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Abstract

Our paper aims to model supply and demand curves of electricity day-ahead auctions in a parsimonious

way. Our main task is to build an appropriate algorithm to present the information about electricity prices

and demands with far less parameters than the original one. We represent each curve using mesh-free

interpolation techniques based on radial basis function approximation. We describe results of this method

for the day-ahead IPEX spot price of Italy. Then we use these representations with the aim of forecasting

supply and demand curves and finding the intersection of the predicted curves in order to obtain the market

clearing price.

1 Introduction

Accurate modeling and forecasting electricity demand and prices are very important issues
for decision making in deregulated electricity markets. Different techniques were developed to
describe and forecast the dynamics of electricity load. Short term forecast proved to be a very
challenging task due to various unstable factors. For example, Figures 1 and 2 demonstrate
changing of electricity equilibrium price and quantity during one week. Functional data analysis
is extensively used in other fields of science, but it has been little explored in the electricity
market setting.

We consider the Italian electricity market (IPEX). IPEX consists of different markets, includ-
ing a day-ahead market. The day-ahead market is managed by Gestore del Mercato Elettrico,
where prices and demand are determined by crossing supply and demand the day before the de-
livery. Supply and demand curves on day-ahead electricity markets are the results of thousands
of bid and ask entries in the day-ahead auction, this for all the 24 hours. In principle, it would
be possible to represent, and forecast, these curves by taking into account each production and
each consumption unit as a separate time series, and then joining these together to construct
the final curves, and thus the resulting price. However, the huge number of these units makes
this naive strategy infeasible, unless one has extremely high computing capacity with complex
machine learning algorithms available.
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Figure 1: Electricity equilibrium prices during a
week.

Figure 2: Electricity equilibrium quantities during
a week.

In this paper, we are going to present a more parsimonious approach. In fact, the idea is
to represent each curve using non-parametric mesh-free interpolation techniques, so that we
can obtain an approximation of the original curve with far less parameters than the original
one. The original curve, in fact, in principle depends on about hundreds of parameters and is
obtained as follow.

The producers submit offers where they specify the quantities and the minimum price at
which they are willing to sell. The demanders submit bids where they specify the quantities
and the maximum price at which they are willing to buy. They are then aggregated by an
independent system operator (ISO) in order to construct the supply and demand curves. Once
the offers and bids are received by the ISO, supply and demand curves are established by
summing up individual supply and demand schedules. In the case of demand, the first step is
to replace ”zero prices“ bids by the market maximum price (for Italian electricity market, the
market maximum price is 3000 Euro) without changing the corresponding quantities. After
this replacement, the bids are sorted from the highest to the lowest with respect to prices.
The corresponding value of the quantities is obtained by cumulating each single demand bid.
For supply curve, in contrast, the offers are sorted from the lowest to the highest with respect
to prices and the corresponding value of the quantities is obtained by cumulating each single
supply offer. The market equilibrium is the point where both curves intersect each other and
the price balances supply and demand schedules (see e.g. Figure 3). This point determines the
market clearing price and the traded quantity. Accepted offers and bids are those that fall to
the left of the intersection of the two curves, and all of them are exchanged at the resulting
price.

In the beginning of the 2000s, the amount of papers focused on electricity price forecasting
started to increase dramatically. A great variety of methods and models occurred during the
last twenty years. Weron [18] (2014) made an overview of the existing literature on electricity
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Figure 3: The market equilibrium point between demand and supply.

price forecasting and divided electricity price models into five different groups: multi-agent,
fundamental, reduced-form, statistical and computational intelligence models. A review of
probabilistic forecasting was done in [10] (2018) by Weron and Nowotarski. Most models have
in common that they focus on the price itself or related time series. In such a way these models
do not take into account the underlying mechanic which determines the price process – the
intersection between the electricity supply and demand.

