study of the complexity of our construction.

Theorem 7. Given a system C[A]x with x ∈ {a, s}, the time complexity of
computing a most general new component B such that replacing A with B is
a correct update for a given property Φ or for any property, or an update that
makes Φ hold (in isolation, or together with all the properties of C[A]x) is a
double exponential in the size of the specification S and an exponential in the
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size of C6.

Proof. All the problems above can be solved by building, for a suitable spec-
ification CA S, the CA MGCAx(C,S). Since the time complexity of building
MGCAx(C,S) is a double exponential in the size of S and an exponential in the
size of C, the thesis follows.

The 2-EXPTIME complexity arises from a double subset construction. We show
in Theorem 8 below that the problem is indeed EXPSPACE-hard at least in the
case “given property, given context”. It seems not easy to adapt the proof to the
case “all properties, given context”. Finding a lower bound for the latter case is
an open problem.

Theorem 8. Given a system C[A]x with x ∈ {a, s} and a property Φ such
that C[A]x |= Φ, finding a most general new component B such that replacing
A with B is a correct update w.r.t. Φ, or that makes Φ hold (in isolation) is
EXPSPACE-hard.

The lower bound is proved by reducing a suitable three-player game to In-
equation (1). The game is played on a finite-state graph, with the first player
(the component) and the third player (the specification) in a coalition against
the second player (the context). The configuration of the game is a state in the
graph. At every round of the game, given the current state, the successor state
is determined by the choice of moves of the players. A suitable safety condition
establishes who wins the game. The reduction shows that a winning strategy
for Player 1 corresponds to a correct update of the system, if C[A]x |= Φ, and
to an update that makes Φ hold otherwise. The problem of finding a winning
strategy in this game is EXPSPACE-complete [20]. A detailed description of
the approach, including the proof of Theorem 8 and the needed background
material on three-player games taken from [20], can be found in Appendix B.

3.3. Efficient Solutions for Input-deterministic Contexts
Theorem 8 shows that the considered problems are computationally hard.

However, the same problems can be solved more efficiently if the considered
context is input-deterministic7.

Definition 8. A CA C = 〈Q,U ∪ O, q0,−→〉 is input-deterministic iff for each

pair of transitions p c−→ q and p c′−→ q′ such that c ↓U = c′ ↓U we have c = c′ and
q = q′.

Intuitively, in an input-deterministic context, given the starting state and
the data flow on the interface towards the component, both the data flow on

6The size of a CA is the sum of the number of states and the number of transitions (which
may depend on the size of set Data).

7Our definition of input-deterministic corresponds to the definition of deterministic for
Finite State Machines, see e.g. [18].
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the external interface and the next state are uniquely determined. In this case,
Inequation (1) can be solved in polynomial time (a further condition is needed
in the asynchronous case).

In the synchronous case, given an input-deterministic context C = 〈QC ,
U ∪O, qC0 ,−→C〉 and a specification S = 〈QS , O, qS0 ,−→S〉, we define a component
IDMGCAs(C,S) = 〈QC ×QS ∪ {q⊥}, U, (qC0 , qS0 ),−→〉 as follows:

1. (qC1 , q
S
1 )

u−→ (qC2 , q
S
2 ) iff there exists o ∈ CIO(O) such that qC1

u∪o−−→C qC2 and
qS1

o−→S qS2 ;

2. (qC1 , q
S
1 )

u−→ q⊥ iff for each o ∈ CIO(O) there is no qC2 ∈ QC such that
qC1

u∪o−−→C qC2 ;

3. q⊥
u−→ q⊥ for every u ∈ CIO(U).

We can now prove the correctness of our construction.

Theorem 9. Given an input-deterministic context C and a specification S, Bs =
IDMGCAs(C,S) is a most general solution of L (C[X ]s) ⊆ L (S) (Inequation (1),
synchronous case).

Proof. To prove the thesis we have to show that Bs satisfies L (C[Bs]s) ⊆ L (S),
and that any other CA B′ satisfying Inequation (1) is such that L (B′) ⊆ L (Bs).

Let us consider the first implication. Take a word w ∈ L (C[Bs]s) and
consider a corresponding run ρ = (pC0 , p

B
0 )

o0−→ (pC1 , p
B
1 )

o1−→ . . ., which is the
composition of a run ρC = pC0

u0∪o0−−−−→C pC1
u1∪o1−−−−→C . . . of C and a run ρB =

pB0
u0−→ pB1

u1−→ . . . of Bs.
We can show by induction that, for every i ≥ 0, pBi = (qCi , q

S
i ) with qCi =

pCi . The base case follows from the construction of Bs, which guarantees pB0 =
(qC0 , q

S
0 ). For the inductive case, suppose that pBi = (qCi , q

S
i ) with qCi = pCi .

Consider the label ui: since we know from ρC that pCi
ui∪oi−−−−→C pCi+1 and qCi = pCi ,

then we know that the transition pBi
ui−→ pBi+1 is derived from the first case

of the construction of Bs, hence (qCi , q
S
i )

ui−→ (qCi+1, q
S
i+1). Then there exists

o′i ∈ CIO(O) such that qCi
ui∪o′i−−−−→C qCi+1 and qSi

o′i−→S qSi+1. Since C is input-
deterministic we have that oi = o′i and qCi+1 = pCi+1, as desired.

We can notice that the induction above builds a run ρS = qS0
o0−→S qS1 . . . of

the specification S that accepts w. Hence, w ∈ L (S).
Let us consider the second implication. Take a B′ satisfying Inequation (1)

and a word w ∈ L (B′). Suppose towards a contradiction that w 6∈ L (Bs).
Consider the longest prefix w′ of w such that there exists a run ρ = (pC0 , p

B′
0 )

u0∪o0−−−−→ . . .
un∪on−−−−→ (pCn+1, p

B′
n+1) of C[B′]s with w′ = u0 . . . un. Since B′ is a

solution of Inequation (1), we have that the word v = o0o1 . . . on is in L (S),
hence there is a run ρS = qS0

o0−→S . . .
on−→S qSn+1 of S. Hence, by using at

each step the first case of the construction for Bs we can build a run ρB =
(pC0 , q

S
0 )

u0−→ . . .
un−−→ (pCn+1, q

S
n+1) of Bs on w′. Hence w′ ∈ L (Bs). If w′ = w
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left right

b 6= c; c = l; d = ?

b = c; c = r; d = r

b = c; c = l; d = l

b 6= c; c = r; d = ?

(a) CA Cabb.

left right

b = c; d = r
b = ∅; d = r
b = g; d = r
b = w; d = r

b = c; d = l
b = ∅; d = l
b = g; d = l
b = w; d = l

(b) CA Boat.

s0

w = l; g = l; c = l; d = l; e = no; s = no
w = l; g = l; c = l; d = r; e = yes; s = no
w = l; g = l; c = r; d = l; e = no; s = no
w = l; g = l; c = r; d = r; e = yes; s = no
w = l; g = r; c = l; d = l; e = no; s = no
w = l; g = r; c = l; d = r; e = no; s = no
w = l; g = r; c = r; d = l; e = yes; s = no
w = l; g = r; c = r; d = r; e = no; s = no
w = r; g = l; c = l; d = l; e = no; s = no
w = r; g = l; c = l; d = r; e = yes; s = no
w = r; g = l; c = r; d = l; e = no; s = no
w = r; g = l; c = r; d = r; e = no; s = no
w = r; g = r; c = l; d = l; e = yes; s = no
w = r; g = r; c = l; d = r; e = no; s = no
w = r; g = r; c = r; d = l; e = yes; s = yes
w = r; g = r; c = r; d = r; e = no; s = yes

(c) CA Mon.

Figure 7: CAs for the wolf, goat and cabbage problem of Example 7.

we have a contradiction since by assumption w 6∈ L (Bs). Otherwise, since w′
is the longest prefix, we have that for each o ∈ CIO(O) there is no transition
(pCm+1, p

B′
m+1)

um+1∪o−−−−−→ (pCm+2, p
B′
m+2) in C[B′]s. Hence, by the construction of

Bs we have that (pCm+1, q
S
m+1)

um+1−−−→ q⊥. Since q⊥ is a sink state accepting all
possible words, we have that w ∈ L (Bs), against the hypothesis.