Some of the recent approaches try to to analyse the real offered volumes for selling and
purchasing electricity. This commonly leads to a problem of a large amount of data and,
therefore, high complexity. In particular, Eichler, Sollie, Tuerk in 2012 [5] investigated a new
approach that exploits information available in the supply and demand curves for the German
day-ahead market. They proposed the idea that the form of the supply and demand curves
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or, more precisely, the spread between supply and demand, reflects the risk of extreme price
fluctuations. They utilize the curves to model a scaled supply and demand spread using an
autoregressive time series model in order to construct a flexible model adapted to changing
market conditions. Furthermore, Aneiros, Vilar, Cao, San Roque in 2013 [2] dealt with the
prediction of residual demand curve in electricity spot markets using two functional models.
They tested this method as a tool for optimizing bidding strategies for the Spanish day-ahead
market. Then Ziel and Steinert in 2016 [19] proposed a model for the German European Power
Exchange (EPEX) market, which considers all the supply and demand information of the system
and discussed the effects of the changes in supply and demand. Their idea was to fill the gap
between research done in time-series analysis, where the structure of the market is usually left
out, and research done in structural analysis, where empirical data is used very rarely and even
less thoroughly. They provided deep insight on the bidding behavior of market participants.
They also showed that incorporating the sale and purchase data yields promising results for
forecasting the likelihood of extreme price events. In 2016 Shah [15] also considered the idea
of modeling the daily supply and demand curves, predicting them and finding the intersection
of the predicted curves in order to find the predicted market clearing price and volume. He
used the functional approach, namely, B-spline approximation, to convert the resulted piecewise
constant curves into smooth functions. However, as far as we know, non-parametric mesh-free
interpolation techniques were never considered for the problem of modeling the daily supply
and demand curves.

We are going to use a relatively new modeling technique based on functional data analysis
for demand and price forecasting. The first task for this purpose is to make an appropriate
algorithm to present the information about electricity prices and demands, in particular to
approximate a monotone piecewise constant function.

We want to make an appropriate algorithm to present this information, in particular, to
approximate a monotone piecewise constant function. Accuracy of the approximation and
running time are very important for us. As we already said, the basic novelty of our problem
is that we are going to present the information about electricity prices and demands using
functional data analysis approach. The main idea behind functional data analysis is, instead of
considering a collection of data points, to consider the data as a single structured object. This
allows to use additional information contained in the functional structure of the data. Once
the data are converted to functional form, it can be evaluated at all values over some interval.

The most promising technique to do so is the use of (integrals of) Radial Basis Functions,
which are been used in several other applications (image reconstruction, medical imaging,
geology, etc.) and allow a very flexible adaptation of the interpolating curves to real data.
The use of radial basis functions have attracted increasing attention in recent years as an
elegant scheme for high-dimensional scattered data approximation, an accepted method for
machine learning, one of the foundations of meshfree methods and so on. The initial motivation
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for RBF methods came from geodesy, mapping, and meteorology. RBF methods were first
studied by Roland Hardy, an Iowa State geodesist, in 1968, when he developed one of the
first effective methods for the interpolation of scattered data. Later in 1986 Charles Micchelli,
an IBM mathematician, developed the theory behind the multiquadric method. Micchelli
made the connection between scattered data interpolation and positive definite functions [9].
RBF methods are now considered an effective way to solve partial differential equations, to
represent topographical surfaces as well as other intricate three-dimensional shapes, having been
successfully applied in such diverse areas as climate modeling, facial recognition, topographical
map production, auto and aircraft design, ocean floor mapping, and medical imaging (see, for
example, [4], [7], [11]). Now RBF methods are an active area of mathematical research, as
many open questions still remain. We will present different techniques for this interpolation,
with their advantages and drawbacks, and with an application to the Italian day-ahead market.

The paper is organized as follow. Section 2 describes the theoretical background, namely,
mesh-free interpolation techniques based on radial basis function approximation. Section 3
presents the database from the Italian electricity market. Section 4 is devoted to a short
description of the numerical schemes and to the analysis of the results. In Section 5 we forecast
next-day electricity demand and prices using approximated supply and demand curves and we
compare the results obtained with our functional approach with corresponding univariate price
predictions. Section 6 concludes the paper.

2 Meshless approximation

Let us briefly notice some features of supply and demand curves that are relevant for our
modeling.

• By construction, the curves are monotone.

• The values attained by the supply curve are roughly clustered around layers, correspond-
ing to different production technologies. For example, in Italy they are non-dispatchable
renewables, gas, coal, hydro, oil.