Example 7 (Wolf, goat and cabbage problem). Consider the well-known wolf,
goat and cabbage problem, in which a farmer must transport a wolf, a goat and
a cabbage from one side of a river to the other, using a boat which can only
hold one item at the time beyond the farmer. Hence, every time the farmer
crosses the river, at least two items must be left unattended on the banks. If left
unattended on the same bank, the wolf would eat the goat, and the goat would
eat the cabbage.

We can model this problem as an embedding of CAs, and exploit Theorem 9
to obtain the set of all sequences of crossings for the farmer that keep all the
three items intact. The wolf, the goat and the cabbage are modelled each by
a CA with two states, representing the fact that the item is either on the left
bank or on the right bank of the river. We name the CAs Wolf , Goat and
Cabb, respectively. Each such CA has an interface composed by three nodes.
Two nodes, b (for boat) and d (for destination), are the same for all CAs, while
one is different: w for Wolf , g for Goat and c for the Cabb. Let us describe
in detail the behaviour of the CA Cabb, represented in Figure 7a (the others
are analogous). Cabb communicates its position at the next step by sending
either l (left) or r (right) on the node c. Furthermore, it synchronises with Boat
through the node b, that communicates the item carried on the boat (w for the

17



wolf, g for the goat, c for the cabbage, and ∅ for empty boat), and node d, that
communicates the position, l or r, of the boat at the next step.

The CA Boat for the boat is shown in Figure 7b and is similar to the CA
of an item: it consists of two states (left and right), and synchronises with the
CAs Wolf , Goat and Cabb through nodes b and d. The model includes also
a “monitor” Mon (Figure 7c), that checks the positions of the three items and
of the boat, and sends yes on node e (for eat) when the wolf is left unattended
with the goat or the goat is left unattended with the cabbage, and no otherwise.
Similarly, the monitor sends yes on node s (for success) when all items are on
the right side of the river, and no otherwise. The context C is then defined as the
synchronous join of all the above CAs, followed by the synchronous projection
on b, e and s, formally (Mon ./s Boat ./s Wolf ./s Goat ./s Cabb) ↓{b,e,s}.
It communicates with the external world through nodes e and s, and with the
component through node b. Thus, the component represents the farmer and
decides which item is carried on the boat at each step.

Given a state of the context and an input w, g, c, or ∅ on node b from the
component, the next state and the values to be communicated on nodes e and s
are uniquely determined, and thus we have that C is input-deterministic. The
safe strategies for the farmer are exactly those that respect the property P3 =
“yes is never communicated on node e”. By applying Theorem 9 to C and to the
property P3 we can obtain the most general update in Figure 8. The states are
labelled by the position of the items: the river is represented by a vertical line
|, and the initial letter of each item (b represents the boat) is on its left or on
its right according to the bank it is on. Indeed, the result provides the correct
solutions to the game, namely the farmer must carry the goat first, come back
with the boat empty, then transport either the wolf or the cabbage, come back
with the goat, leave the goat to carry the missing item, and finally go back to
fetch the goat. The most general update also features additional transitions, all
leading to state q⊥, which represent actions refused by the context (carrying an
item which is not on the same side as the boat) and hence lead to a deadlock.
Note that our approach cannot be used to build a most general CA satisfying the
property P4 = “eventually yes is communicated on node s”, since P4 is not a
safety property.

The asynchronous case is more complex. Indeed, because of the projection,
even if the context is input-deterministic, the embedding of the component in
the context may not be deterministic, and this would make the approach not
sound. To avoid this issue we add the constraint that at each step the context
synchronises with the component (but may not synchronise with the external
world).

Given an input-deterministic context C = 〈QC , U ∪ O, qC0 ,−→C〉, such that
for each transition qC1

u∪o−−→C qC2 the CIO u ∈ CIO(U) is not the constant
function with value ⊥, and a specification S = 〈QS , O, qS0 ,−→S〉, we define
IDMGCAa(C,S) = 〈QC ×QS ∪ {q⊥}, U, (qC0 , qS0 ),−→〉 as follows:

1. (qC1 , q
S
1 )

u−→ (qC2 , q
S
2 ) iff there exists o ∈ CIO(O) such that qC1

u∪o−−→C qC2 and
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Figure 8: Most general update for the wolf, goat and cabbage problem of Example 7.

qS1
o−→S q

S
2 ;

2. (qC1 , q
S
1 )

u−→ (qC2 , q
S
1 ) iff qC1

u−→C qC2 ;

3. (qC1 , q
S
1 )

u−→ q⊥ iff none of the conditions above applies;

4. q⊥
u−→ q⊥ for every u ∈ CIO(U).

We can now prove the correctness of our construction.

Theorem 10.
Given an input-deterministic context C = 〈QC , U ∪ O, qC0 ,−→C〉, such that for
each transition qC1

u∪o−−→C qC2 the CIO u is not the constant function with value
⊥, and a specification S, Ba = IDMGCAa(C,S) is a most general solution of
L (C[X ]a) ⊆ L (S) (Inequation (1), asynchronous case).

Proof. To prove the thesis we have to show that Ba satisfies L (C[Ba]a) ⊆ L (S),
and that any other CA B′ satisfying Inequation (1) is such that L (B′) ⊆ L (Ba).

Let us consider the first implication. Take a word w ∈ L (C[Ba]a) and
consider a corresponding run ρ′. In order to study ρ′, we consider generalised
runs where in transitions p c−→ q CIO c may be the constant function with
value ⊥, and in this case p = q. There are a generalised run ρ = (pC0 , p

B
0 )

o0−→
(pC1 , p

B
1 )

o1−→ . . . of C[Ba]a and runs ρC = pC0
u0∪o0−−−−→C pC1

u1∪o1−−−−→C . . . of C and ρB =

pB0
u0−→ pB1

u1−→ . . . of Ba such that ρ′ is the run obtained from the generalised
run ρ by dropping the steps where oi is the constant function with value ⊥.
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We can show by induction that, for every i ≥ 0, pBi = (qCi , q
S
i ) with qCi = pCi .

The base case follows from the construction of Ba, which guarantees pB0 =
(qC0 , q

S
0 ). For the inductive case, suppose that pBi = (qCi , q

S
i ) with qCi = pCi .

Consider the label ui: since we know from ρC that pCi
ui∪oi−−−−→C pCi+1 and qCi = pCi ,

then we know that the transition pBi
ui−→ pBi+1 is derived from case 2 or 1 of the

construction of Ba, depending on whether oi is empty or not:

1. oi is not empty, hence (qCi , q
S
i )

ui−→ (qCi+1, q
S
i+1). Then there exists o′i ∈

CIO(O) such that qCi
ui∪o′i−−−−→C qCi+1 and qSi

o′i−→S qSi+1. Since C is input-
deterministic we have that oi = o′i and qCi+1 = pCi+1, as desired.

2. oi is empty, hence (qCi , q
S
i )

ui−→ (qCi+1, q
S
i ). Then qCi

ui−→C qCi+1. Since C is
input-deterministic we have that oi is the constant function with value ⊥
and qCi+1 = pCi+1, as desired.

We can notice that the induction above builds a generalised run ρS = qS0
o0−→S

qS1 . . . of the specification S that accepts w. Hence, w ∈ L (S).
Let us consider the second implication. Take a B′ satisfying Inequation (1)

and a word w ∈ L (B′). Suppose towards a contradiction that w 6∈ L (Ba).
Consider the longest prefix w′ of w such that there exists a run ρ = (pC0 , p

B′
0 )

u0∪o0−−−−→ . . .
un∪on−−−−→ (pCn+1, p

B′
n+1) of C[B′]a with w′ = u0 . . . un. Since B′ is a

solution of Inequation (1), the word v = filter(o0o1 . . . on) is in L (S), where
function filter just drops all CIOs which are the constant function with value ⊥.
Hence, there is a generalised run ρS = qS0

o′0−→S . . .
o′m−−→S qSm+1 of S such that

filter(o′0 . . . o
′
m) = o0 . . . on. By using at each step case 1 or 2 of the construction

for Ba we can build a run ρB = (pC0 , q
S
0 )

u0−→ . . .
un−−→ (pCn+1, q

S
n+1) of Ba on w′.