• The fact that renewables are the first ones make the supply curve intrinsically "meshless".

• Demand is much more inelastic than supply.

Thus, we are dealing with a scattered data interpolation problem. We have a large amount of
points (each point representing price and amount of electricity) that we want to approximate.
We can formalize this problem as follows.

Given a set of N distinct data points XN = {xi : i = 1, 2, . . . , N} arbitrarily distributed on
a domain Ω ⊂ R and a set of data values (or function values) YN = {yi : i = 1, 2, . . . , N} ⊂ R,
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the data interpolation problem consists in finding a function sf : Ω→ R such that

sf (xi) = yi, i = 1, . . . , N. (2.1)

Let us recall briefly the most popular methods for the interpolation problem. Polynomial
interpolation is the interpolation of a given data set by the polynomial of lowest possible degree
that passes through the points of the dataset. For given data sites XN and function values YN
there exists exactly one polynomial p ∈ πN−1(R) that interpolates the data at the data sites.
Therefore the space πN−1(R) depends neither on the data sites nor on the function values but
only on the number of points. However, Runge’s phenomenon [12] shows that, for high values
of N , the interpolation polynomial may oscillate wildly between the data points. Besides, the
polynomial interpolation does not guarantee of monotonicity of the curves (see Figure 4).

Figure 4: Approximation of supply curve with polynomials.

It is a well-established fact that a large data set is better dealt with splines than with polyno-
mials. An aspect to notice in contrast to polynomials is that the accuracy of the interpolation
process using splines is not based on the polynomial degree but on the spacing of the data
sites. In particular, cubic splines are widely used to fit a smooth continuous function through
discrete data. However, spline interpolation requires a fixed mesh.
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Notice that for all methods, the interpolant sf is expressed as a linear combination of some
basis functions Bi , i.e.

sf (x) =
d∑

k=1

ckBk(x).

The basis functions in e.g. polynomial interpolation does not depend on the data points.
Another approach is to use a basis which depends on the data points.

One simple way to solve problem (2.1) is to use the technique of radial basis functions. This
consists in choosing a fixed function φ : R→ R and forming the interpolant as

sf (x) =
N∑
i=1

αiφ(‖x− xi‖), (2.2)

where the coefficients αi are determined by the interpolation conditions sf (xi) = yi. Therefore,
the scattered data interpolation problem leads to the solution of a linear system

Aα = y, where Ai,j = φ(|xi − xj|).

The solution of the system requires that the matrix A is non-singular. It is enough to know
in advance that the matrix is positive definite (see [17] for more details). Let us recall the
definition of strictly positive definite function.

Definition 2.1. A real-valued function Φ : R −→ R is called positive semi-definite if, for all
m ∈ N and for any set of pairwise distinct points x1, x2, . . . , xm, the m×m matrix

A = (Φ(xi − xj))mi,j=1

is positive semi-definite, i.e. for every column vector z of m real numbers the scalar zTAz > 0.
The function Φ : R −→ R is called (strictly) positive definite if the matrix A is positive definite,
i.e. for every non-zero column vector z of m real numbers the scalar zTAz > 0.

The most important property of positive semi-definite matrices is that their eigenvalues are
positive and so is its determinant.

A radial function is a real-valued positive semi-definite function whose value depends only on
the distance from the center c. One useful characterization for positive semi-definite univariate
functions was given by Schoenberg in 1938 in the terms of completely monotone functions: a
continuous function φ : [0,∞) → R is positive semi-definite if and only if φ ∈ C∞(0,∞) and
(−1)kφ(k)(r) > 0 for all r > 0, for k = 0, 1, . . ..

Some standard radial basis functions are

• φ(r) = e−(εr)
2

(Gaussian),

• φ(r) = e−εr(εr + 1) (Matérn),

• φ(r) = (1− εr)4+(4εr + 1) (Wendland),
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where ε > 0 denote a shape parameter, r = ‖x‖2.
The idea of meshless approximation with radial basis functions is to find an approximant of

f in the following form of Equation (2.2), where:

• the coefficients αi and the centers xi are to be chosen so that the interpolant is as near
as possible as the original function f ;

• φ : R→ R is a radial basis function (RBF).

Notice that the radial basis function φ > 0, with αi > 0, so

M∑
i=1

αiφ(‖x− xi‖) > 0.

As we need to approximate piecewise constant monotone function from [0,M ] to R+, we decide
to use the integrals of RBF. Namely, we want to find an approximant of the form

sf (t) =

∫ t

0

M∑
i=1

αiφ(λi‖x− xi‖) dx =
M∑
i=1

αi

∫ t

0

φ(λi‖x− xi‖) dx

where λi is a shape parameter for every center xi. As radial basis functions, we choose Gaussian
functions for analytical tractability.

Evidently, any supply curve and any demand curve can be approximated by a combination
of error functions, which is the integral of a normalized Gaussian function. The standard error
function is defined as:

erf(x) =
1√
π

∫ x

−x
e−t

2

dt =
2√
π

∫ x

0

e−t
2

dt.

In order to find unknown coefficients αi, λi, xi we need to solve the global minimization
problem:

min
p
‖sf (xi, p)− yi‖22, (2.3)

where p = (αi, λi, xi)i=1,...,N and

sf (t, p) :=
M∑
i=1

αi

∫ t

0

φ(λi‖x− xi‖) dx

and φ(t) = (erf(t) + 1)/2 is the primitive of a Gaussian kernel. However, optimization problem
(2.3) is very heavy, as it is a nonlinear and nonconvex minimization over p ∈ R3M .

For this reason, we divide our global problem in simpler subproblems, with lower dimen-
sionality, so that the final result is faster. We describe two realization of this approach in
Section 4.
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3 Data set

We now use the data about supply and demand bids from the Italian day-ahead electricity
market from the GME website www.mercatoelettrico.org. We consider the time period from
01.01 to 31.12.2017. These data are in aggregated form, i.e. bids coming from different agents,
but with the same price, are aggregated in the same price layer. Even in this form, we are
dealing with a massive amount of data. For instance, 2 800 687 offer and 558 926 bid layers
were observed during this period.

Table 1: Data.

Date Hour Volume (MW) Price (Euro)

01-01-2017 1 13392.7 0

01-01-2017 1 25 0.1

01-01-2017 1 113.8 1

01-01-2017 1 11 3.5

01-01-2017 1 270.3 5

01-01-2017 1 0.5 6

.................. ...... ...................... ....................

31-12-2017 24 370 554.2

31-12-2017 24 352 554.3

31-12-2017 24 365 554.5

31-12-2017 24 97 700

31-12-2017 24 60000 3000

This means, that on average there are 324 offer and 65 bid layers for each hour of the year,
which corresponds to one supply curve and one demand curve respectively.

It is a known fact that the dynamics of electricity trade displays a set of features: dependence
of the consumption on external weather conditions, the hour of the day, the day of the week,
and time of the year. Variation in prices are all dependent on the principles of demand and
supply. First of all, on the day-ahead market the energy is typically traded on an hourly basis
and this means that the prices can and will vary across hours. For example, at 9:00 a.m. there
could be a price peak, while at 4:00 a.m. prices could be only half of the peak price. Second,
the weekly seasonal behaviour matters. Usually, it is necessary to differentiate between the
two weekend days (Saturday and Sunday), the first business day of the week (Monday), the
last business day of the week (Friday) and the remaining business days (see e.g. [1]). Thirdly,
electricity spot prices display a strong yearly seasonal pattern: for instance, demand increases
in summer, as consumers turn their air conditioners on, and also in winter because of electric
heating in housing.

As far as the number of offers (or bids) affects directly the complexity of approximation,
we decided to explore the relationship between the number of bids and offers and such a
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characteristics as the hour of the day, the day of the week, and the month of the year. Based
on the dependence between this three factors and electricity prices we could expect that some
hours, days have much less offers and bids than another one. This analysis is presented on
Figures 5 – 7. The main conclusion that we have made is that there is no direct relationship
between the number of offer and bid layers and the hour of the day, the day of the week, and
the time of the year. In particular, during 24 hour of the day the number of offer layers varies
between 299 and 332, and the number of bid layers varies between 61 and 66. With regard to
dependence of the day of the week the number of offer layers varies between 310 and 320, and
the number of bid layers varies between 55 and 68. Based on this observation we decided to
choose the same number of basis functions independently of the hour of the day, the day of the
week, and the time of the year.