Thus, w′ ∈ L (Ba). If w′ = w we have a contradiction since by assumption
w 6∈ L (Ba). Otherwise, since w′ is the longest prefix, we have that for each
o ∈ CIO(O) there is no transition (pCm+1, p

B′
m+1)

um+1∪o−−−−−→ (pCm+2, p
B′
m+2) in C[B′]s.

Hence, by the construction of Ba we have that (pCm+1, q
S
m+1)

um+1−−−→ q⊥. Since
q⊥ is a sink state accepting all possible words, we have that w ∈ L (Ba), against
the hypothesis.

Let us now discuss the complexity of the construction.

Theorem 11. Take a system C[A]x with x ∈ {a, s} such that C is input-
deterministic and, if x = a then for each transition qC1

u∪o−−→C qC2 the CIO u
is not the constant function with value ⊥. Finding a most general new compo-
nent B such that replacing A with B is a correct update for a given property Φ
or for any property, or an update that makes Φ hold (in isolation, or together
with all the properties of C[A]x) has complexity O(|C||S|) where C and S are,
respectively, the size of the context C and of the specification S.

Proof. By definition of the constructions used to solve the problems under con-
sideration.
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4. Updates Correct for all Contexts

In this section we study both the cases “given property, all contexts” and
“all properties, all contexts”. Similarly to the previous section, we can assume
without loss of generality that components A and B have the same interface U ,
and that all the contexts we consider have U as internal interface.

Let us start from the case of a given property. The property defines a min-
imum set of nodes O that the external interface of the context should provide.
For some properties, replacing component A with a new component B is a cor-
rect update iff the traces of B are included in the traces of A. However, this is
not the case for all the properties. For instance, all the updates are correct w.r.t.
the properties tt = CIO(O)∗ ∪ CIO(O)ω or ff = ∅. Indeed, in the asynchronous
case these are the only possibilities.

Theorem 12. Let Φ be a property and A a CA. For the asynchronous embed-
ding, a most general CA such that replacing A with B is a correct update w.r.t.
Φ in all the contexts is tt if Φ is either tt or ff , A otherwise.

Proof. If the property is tt then all the updates are trivially correct since C[B]a |=
tt. If the property is ff then all the updates are trivially correct since C[A]a 6|= ff .
Hence, the most general update tt is also correct.

Assume now that Φ is neither tt nor ff . A is a correct update by definition.
We need to show that all correct updates are less general than A.

Assume towards a contradiction that L (B) 6⊆ L (A) is a correct update. By
hypothesis we can find a trace u ∈ L (B) such that u 6∈ L (A). We can assume
without loss of generality that u = u0 . . . un is finite. Moreover, since Φ is not tt,
we can find a trace o = o0o1 . . . such that o 6∈ L (Φ). We build a context C that
recognises u as follows. The context has n + 2 states s0, . . . , sn+1 to recognise
u, with s0 initial state. Transitions are of the form si

ui−→ si+1 for 0 ≤ i ≤ n.
State sn+1 is a sink that can do any concurrent I/O operation c ∈ CIO(O). We
have that C[B]a produces all the traces from the alphabet CIO(O), including the
trace o, while C[A]a produces only the empty trace. Since o 6∈ L (Φ), while the
empty trace is in Φ, we have proved that replacing A with B is not a correct
update against our hypothesis.

In the synchronous case the context and the component progress in lock-
step. Given a property Φ, there are steps i in the computation on which Φ
does not pose any restriction: if a trace z of length i − 1 is in L (Φ), then all
the traces of length i having z as prefix are also in L (Φ). Conversely, there
are steps where Φ observes the system and whether a trace of length i is in
L (Φ) or not depends on the last action of the system. We capture this idea
with an observation-point language, that we will use to build a most general
update. Intuitively, the most general update must behave like A at observation
points, while it can do anything at other points. Indeed, if the most general
update does not behave like A at observation points one can build a context
distinguishing them. The observation-point language contains all the traces in
CIO(U)∗ (since the component A communicates on the interface U) satisfying
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the constraint that the length of the trace corresponds to an observation point
of the formula Φ.

Definition 9. Let Φ be a property. The observation-point language of Φ is:

R(Φ) = {u ∈ CIO(U)∗ | ∃z ·c′ ∈ CIO(O)∗.z ∈ L (Φ) ∧z ·c′ 6∈ L (Φ)∧|u| = |z ·c′|}

To compute a CA with final states acceptingR(Φ) one takes the complement
Φ of Φ. The CA Φ with final states has one final state qR⊥ which is a sink. The
CA R with final states accepting R(Φ) is obtained from Φ by removing the
self loops in the sink state qR⊥ and by replacing every transition of Φ with a
transition between the same pair of states for every label c ∈ CIO(U). Then, to
build a most general CA MGU(A,Φ) such that replacing A with MGU(A,Φ) is
a correct update w.r.t. Φ for all contexts, one can proceed as follows.

Algorithm 1 Computation of the most general CA MGU(A,Φ)

1. Determinise R using the subset construction, obtaining Subset(R).

2. Transform Subset(R) into a CA without final states by dropping
the distinction between final and non-final states.

3. Complete A by adding a sink state qA⊥ , obtaining A⊥.

4. Compute the product of A⊥ with Subset(R) using the synchronous
join operator to obtain A⊥ ./s Subset(R).

5. Remove observation states, that is all states (qA⊥ , QR) such that qR⊥ ∈
QR, and take the connected component including the initial state.

Theorem 13. Let Φ be a property and A a CA. For the synchronous embedding,
a most general CA such that replacing A with B is a correct update w.r.t. Φ and
for all contexts is MGU(A,Φ).

Proof. We show that (i) MGU(A,Φ) is a correct update and (ii) every correct
update B is such that L (B) ⊆ L (MGU(A,Φ)).

To show (i) we prove the contrapositive implication, namely that for every
context C such that C[MGU(A,Φ)] 6|= Φ we have that C[A] 6|= Φ. Thus, consider a
context C such that C[MGU(A,Φ)] 6|= Φ and let w be a trace in L (C[MGU(A,Φ)])
that does not satisfy Φ. Since Φ is prefix closed, there exists a minimal prefix
wj of w such that wj 6∈ L (Φ) and wj−1 ∈ L (Φ). Since C[MGU(A,Φ)] is prefix
closed, wj ∈ L (C[MGU(A,Φ)]) and thus we can find a run ρ = (q0, p0)

w0∪u0−−−−→
. . .

wj−1∪uj−1−−−−−−−→ (qj , pj)
wj∪uj−−−−→ (qj+1, pj+1) of C[MGU(A,Φ)] such that the trace

u = u0 . . . uj belongs to L (MGU(A,Φ)). Two cases may arise. If u ∈ L (A)
then wj ∈ L (C[A]) and we have proved that C[A] 6|= Φ.

Otherwise, since wj−1 ∈ L (Φ), wj 6∈ L (Φ) and |wj | = |u| then we have
that u ∈ R(Φ). This implies that there exists a run of R over u that ends in
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(b) Most general scheduler MGU(Sch,Φ).

Figure 9: CAs of Example 8.

the sink state qR⊥ and that the unique run of Subset(R) over u ends in a state
QR such that qR⊥ ∈ QR. Hence, the last state of ρ, (qj+1, pj+1), is equal to
(qA⊥ , QR). Since all states (qA⊥ , QR) with qR⊥ ∈ QR are removed at step 5 of the
construction of MGU(A,Φ), we have that ρ is not a valid run of C[MGU(A,Φ)]
and a contradiction is found.

To show (ii), assume that B is a correct update but L (B) 6⊆ L (MGU(A,Φ)).
This means that there exists w ∈ L (B) such that w 6∈ L (MGU(A,Φ)). Since
MGU(A,Φ) is prefix closed, we can find a minimal prefix wj of w such that
wj−1 ∈ L (MGU(A,Φ)) but wj 6∈ L (MGU(A,Φ)) (notice that the empty prefix
belongs to L (MGU(A,Φ))). Since for every accepting run of A we can build a
corresponding accepting run of MGU(A,Φ), we have that wj 6∈ L (A). Notice
that the product CA A⊥ ./s Subset(R) built at step 4 of the construction of
MGU(A,Φ) is complete. Hence, there must exist a run of A⊥ ./s Subset(R)
over wj that ends in an observation state (qA⊥ , QR) with qR⊥ ∈ QR, and thus we
have that wj ∈ R(Φ). The definition of R(Φ) implies that we can find a trace
z · c′ ∈ CIO(O)∗ such that |wj | = |z · c′|, z ∈ L (Φ) and z · c′ 6∈ L (Φ). We
build a context C that recognises wj as follows. The context has j + 2 states
s0, . . . , sj+1, with s0 initial state. Transitions are of the form si

wi∪zi−−−−→ si+1

for 0 ≤ i ≤ j − 1 and sj
wj∪c′−−−−→ sj+1. State sj+1 is a sink with no outgoing

transitions. C[B]s produces the trace z · c′, while C[A]s produces only prefixes of
z (since wj 6∈ L (A)). Since Φ is closed under prefix we have that if z ∈ L (Φ)
then all prefixes of z belong to L (Φ). Since z · c′ 6∈ L (Φ), while all prefixes
of z belong to L (Φ), we have proved that replacing A with B is not a correct
update.

Example 8. Consider the property P1 represented by the CA Φ back in Fig-
ure 4a. By the above procedure we can first obtain the CA with final states
for R(Φ) in Figure 9a, and then the most general scheduler MGU(Sch,Φ) in
Figure 9b, which makes the update correct in the synchronous case for every
context and for the property Φ. We are left with two kinds of traces: traces with
prefix r = a, r = b, r = a that behave as the original scheduler Sch for the first
3 steps, and traces of length less than 3 that behave differently from Sch. This
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corresponds to the intuition that the property can only reject traces at step 3.

Let us now discuss the complexity of the construction above.

Theorem 14. Let Φ be a property and A a CA. For the synchronous embedding,
the time complexity of computing a most general CA such that replacing A with
B is a correct update w.r.t. Φ and for all contexts is a double exponential in the
size of Φ and polynomial in the size of A.

Proof. Directly by inspection of the construction of MGU(A,Φ) in Algorithm 1
and of R just before it, by noticing that the two exponentials are due to the
subset constructions. However, one can note that the subset construction for R
is performed on a CA that, from the point of view of minimisation, is equivalent
to an automaton with a single letter in its alphabet. In this case, the subset
construction can be performed with time complexity O(e

√
n log n) [21].

We now characterise the updates correct w.r.t. all the properties and all
contexts. In this case there are strong requirements on the updates. To be
correct for all contexts, the update needs to be correct for the context that
reports every communication to the outside world. Since properties correspond
to sets of traces, the new component B should have at most the traces of A, that
is B should be a refinement of A. Indeed, since refinement is a congruence, this
condition is necessary and sufficient, for both the synchronous and asynchronous
embedding.

Theorem 15. Let A be a CA. A most general update such that replacing A
with B is correct for all properties and all contexts is A.

Proof. A is a correct update thanks to Lemma 1. We need to show that each
correct update is less general than A. We distinguish the cases of asynchronous
composition and of synchronous composition. In the first case, take a property Φ
which is neither equivalent to tt nor to ff . The update is correct w.r.t. property
Φ, thus thanks to Theorem 12 we have L (B) ⊆ L (A).

With asynchronous composition, note that the property Φ = {(n = a)i|i ∈
N} has R(Φ) = CIO(U)∗. Hence the construction of MGU(A,Φ) builds a CA
such that L (MGU(A,Φ)) = L (A). Thanks to Theorem 13, L (MGU(A,Φ)) =
L (A) is a most general correct update.

Example 9. By the above results, the update that replaces the original sched-
uler Sch in Figure 1a with the most general scheduler Sch∀ in Figure 3 is not
correct w.r.t. all contexts and all properties, since its language is larger than the
language of the original scheduler. For instance, this update is not correct for
the context that simply reports the actions of the scheduler to the outside world.

Instead, the inverse update, that replaces the most general scheduler Sch∀
with the original one Sch, is correct for any property and for any context.
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5. From Static to Dynamic Update

Previous sections concentrate on static update, where the system is shut
down before update, and computation restarts from the initial state after up-
date. We consider here dynamic update, where the component A is replaced by
B at runtime. In particular, when B starts, the context C is not necessarily in
the initial state, but it is in the same state it was in when A was removed. In
this setting, starting B in the initial state may be wrong. This raises the issue
of defining how state transfer [6] is performed: if the system is updated when
component A was in state q, how to find a state q′ of B such that starting B in
q′ after the update produces a correct behaviour.

Definition 10 (Dynamically Correct Update). Let C = 〈QC , U ∪O, qC0 ,−→C〉 be
a context and A = 〈QA, U, qA0 ,−→A〉 and B = 〈QB, U, qB0 ,−→B〉 two components.
In system C[A], an update replacing component A with B is dynamically correct
w.r.t. a property Φ and a partial function f : QA 7→ QB iff whenever C[A] |=
Φ then wAwB ∈ L (Φ) for each trace wA obtained from a run (qC0 , q

A
0 )

wA=⇒
(qC , qA) of C[A] and each trace wB obtained from a run of C[B] starting in state
(qC , f(qA)).

We define below transfer functions: if a transfer function is used as f in the
definition above and replacing A with B is a (statically) correct update, then
the update is also dynamically correct.

Definition 11 (Transfer Function). Given two CAs A = 〈QA, U, qA0 ,−→A〉 and
B = 〈QB, U, qB0 ,−→B〉 such that L (A) ⊆ L (B), a transfer function f : QA 7→ QB
is a partial function satisfying the following property: for every state qA ∈ QA,
if f(qA) = qB then for every trace u such that qA0

u
=⇒ qA and w ∈ L (qB) we

have that uw ∈ L (B).

Theorem 16. Let A and B be two components such that L (A) ⊆ L (B) and f
a transfer function. If replacing A with B is a correct update (in a given context
or in any context) w.r.t. a property Φ, then replacing A with B is dynamically
correct w.r.t. Φ and f .

Proof. We need to show that wAwB ∈ L (Φ) for each trace wA obtained from a
run (qC0 , q

A
0 )

wA=⇒ (qC , qA) of C[A] and each trace wB obtained from a run of C[B]

starting in state (qC , f(qA)). The run (qC0 , q
A
0 )

wA=⇒ (qC , qA) of C[A] is obtained

by composing a run qC0
w1
C=⇒ qC of C and a run qA0

u
=⇒ qA of A. The trace wB is

obtained by composing a run ρC of C (starting in state qC) accepting word w2
C

and a run ρB of B (starting in state f(qA)) accepting word w. By definition of
transfer function, uw ∈ L (B). Since replacing A with B is a (statically) correct
update then wAwB ∈ L (Φ).

If B is a most general update, then using a transfer function is not only a
sufficient condition for ensuring that the update is dynamically correct, but also
a necessary condition.
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Algorithm 2 Computation of the largest simulation on QB, approximating ≤.

1 function simulation (CA B = 〈QB, U, qB0 ,−→〉)
2 {
3 � = {(p, q)|p, q ∈ QB}
4 do
5 {
6 �′ = �
7 for each (p, q) ∈�
8 {
9 if ∃ p′, a. p

a−→ p′ and q 6 a−→ then
10 {
11 � = � \{(p, q)}
12 }
13 if ∃ p′, a, q′. p

a−→ p′ and q
a−→ q′ and (p′, q′) 6∈� then

14 {
15 � = � \{(p, q)}
16 }
17 }
18 }
19 while(�′ 6= �)
20 return(�)
21 }

Theorem 17. Let A and B be two components such that L (A) ⊆ L (B). If B
is a most general update such that replacing A with B is a correct update (in a
given context or in any context) w.r.t. a property Φ, then replacing A with B is
dynamically correct w.r.t. Φ and f only if f is a transfer function.