Hour
Number

Hour
Number

of offers of bids of offers of bids

1 300 64 13 329 64

2 299 64 14 329 64

3 300 64 15 330 64

4 300 64 16 332 64

5 301 63 17 332 63

6 303 63 18 332 63

7 307 62 19 331 64

8 318 63 20 329 65

9 325 65 21 329 66

10 326 64 22 323 64

11 329 64 23 321 63

12 329 65 24 314 61

Figure 5: Hour dependence of the number of offer and bid layers.

Month
Number

of offers of bids
Sunday 310 55
Monday 310 56
Tuesday 322 68

Wednesday 324 67
Thursday 326 68

Friday 327 68
Saturday 329 68

Figure 6: Weekly dependence of the number of offer and bid layers.
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Month
Number

of offers of bids
January 331 65
February 341 79
March 324 81
April 305 72
May 298 57
June 298 54
July 322 55

August 305 58
September 300 64
October 309 66

November 348 58
December 357 57

Figure 7: Monthly dependence of the number of offer and bid layers.

4 Numerical experiments

Since the maximum market clearing price for the period under review (i.e. from 01.01.2017
to 31.12.2017) is 350 e, in all the experiments we restricted ourselves to a maximum price of
400 e. For the implementation of our algorithm we are using the function lsqcurvefit from
MATLAB Optimization Toolbox.

First, we choose the number of basis functionM . After that, as we mentioned that the global
optimization problem (2.3) is nonconvex, we choose to divide our problem intoM sub-problems.
Then each part of the supply curve must be approximated by one error function.

Our first attempt (Method 1) was just to divide y-axis uniformly into M equal intervals
(see Figure 8). However this approach proved to be ineffective, as a huge jump concentrates on
itself, keeping uselessly many components.

To resolve this problem we created a simple algorithm - Method 2 - that finds the points
p1, . . . , pM on the y-axis such that our supply curve takes the value exactly pi on some non-
trivial interval (see Figure 9). Then we solve the same optimization problem for the values of
the supply curve between pi and pi+1 using function lsqcurvefit (see Figure 10). On each
part we need to find only the coefficients ai, bi, ci of the function

G(x) =
k∑

i=1

ai(erf(ci · (x− bi)) + 1). (4.1)

Here, for convenience of representation we are using {erf(ci · (x − bi)) + 1} instead of {erf(ci ·
(x− bi))}, as our data values are never negative.

The lsqcurvefit function solves nonlinear data-fitting problems in least-squares sense.
Suppose that we have data points XN = {xi : i = 1, 2, . . . , N} and data values YN = {yi :
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Figure 8: Method 1. Figure 9: Method 2.

i = 1, 2, . . . , N} ⊂ R and we want to find a function f such that f(xi) ≈ yi, i = 1, . . . , N. We
can consider the family of functions {f(x, p) : p ∈ Rk}, depending of some parameter p ∈ Rk.
Let p0 ∈ Rk be an “initial guess” such that f(xi, p) is reasonably close to yi. The function
lsqcurvefit starts at p0 and finds coefficients p from some neighborhood of p0 to best fit the
data set YN :

min
p
‖f(xi, p)− yi‖22.

For optimizing the numerical procedure we solved some parts of the optimization problem
by ourselves: in fact, when the interval [pi, pi+1] contains only one jump, then

ai := f(pi+1)− f(pi)

for any kernel function φ with unit integral.

Figure 10: Local interpolation by one error function with lsqcurvefit function.

A summary of the results is shown in Table 2. For all experiments we proceed with the
data for period from 01.01.2017 to 31.12.2017. We used different numbers of basis function to
approximate supply and demand curves, and then compared the equilibrium price, which was
received as intersection of approximants (Pappr), with the correct equilibrium price (P ). We
did this for each hour of each day, and then computed the average value of |P − Pappr| (Error)
for all 8 664 hours of the year and the maximum value of |P − Pappr| (Max error).
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This empirical results show that the accuracy of our approximation is good enough, if we
use 5 basis function for the demand curve and 15 basis function for the supply curve. Above
these values, the increase in the number of functions leads to more time consumption, but the
increase of the accuracy is less significant.