Proof. We show that if f is not a transfer function then the update is not
dynamically correct. Since f is not a transfer function we can find a run qA0

u
=⇒

qA of A and a run ρB of B (starting in state f(qA)) accepting word w such that
uw /∈ L (B). Since B is a most general update, then there exists a computation
of C on uw producing a trace which is not in L (Φ), hence the update is not
dynamically correct.

We show below how, given two components A and B, to build a specific
transfer function tf A7→B, and we discuss its properties. In the following we may
drop the subscript A7→B when the involved components are understood.

Definition 12. Given a CA B = 〈QB, U, qB0 ,−→B〉, we define a partial order
relation ≤ on the states of B as follows: q ≤ q′ iff L (q) ⊆ L (q′).

Algorithm 2 builds a relation � that is the largest simulation on QB [22].
It is known (see, e.g., [22]) that simulation implies trace inclusion: for every
p � q we have that L (p) ⊆ L (q). This proves that the relation � returned by
Algorithm 2 is a subset of ≤ on B.

Lemma 6. The relation � returned by Algorithm 2 is a subset of ≤ on B.

Proof. Trivial, since simulation implies trace inclusion.

26



(s0, r0)

(s1, r1)

(s0, r6)

(s1, r5)

(s0, r5)

s = a

s = b

s = a

s = b

s = a

(a) CA for Sch ./s SchΦ.

r5

r0 r1 r2 r3 r6

r4

(b) Lattice of relation �.

Figure 10: Pictures for Example 10.

In order to define the transfer function tf A7→B we take the synchronous join
A ./s B of the two CAs and we restrict it to reachable states. Then, for each
qA ∈ QA, we consider the set S(qA) = {qB ∈ QB | (qA, qB) is reachable},
ordered according to the simulation relation �. We define tf (qA) = qB, where
qB is a greatest lower bound of S(qA) in QB, namely a maximal element of QB
such that qB � q′B for every q′B ∈ S(qA). Note that qB is not necessarily an
element of S(qA). However, if it belongs to S(qA), then it is its minimum (and
it is unique). If no such element exists, then tf (qA) = ⊥.

Theorem 18. Given two components A and B, tf A7→B is a transfer function.

Proof. To prove that tf is a transfer function, we have to prove that for every
state qA ∈ QA, if tf (qA) = qB then for every trace u such that qA0

u
=⇒ qA and

w ∈ L (qB) we have that uw ∈ L (B).
Take one u such that qA0

u
=⇒ qA and one w ∈ L (qB). Then we have that

there is a run of A ./s B such that (qA0 , q
B
0 )

u
=⇒ (qA, q

′
B). From the definition

of tf , we have that qB � q′B and thus, by Lemma 6 that w ∈ L (q′B). Hence,
uw ∈ L (B).

We now discuss the complexity of the computation of transfer function tf .

Theorem 19. Given two CAs A and B such that L (A) ⊆ L (B), a transfer
function tf A7→B can be built in time O(|A||B|+ |B|3), where |A| is the size of A
and |B| the size of B.

Proof. Algorithm 2 has complexity O(|B|3). The join of A and B can be com-
puted in time O(|A||B|), and restricting it to reachable states can also be done
in O(|A||B|). The computation of tf requires an additional O(|A||B|), hence
the total complexity is O(|A||B|+ |B|3)

Example 10. Consider the update that replaces the scheduler Sch of the system
in Example 1 with the most general scheduler SchΦ satisfying property P1 = “if
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w=1 is executed at the first step, then at the third step r=0 cannot be executed”,
represented in Figure 4b.

To obtain the transfer function tf that makes such an update dynamically
correct, we first compute both the join Sch ./s SchΦ shown in Figure 10a and,
using Algorithm 2, the relation � on the states of SchΦ represented in Fig-
ure 10b.

Then, the sets S(·) for the states of Sch are

S(s0) = {r0, r5, r6}
S(s1) = {r1, r5}

Since the greatest lower bound of S(s0) in QSchΦ is r4 (r0 and r6 are uncom-
parable), while the greatest lower bound of S(s1) in QSchΦ

is r1, the transfer
function tf is

tf (s0) = r4

tf (s1) = r1

This means that the best possible ways to dynamically replace Sch with SchΦ

found by our approach are to stop Sch in state s0 and start SchΦ in state r4,
or to stop Sch in state s1 and start SchΦ in state r1. Also stopping Sch in
state s1 and starting SchΦ in state r4 would be correct, but would unnecessarily
reduce the possible behaviours. One could imagine that, since s0 is the initial
state, stopping Sch in state s0 and starting SchΦ in its initial state r0 should
also be correct, but this is not the case. Indeed, Sch could be in s0 not only at
the beginning, but also later in the computation, and in this second case starting
SchΦ in state r0 may not be correct.

The example above shows that, beyond the transfer function tf , there are
other transfer functions (and, since they are transfer functions, they produce
dynamically correct updates). For instance, also the function that assigns ⊥
to every state of Sch is a transfer function. We show below that if the new
component B is deterministic then the transfer function tf is optimal.

Lemma 7. If B is a deterministic CA, then the relation � returned by Algo-
rithm 2 is precisely ≤ on B.

Proof. Trivial, since for deterministic automata simulation coincides with trace
inclusion [22].

Theorem 20. If A and B are two components with B deterministic, then tf A7→B
is a transfer function with maximum domain.

Proof. To prove that tf has maximum domain, suppose towards a contradiction
that there exists a transfer function tf ′ and a qA ∈ QA such that tf (qA) = ⊥
and tf ′(qA) = qB 6= ⊥. From the definition of tf , qB cannot be a greatest lower
bound of S(qA) in QB. As a consequence, there exists q′B ∈ S(qA) such that
qB 6� q′B. By Lemma 7, since B is deterministic we have that the relation �
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Figure 11: An example where tfA7→B is not the optimal transfer function.

computed by Algorithm 2 is the relation ≤ from Definition 12. By definition of
≤, qB 6≤ q′B implies L (qB) 6⊆ L (q′B), and thus there exists a trace w ∈ L (qB)
such that w 6∈ L (q′B). Since q′B ∈ S(qA), then the state (qA, q

′
B) is reachable and

there exists a trace u such that (qA0 , q
B
0 )

u
=⇒ (qA, q

′
B). By definition of transfer

function, uw ∈ L (B). Since B is deterministic, we have that the unique run
of B on u is such that qB0

u
=⇒ q′B. From uw ∈ L (B) we can conclude that

w ∈ L (q′B), and a contradiction is found.

We can be even more precise, by extending the partial order ≤ pointwise to
functions.

Definition 13. Given two functions f, g : QA 7→ QB, we have f ≤ g iff for
every qA ∈ QA:

• either f(qA) = ⊥ or

• g(qA) 6= ⊥ and f(qA) ≤ g(qA).

Theorem 21. If A and B are two components with B deterministic, then tf A7→B
is a maximal transfer function w.r.t. ≤.

Proof. Since B is deterministic, the relation � coincides with ≤. To prove
that tf is maximal, suppose towards a contradiction that there exists a transfer
function tf ′ such that tf < tf ′. Hence, there exists a state qA ∈ QA such that
tf ′(qA) = qB and tf (qA) < qB. From the definition of tf , qB cannot be a greatest
lower bound of S(qA) in QB. As a consequence, there exists q′B ∈ S(qA) such
that qB 6≤ q′B. By definition of ≤, L (qB) 6⊆ L (q′B), and thus there exists a trace
w ∈ L (qB) such that w 6∈ L (q′B). Since q′B ∈ S(qA), then the state (qA, q

′
B)

is reachable and there exists a trace u such that (qA0 , q
B
0 )

u
=⇒ (qA, q

′
B). By

definition of transfer function, uw ∈ L (B). Since B is deterministic, we have
that the unique run of B on u is such that qB0

u
=⇒ q′B. From uw ∈ L (B) we can

conclude that w ∈ L (q′B), and a contradiction is found.