Table 2: Results of numerical experiment.

Number of functions Results

For demand For supply Error Max error Running time

5 5 3.9 e 28.6 e 69 min.
5 10 2.2 e 14.9 e 82 min.
5 15 1.5 e 11.1 e 103 min.
5 20 1.3 e 9.1 e 110 min.
5 25 1.2 e 9.3 e 135 min.
5 30 1.2 e 9.4 e 159 min.
5 35 1.2 e 9.8 e 177 min.
5 40 1.2 e 9.6 e 190 min.
5 45 1.2 e 9.6 e 199 min.
5 50 1.2 e 9.6 e 207 min.

10 5 3.9 e 39.5 e 100 min.
10 10 2.1 e 14.9 e 128 min.
10 15 1.4 e 8.9 e 146 min.
10 20 1.2 e 9.1 e 162 min.
10 25 1.1 e 9.5 e 183 min.
10 30 1.1 e 9.3 e 199 min.
10 35 1.0 e 9.4 e 223 min.
10 40 0.98 e 9.8 e 241 min.
10 45 0.98 e 9.6 e 255 min.
10 50 0.98 e 9.6 e 273 min.
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As a last step, we analyzed the stability of the coefficients for the case when we approximate
the supply curve with 10 basis functions and the demand curve with 5 basis functions for the
same period of time, as

S(x) =
10∑
i=1

Ai(erf(Ci · (x−Bi)) + 1) and

D(x) =
5∑

i=1

Ei(erf(Ki · (x− Li)) + 1).

From Table 3 we can see that these coefficients do not have a stable behavior (namely, maxi-
mum values, minimum values and mean values are presented). Although the values attained by
the supply curve are clustered around layers, which correspond to different production technolo-
gies, we came to the conclusion that we have no chance to choose these coefficients uniformly
for all curves, but we need to calculate them for all supply and demand curves.

Figure 11: Supply curve approximated with 10 basis functions.
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Table 3: Stability of the coefficients.

Min Mean Max

Coefficients for supply curve
A1 10 14.76981 18
A2 10.5 15.15519 21
A3 10.5 15.21438 19.5
A4 11 15.53944 22
A5 11 16.8968 27.5
A6 12.5 20.44287 27
A7 14.5 22.15457 33
A8 19 29.69132 57.5
A9 17 24.48784 48
A10 21 25.64777 50

Coefficients for demand curve
E1 12 30.95154 37.5
E2 25 34.31039 58.5
E3 25 36.24469 50
E4 33 40.19715 50
E5 50 58.29623 75

5 Price and demand forecasting based on supply and demand curves

Our main goal in this section is to forecast next-day electricity demand and prices using
approximated supply and demand curves and to compare different modeling techniques. The
classical models do not explain the relationships between market clearing price and different
influential factors that can be essential in the problem of price prediction. To this purpose, we
want to compare commonly used autoregressive models, based just on the clearing price, with
ours, based on supply and demand curves. For this test, we are using again the data about
supply bids from the Italian electricity market considering the time period from 01.01.2017 to
31.12.2017. In particular, our training set includes data from 01.01.2017 to 31.10.2017, while
the test set which is used for forecasting to test the performance of the model on out-of-sample
data is from 01.11.2017 to 31.12.2017. We will consider a linear parametric autoregressive
(AR) model for univariate price prediction and functional autoregressive (FAR) models for the
prediction of supply and demand curves.

We performed electricity price forecasting using six different methods: autoregressive model
of order 1 with (SAR(1)) and without seasonality (AR(1)) for the closing price; functional au-
toregressive model of order 1 applied to the modeled supply and demand curves, where for the
representation of demand curve we used one basis function and for the representation of supply
curve we used 5 or 10 functions (FAR(1) (5 functions) and FAR(1) (10 functions), respec-
tively) together with the corresponding seasonal models (SFAR(1) (5 functions) and SFAR(1)
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(10 functions), respectively). In all the seasonal versions, dummy variables corresponding to
weekdays were introduced. These models were applied to each market hour separately.