If B is not deterministic, then the transfer function tf may not be optimal,
as shown by the example below.
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Example 11. Consider the CAs in Figure 11. By building the join A ./s B we
obtain that

S(q0) = {s0} S(q1) = {s1, s2}
S(q2) = {s1} S(q3) = {s2}

Since the relation � on the states of B is such that s1 � s0 and s2 is uncompa-
rable with both s0 and s1, the transfer function tf is

tf (q0) = s0 tf (q1) = ⊥
tf (q2) = s1 tf (q3) = s2

Notice that tf is undefined on q1. However, any function f that behaves as tf
on q0, q2 and q3 and maps q1 to either s1 or s2 is still a transfer function and
has a larger domain than tf .

The fact that optimality of tf requires that B is deterministic is not a prob-
lem in our setting, since all the constructions that we have discussed in the
paper produce most general updates which are deterministic. Furthermore,
if an update B is not deterministic, one can determinise B obtaining B′ and
then apply the construction to B′. In order to transfer the result back to B, if
tf A7→B′(qA) = q′B, one should remember that q′B corresponds to a set of states
of B. Selecting any of these states would produce a transfer function, since their
language is a subset of L (q′B), however the resulting transfer function may not
be maximal (but has maximum domain).

Example 12. Take the update B in Figure 11. We showed in Example 11 that
applying our approach on B would produce a transfer function that does not
have maximal domain. We can then determinise B obtaining B′ = Subset(B),
represented in Figure 12. Notice that B′ is equal to A up to renaming of states.
Thus, by applying our approach to B′ we obtain

tf (q0) = {s0} tf (q1) = {s1, s2}
tf (q2) = {s1} tf (q3) = {s2}

We can now transfer the result back to B, obtaining that both functions tf ′ and
tf ′′ below are transfer functions:

tf ′(q0) = s0 tf ′(q1) = s1

tf ′(q2) = s1 tf ′(q3) = s2

tf ′′(q0) = s0 tf ′′(q1) = s2

tf ′′(q2) = s1 tf ′′(q3) = s2

In all the discussion above, we assumed that L (A) ⊆ L (B). This restriction
is satisfied in all the updates we consider, but for the ones enforcing a new
property (Theorems 5 and 6). If we drop this restriction, then it may happen
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B′

{s0} {s1, s2}

{s1}

{s2}

c = 0

c = 0

c = 1

c = 0

c = 1

Figure 12: Determinisation of B from Figure 11.

that the trace performed by C[A] before the update does not satisfy Φ. Since
our properties are prefix closed, then from that point onward there will be no
hope of getting a dynamically correct update. Furthermore, if we restrict the
attention only to a specific state qA of A, it may happen that there exist runs
of C[A] leading to qA accepting a word that does not satisfy Φ, and in this case
there is always the possibility that the update is not dynamically correct. If
instead all the runs of C[A] leading to qA accept words that satisfy Φ, then we
can use the approach above to compute tf (qA).

We have discussed above how to build a transfer function. We do not consider
in this paper the issue of how to actually apply an update at runtime, and how
to correctly perform the state transfer specified by transfer function tf . These
issues need to be discussed at a much lower level of abstraction than the one
we consider here. An approach to this problem in the concrete context of C
programs can be found in [23].

6. Related Work

While many approaches tackle system update [1], the problem of ensuring
correctness of a system upon update has received less attention till now. We
discuss below relevant classes of related work.

Refinement. Approaches based on behavioural congruences, such as [24], allow
one to prove the correctness of updates when a component is replaced by a syn-
tactically different, but semantically equivalent one. Similarly, approaches based
on refinement, such as [25] in the context of Reo, allow one either to add new
behaviours, while preserving the old ones, or to remove old behaviours without
adding new ones (this depends on the direction of refinement). This last case is
in our setting an update correct in any context and for any property, which per-
mits only to reduce the allowed behaviours. We also consider different notions
of update, selecting the properties to preserve or the allowed contexts, which
cannot be matched by the behavioural congruences or refinement approaches.

The works in [26, 27] present refinement and extension processes for state
machines, where formally-validated refinement patterns are applied to guaran-
tee property preservation. While their semantic model is close to ours, their
approach is not limited to safety properties. On the other side, their approach
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is not fully automatic: refinement and extension patterns must be provided and
formally validated by the user before the update can be applied.

We remark that studying refinement for components in isolation, as in [28,
29], is not enough to ensure that the updated system refines the original one:
one needs to check that refinement is a congruence.

Approaches focusing on specific properties. Some approaches, such as [30, 31],
focus exclusively on type safety, that rules out obviously wrong behaviours, but
it is insufficient for establishing that given properties are preserved.

A line of work [32, 33, 34, 35] uses choreographic descriptions to obtain
correctness of the updates by construction. However, this kind of approach can
only deal with a few fixed properties such as deadlock freedom, race freedom
and progress. Another related approach is presented in [36], where behavioural
types are used to ensure that running sessions are not interrupted, and that
provided services are preserved. Our approach is more flexible than the ones
above since it considers any property expressible as a CA, while the approaches
above deal with a few fixed properties such as type safety and deadlock freedom,
but do not ensure any form of preservation of behaviour. We remark however
that, since deadlock freedom is not a safety property, we cannot deal with it in
our setting.

Model checking. In [37], a modular model checking approach to verify adaptive
programs is proposed. Requirements are formalised using an extension of LTL.
They decompose the model checking problem following the temporal evolution of
the system, while we decompose the verification problem following the structure
of the system.

Model checking is also used in [38] in the context of Reo connectors. Both
reconfiguration and computation are mapped into graph transformations, and
properties formalised in CTL are checked using the GROOVE model checker.
The focus here is more on structural properties of the Reo connector and on the
interplay between different reconfiguration rules, while we concentrate on the
behaviour of the system upon update. In [39] graph transformations are used
also to study the state transfer problem in the context of Reo connectors. The
focus here is to compute the resulting state after reconfiguration thanks to a
compositional semantic model, yet there are no results on how to ensure such a
resulting state is correct, apart for requiring it to be reachable from the initial
state and not a deadlock state.

We remark that the update resulting from one of their atomic reconfigura-
tions can be mimicked using our notion of asynchronous composition.

Invariant preservation. The work in [40] categorises different kinds of recon-
figurations in the context of Reo connectors. The updates that are correct for
any property (in a given context) are called contractive in [40], and a property
for which an update is correct (in a given context) is called an invariant for the
update. However, in [40], nothing is said about the requirements that an update
must satisfy to be contractive or to have a given invariant: these problems have
been solved by the present paper.
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The work in [41] considers a problem similar to ours in the concrete setting of
aspect-oriented programming. They use a dedicated semantic framework (Com-
mon Aspect Semantic Base) and look for the classes of properties preserved in
any context by relevant classes of updates (observers, aborters, . . . ). Properties
are expressed in LTL and CTL*, but, differently from us, they consider atomic
predicates on both states and events, hence the two approaches are not directly
comparable.

Dynamic update. The problem of dynamic update, and the related state trans-
fer problem, has been first analysed in [6]. Here they assume no knowledge
about the expected behaviour of the program, and they just require that the
system after the update reaches, possibly after some spurious steps, a state
which would have been reachable by executing the updated system since the
very beginning. Our focus is different, since we do not consider reachability of
states, but properties satisfied by the observations performed on the interface
with the external world. However, the idea of allowing some spurious transitions
upon update before the updated system starts behaving as expected could be
applied also to generalise our setting, and we plan to consider it in future work.

In [4], a program transformation combines a program and an update (a
patch in their terminology) into a new program presenting all the behaviours
corresponding to applying the update at any allowed point. This allows one to
apply off-the-shelf analysers to check properties of the system after the update.
They consider a single program at the time, as in our “given context” cases, and
concentrate on backward-compatible specifications, which correspond to our
updates correct for a given property, and on post-update specifications, which
correspond to properties that the update enforces (as we do in Theorem 5).
They also mention updates which are observationally equivalent, corresponding
to our “all properties, given context” case. The approach is at the concrete
level of the operational semantics of an imperative language, and underlies a
tool working on C programs. The main difference w.r.t. our approach is that
we build updates satisfying desired properties, while they check properties on
updates provided by the user.

In [42], a framework for dynamic update in the coordination modelling lan-
guage Paradigm is presented. The system starts from an initial architecture and
then migrates towards a new architecture through a number of adaptation steps
that are executed on-the-fly. A model checker is used to verify the correctness
of the migration with respect to µ-calculus properties. The initial architecture
may not respect all desired properties, hence correctness of the update involves
establishing that the final architecture is eventually reached and that it respects
the desired properties. Thus, their approach is close to our update that enforces
new properties, yet they only verify the update and do not synthesise a most
general one as we do.

Synthesis. The works in [18, 19] are related to ours from the technical point
of view. In particular, [18] provides us the general framework to solve Inequa-
tion (1), while [19] gives us the properties that a composition operator should
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respect to fit in the general framework. However, they do not provide a con-
struction for building an actual automaton in our case, namely, for CAs with
both finite and infinite traces. Also, they have a different aim, since they do
not consider update at all. They highlight, however, a connection between up-
date and another challenging problem: the automatic synthesis of systems from
logical specifications. Polynomial algorithms for restricted classes of specifica-
tions have been identified [43, 44]. Even though they do not consider update,
these results could be exploited both to make our approach more efficient and
to extend it to properties that go beyond safety, like liveness and deadlock free-
dom. Another problem related to ours is supervisory control of discrete event
systems (see, e.g., [45]). The main difference is in the composition mechanism,
which features a feedback control loop and introduces latency, while this does
not happen in our case.

7. Conclusion

We studied the problem of finding out whether an update replacing a com-
ponent A with a component B in a given context C is correct w.r.t. a safety
property Φ. We also characterised the updates correct in any context (for a
given property), for any property (in a given context), and for any property in
any context. In all the cases, we considered both synchronous and asynchronous
composition. In order to support dynamic update, we also studied how to map
the state of the original component A into the state of the new component B
so that each execution where A is replaced by B (initialised according to the
state of A) without restarting the context satisfies the desired properties. We
studied the problems above in the setting of constraint automata.

The same problems can also be studied in other settings, and indeed we plan
to consider some of them in future work. For instance one may consider more
complex properties, as hinted at above, or more complex automata, like timed
automata or general CAs where the set of data values can be infinite. We can
also consider other forms of composition, e.g. via bounded or unbounded buffers
or lossy channels, and other correctness criteria for updates, such as simulation
or testing pre-orders. Finally, we want to apply our technique to more concrete
models, starting from the ones based on CAs, such as REO [11] and Rebeca [12].
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Appendix A. Proof of Theorem 1, asynchronous case

To apply the theory in [19] to our asynchronous embedding, we show below
that its language L (C[A]a) can be rewritten as

L (C[A]a) =
(
L (A)>Y ∩L (C)>X

)
⊥X◦Y (A.1)

where X and Y are alphabets, and ⊥, >, and ◦ are respectively a language re-
striction operator, a language expansion operator, and an alphabet composition
operator satisfying the following properties:

H1 given two disjoint alphabets X and Y and a language L over X,
(L>Y )⊥X = L ,

H2 given two disjoint alphabets X and Y and two languages L1 and L2 over
Y ◦X, (L1 ∩L2)⊥X = (L1⊥X) ∩ (L2⊥X) provided that L1 = (L1⊥X)>Y
or L2 = (L2⊥X)>Y ,

H3 given two disjoint alphabets X and Y and a language L over Y ◦ X,
L⊥X = ∅ ⇔ L = ∅.

Intuitively, H1 states that ⊥ is the right inverse of >, H2 concerns distributiv-
ity of ⊥ over ∩, and H3 states that language restriction produces the empty
language iff the starting language is empty too.

In our setting X and Y are of the form CIO(Ni) for some given sets of nodes
N1 and N2. Hence, we define CIO(N1) ◦ CIO(N2) = CIO(N1 ∪ N2). Also, as
a shortcut, we write >N for >CIO(N) and ⊥N for ⊥CIO(N). Given a language L
over CIO(N1 ∪N2), consider the function f : CIO(N1 ∪N2) 7→ CIO(N2)∗ defined
as

f(c) =

{
c ↓N2 if Nodes(c) ∩N2 6= ∅
ε otherwise

We define r as the homomorphic extension of f to finite and infinite sequences
of symbols in CIO(N1 ∪N2). The restriction of L to CIO(N2) is the language
L⊥N2

= {r(w) | w ∈ L }. Similarly, given a language L over CIO(N2), the
expansion of L to CIO(N1) is the language L>N1

= {w ∈ CIO(N1 ∪ N2)∗ ∪
CIO(N1 ∪N2)ω | r(w) ∈ L }.

Lemma 8. Given a context C with nodes O∪U and a component A with nodes
U , we have that L (C[A]a) =

(
L (A)>O ∩L (C)>∅

)
⊥O.

Proof. We start the proof by observing that L (C)>∅ = L (C). Moreover, we
recall that C[A]a = (A ./a C)⇓O. Since the language projection operator ⊥O
corresponds to the projection operator ⇓O on CAs, we only need to show that
L (A ./a C) = L (A)>O ∩L (C).

Assume w ∈ L (A ./a C), and let ρ = (q0, p0)
w0−−→ (q1, p1)

w1−−→ . . . be a run
accepting w. Since in our setting the set of nodes U of the component A is a
subset of the set of nodes O ∪ U of the context C, we have that the component
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can advance only when it can communicate to C. Hence, by definition of ./a,
we have that p0

w0−−→ p1
w1−−→ . . . is an accepting run of C. Hence w ∈ L (C).

Moreover, for every i < |w| we have that either Nodes(wi)∩U = ∅ and qi = qi+1

or Nodes(wi)∩U 6= ∅ and qi
wi ↓U−−−→ qi+1. This implies that we can build a run of

A that accepts the word r(w). Since r(w) ∈ L (A) we have that w ∈ L (A)>O
and thus also w ∈ L (A)>O ∩L (C).

Assume now that w ∈ L (A)>O ∩L (C). Then w ∈ L (C) and we can find a
run ρC of C accepting w. Since w ∈ L (A)>O we have that r(w) ∈ L (A) and
thus we can find a run ρA of A accepting r(w). By synchronising ρC and ρA we
can build a run of A ./a C accepting w as desired8.

Lemma 9. The language restriction and language expansion operators, ⊥ and
>, satisfy the properties H1, H2, and H3.

Proof.

H1 By definition of > and ⊥.

H2 We assume that L1 = (L1⊥X)>Y (the other case is symmetric). Assume
w ∈ (L1 ∩L2)⊥X . Then there exists w′ ∈ L1 ∩L2 such that w = r(w′).
Since w′ ∈ L1 and w′ ∈ L2 then w ∈ L1⊥X and w ∈ L2⊥X . Hence,
w ∈ (L1⊥X) ∩ (L2⊥X).

Assume now that w ∈ (L1⊥X)∩ (L2⊥X). Then w ∈ L1⊥X and w ∈ L2⊥X .
From the latter we know that there exists w2 ∈ L2 such that r(w2) = w.
Consider now the set (L1⊥X)>Y = {w′ | r(w′) ∈ L1⊥X}: since w ∈ L1⊥X
we have that w2 ∈ (L1⊥X)>Y , which by hypothesis coincides with L1.
Hence, w2 ∈ L1 ∩L2 and w ∈ (L1 ∩L2)⊥X .

H3 For the ⇒ direction, assume towards a contradiction that L⊥X = ∅ but
L 6= ∅. Take a word w ∈ L : then the word r(w) ∈ L⊥X . The ⇐ direction
is trivial.

Appendix B. Proof of Theorem 8

We first recall some key notions on three-player games, taken from [20].
Given an alphabet Ai of actions for each Player i (i = 1, 2, 3), a three-player

game is a tuple G = 〈Q, q0, δ〉 where:
• Q is a finite set of states with a distinguished initial state q0;
• δ : Q×A1 ×A2 ×A3 7→ Q is a total and deterministic transition function

that, given a current state q, and actions a1 ∈ A1, a2 ∈ A2, a3 ∈ A3 of
the players, returns the unique successor state q′ = δ(q, a1, a2, a3).