While formulations of AR(1) and SAR(1) models for the closing prices are quite standard
(thus we do not give details on them here), we feel that a description of our implementation
of FAR(1) and SFAR(1) models for supply and demand curves are needed. We considered the
simplified representation of the supply curve Sd,h(x) with M basis functions, and the demand
curve Dd,h(x) with one basis function, at day d and hour h, keeping the shape parameter
constantly equal to 1

Sd,h(x) =
M∑
i=1

Ad,h,i · (erf((x−Bd,h,i)) + 1), M = 5 or M = 10,

Dd,h(x) = 200 · erf((x− Ld,h)) + 1.

Then we provide a model for the process Xd,h = (X1
d,h, X

2
d,h, . . . , X

2M
d,h ), where

X i
d,h = Ad,h,i, i = 1, . . . ,M − 1,

X i+M−1
d,h = Bd,h,i, i = 1, . . . ,M,

X2M
d,h = Ld,h.

Notice that, as we restricted ourselves to a maximum price (and so the maximum of supply
and demand curves) of 400 e, we need to exclude the parameter Ad,h,M from the model, as it is
linearly dependent on others. The considered time series model FAR(1) for Xd,h for each hour
h is given by

Xd,h = νd + ΦdXd,h−1 + εd,h

with the 2M × 2M matrix Φd, and the 2M -dimentional vector νd as parameters, and εd,h as
error term. We assume that the error process εd,h is a 2M -dimensional white noise process.

For modeling the day of the week impact in SFAR(1) models we define additionally function
W (d) that gives a number that corresponds to the weekday of day d (W (d) = 1 for a Sunday,
for a Monday W (d) = 2 up to W (d) = 7 for a Saturday), and the weekday indicators

Wk(d) =

1, if W (d) = k

0, if W (d) 6= k
.

We introduced parameters Dd,h,k for the weekday effect. Thus, the corresponding SFAR(1)
model for Xd,h for each hour h and is written, in terms of coefficients, as

Xd,h = νd + ΦdXd,h−1 +
7∑

k=1

Wk(d)Dd,h,k + εd,h.

We compared the results obtained with our functional approach with corresponding univari-
ate price prediction. Three different summary measures, namely, mean absolute error (MAE),
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root mean square error (RMSE) and mean absolute percentage error (MAPE) were used to
evaluate the out-of-sample forecasting performance. Let us denote Edh and Êdh the observed
and the predicted values for day d, d = 1, . . . , T = 61 and hour h, h = 1, . . . , 24. We
computed

MAE =

∑T
i=1 |Eih − Êdh|

T
, h = 1, . . . , 24;

RMSE =

√∑T
i=1(Eih − Êdh)2

T
, h = 1, . . . , 24;

MAPE =

∑T
i=1 |Eih − Êdh|/Eih

T
, h = 1, . . . , 24;

Table 4 provide summary statistics of errors for the forecasting of next-day electricity price.
In order to facilitate the comparison between different methods we plot the errors for each of
the six methods on Figures 12, 13 and 14.

As expected, SAR(1) performs better than AR(1). Surprisingly, instead, functional autore-
gressive models without seasonality gives better results than corresponding seasonal models. By
comparing functional autoregressive models with 5 and 10 functions we can see similar results,
so increasing the number of parameters does not lead to the improvement of the prediction
accuracy. These two outcomes could be possibly due to overfitting effects. These results shows
that we should use FAR(1) (5 functions) as this method is less time-consuming than the one
with 10 functions. Finally, our method FAR(1) (5 functions) gives considerably more accurate
results compared to the SAR(1) model for all hours. In particular, not only SAR(1) gives an
average of the MAPE equal to 16.51% while FAR(1) (5 functions) gives 14.98%, but we can
see that FAR(1) (5 functions) performs significantly better than SAR(1) on every single hour.
Also comparing MAE and RMSE we obtain similar results.