8Note that if we allow as CIO the constant function with value ⊥ then it is not guaranteed
that we can synchronise ρC and ρA.
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Observations. For i = 1, 2, 3, a set Oi ⊆ 2Q of observations (for player i)
is a partition of Q. Let obsi : Q 7→ Oi be the function that assigns to each
state q ∈ Q the (unique) observation for player i that contains q, i.e., such that
q ∈ obsi(q). The functions obsi are extended to sequences ρ = q0 . . . qn of states
in a pointwise way. We say that player i is blind if Oi = {Q}, that is, player i
has only one observation. Player i has perfect information if Oi = {{q} | q ∈ Q},
that is player i can distinguish each state.
Strategies. For i = 1, 2, 3, let Σi be the set of strategies σi : O+

i 7→ Ai of player
i that, given a sequence of past observations, return the next action for player
i. If a player i is blind, its strategies can be represented as infinite words on Ai.
Outcome. Given strategies σi ∈ Σi (with i = 1, 2, 3), the outcome play from
a state q0 is the infinite sequence ρ = q0q1 . . . such that for all j ≥ 0, we have
qj+1 = δ(qj , a

1
j , a

2
j , a

3
j ) where aij = σi(q0 . . . qj), for i = 1, 2, 3.

Safety Objectives. Given a set T ⊆ Q of safe states, the safety objective
requires that the outcome only visits states in T .
Decision problem. Given a game G = 〈Q, q0, δ〉 and a safety objective T ⊆ Q
the three-player decision problem is to decide if there exists a strategy σ1 for
Player 1 such that for each strategy σ2 for Player 2, there exists a strategy σ3

for Player 3 such that the outcome of the game satisfies the safety objective.
In order to prove the lower bound on the complexity of our approach, we

show how we can reduce to Inequation (1) any three-player game where Player
1 is blind and Player 3 has perfect information. This problem is known to
be EXPSPACE-complete [20]. Take a game G = 〈Q, q0, δ〉 with alphabets
A1, A2, A3, observations O2 for Player 2 and set of safe states T ⊆ Q. We
build a context CG and a specification SG as follows:
• the context receives the moves of Player 1 from the component through a

node act1 in U ;
• the context forwards the moves of Player 1 to the specification, chooses

the moves of Player 2 and receives the observations from the specification,
respectively through nodes fwd1, act2, obs2 in O;

• the specification receives the moves of Player 1 and 2, chooses the moves
of Player 3, computes the next state of the game following δ and sends
the corresponding observation to the context.

Formally, the context is a two-state CA CG = 〈{r0, r1}, {act1, fwd1, act2,
obs2}, r0,−→C〉 such that:

• r0
act1=a1;fwd1=a1;act2=a2−−−−−−−−−−−−−−−−−→C r1 for every a1 ∈ A1 and a2 ∈ A2;

• r1
act1=∗;obs2=o2−−−−−−−−−−→C r0 for some “dummy move” ∗ 6∈ A1 and every o2 ∈ O2.

Notice that every transition of CG communicates with both the component and
the environment. This forces the context and the component to progress in
lock-step also under asynchronous composition, and thus we have that CG [B]s =
CG [B]a for every possible component B.

The definition of the specification SG is more involved. The language of
SG includes all traces that describe a winning play for Player 1 and all traces
that do not describe a play of the game (to prevent the context from cheating).
To model the alternation between moves and observations, the set of states
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of SG includes two copies of the safe states T of the game and a special sink
state WIN to generate traces that do not correspond to a play. Formally SG =
〈T ∪ T ′ ∪ {WIN }, {fwd1, act2, obs2}, q0,−→S〉 where:
• T is the set of safe states of G and T ′ = {q′ | q ∈ T};
• qi

fwd1=a1;act2=a2−−−−−−−−−−−→S q′j iff there exists a3 ∈ A3 such that δ(qi, a1, a2, a3) =
qj ;

• q′j
obs2=o2−−−−−→S qj iff O2(qj) = o2;

• q′j
obs2=o2−−−−−→S WIN iff O2(qj) 6= o2;

• WIN
c−→S WIN for every c ∈ CIO(O).

Lemma 10. Let B be a CA that is a most general solution of L (CG [B]) ⊆
L (SG). Then Player 1 has a winning strategy w = u0u1 . . . on the game G iff
w∗ = u0 ∗ u1 ∗ . . . belongs to L (B).

Proof. Let us start by proving that if w is a winning strategy then w∗ ∈ L (B).
Suppose towards a contradiction that w = u0u1 . . . is a winning strategy for
Player 1 but that w∗ 6∈ L (B). Since the language of B is prefix closed, we can
find a finite prefix w′∗ of w∗ such that w′∗ 6∈ L (B). Let Y be a CA such that L (Y)

is the set of prefixes of w′∗. Take any computation r0
act1=u0;fwd1=u0;act2=v0−−−−−−−−−−−−−−−−−→C

r1
act1=∗;obs2=o1−−−−−−−−−−→C r0 . . . of the context synchronising with w′∗. We build a

matching computation of the specification as follows. Since w is a winning strat-
egy for Player 1, at any step i ≥ 0 there exists zi such that δ(qi, ui, vi, zi) = qi+1

with qi+1 ∈ T . Hence, qi
fwd1=ui;act2=vi−−−−−−−−−−−→S q′i+1 is a transition of SG . Consider

now the next transition r1
act1=∗;obs2=oi−−−−−−−−−−→C r0 of the context. If O2(qi+1) 6= oi

then the specification goes to WIN and the trace generated by CG [Y] belongs
to L (SG). Otherwise, q′i+1

obs2=oi−−−−−→S qi+1 is a transition of SG . Thus, given
that the computation of the context is arbitrary, we know that Y is a solution
of Inequation (1), against the hypothesis that B was a most general one.

To prove that if w∗ ∈ L (B) then w is a winning strategy for Player 1, let us
assume that w∗ = u0 ∗ u1 ∗ . . . ∈ L (B). Consider a strategy σ2 : O+

2 7→ A2 of
Player 2. We build a winning strategy σ3 for Player 3. At each step simulate the
game with a pair of transitions of CG [B] as follows. At step i ≥ 0, B performs the
actions act1 = ui followed by act1 = ∗. The context performs the action act1 =
ui; fwd1 = ui; act2 = vi, such that σ2(o0 . . . oi−1) = vi. Since B is a solution of

Inequation (1), we can find a matching transition qi
fwd1=ui;act2=vi−−−−−−−−−−−→S q′i+1 of SG .

For the second transition of the context we can choose the correct observation
r1

act1=∗;obs2=oi−−−−−−−−−−→C r0 with oi = O2(qi+1). This last step is matched by the
specification with a transition q′i+1

obs2=oi−−−−−→S qi+1 where qi+1 6= WIN . By

definition of SG , for every transition qi
fwd1=ui;act2=vi−−−−−−−−−−−→S qi+1 we can find an

action zi ∈ A3 such that δ(qi, ui, vi, zi) = qi+1 with qi+1 ∈ T . Hence the play
is winning for Player 1, and given that we chose an arbitrary strategy σ2 for
Player 2, we have proved that the strategy w is winning for Player 1.
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Thanks to Lemma 10 above, the problem of deciding whether there is a
winning strategy in any three-player game with a blind Player 1 can be reduced
to checking whether a most general solution of Inequation (1) for the given CG
and SG contains at least one infinite word. In the case of correct update w.r.t. a
property Φ, one takes a CA A that immediately deadlocks (hence CG [A] satisfies
any safety property) and computes a most general B such that replacing A with
B is a correct update w.r.t. SG . In the case of update that makes a property Φ
hold (in isolation), one takes a CA A generating every possible behaviour (hence
CG [A] does not satisfy the property SG) and computes a most general B such
that replacing A with B makes SG hold. In both the cases Player 1 has a winning
strategy iff B contains at least an infinite word. Given that finding an infinite
word is linear in the size of B, and since solving the game is EXPSPACE-hard
we know that finding B is at least as hard.
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