Due to the superior performance of FAR(1) (5 functions) method, we also conducted predic-
tion of electricity demand with just three methods: AR(1), SAR(1), and FAR(1) (5 functions).
Table 5 provide summary statistics of errors for the forecasting of next-day electricity demand
also represented in Figures 15, 16, 17. In this case AR(1) gives an average of the mean ab-
solute percentage error 12.82%, SAR(1) gives 11.33% and FAR(1) (5 functions) gives 10.04%.
Moreover, FAR(1) (5 functions) for the demand forecasting again gives more accurate results
compared to the AR(1) model for all hours and also compared to the SAR(1) model. The same
is true for MAE and RMSE.
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Figure 12: Mean absolute error for price forecasting.

Figure 13: Root mean square error for price forecasting.

Figure 14: Mean absolute percentage error for price forecasting.
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Table 4: Price prediction accuracy statistics.

Model Hour
MAE
euro

RMSE
euro

MAPE
%

Hour
MAE
euro

RMSE
euro

MAPE
%

AR(1)

1

9.12 11.59 14.47

13

12.33 18.62 16.86
FAR(1) (5 functions) 6.92 9.06 10.77 9.35 15.37 12.68
FAR(1) (10 functions) 6.57 9.07 10.28 10.66 16.76 14.68
SAR(1) 8.1 10.31 12.92 12.43 18.04 17.43
SFAR(1) (5 functions) 7.5 9.60 11.86 11.27 16.91 15.77
SFAR(1) (10 functions) 7.32 9.55 11.62 12.14 17.67 17.22

AR(1)

2

9.32 11.64 15.45

14

13.92 19.31 19.58
FAR(1) (5 functions) 6.29 8.75 10.14 10.51 15.91 14.88
FAR(1) (10 functions) 6.39 9.03 10.27 10.68 16.28 15.05
SAR(1) 7.37 10.20 12.13 14.02 19.01 20.17
SFAR(1) (5 functions) 6.74 9.06 11.09 12.28 17.70 17.51
SFAR(1) (10 functions) 6.80 9.13 11.16 12.60 18.23 18.07

AR(1)

3

7.58 9.58 13.26

15

19.78 26.10 25.10
FAR(1) (5 functions) 5.59 7.47 9.47 14.80 20.73 19.05
FAR(1) (10 functions) 5.39 7.76 9.18 16.12 21.49 20.60
SAR(1) 6.22 7.97 10.89 18.91 25.16 24.76
SFAR(1) (5 functions) 5.88 7.98 10.13 17.14 23.63 22.16
SFAR(1) (10 functions) 6.00 8.13 10.39 17.37 23.29 22.55

AR(1)

4

7.51 9.67 13.44

16

26.77 35.98 29.41
FAR(1) (5 functions) 5.36 7.48 9.22 20.78 29.76 22.68
FAR(1) (10 functions) 5.48 7.74 9.91 20.86 30.67 22.36
SAR(1) 6.27 8.02 11.31 24.95 33.72 28.07
SFAR(1) (5 functions) 5.96 8.07 10.46 22.76 31.65 25.11
SFAR(1) (10 functions) 6.05 8.04 10.93 23.15 32.27 25.41

AR(1)

5

7.41 9.55 12.97

17

35.21 49.61 33.00
FAR(1) (5 functions) 5.47 7.55 9.38 27.07 42.61 23.56
FAR(1) (10 functions) 5.54 7.50 9.71 26.78 43.08 23.27
SAR(1) 6.17 7.92 10.83 31.34 45.55 28.56
SFAR(1) (5 functions) 5.94 7.86 10.34 29.29 44.22 25.99
SFAR(1) (10 functions) 5.95 7.85 10.49 28.40 43.37 25.66

AR(1)

6

8.01 10.06 13.34

18

40.62 60.62 32.32
FAR(1) (5 functions) 5.65 7.76 9.32 31.41 49.74 22.90
FAR(1) (10 functions) 5.70 7.66 9.44 31.65 48.41 25.03
SAR(1) 6.19 8.36 10.31 35.01 52.87 26.79
SFAR(1) (5 functions) 5.95 7.95 9.99 32.21 50.63 24.12
SFAR(1) (10 functions) 5.95 7.89 10.02 34.17 49.10 27.56
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Table 4: Price prediction accuracy statistics.

Model Hour
MAE
euro

RMSE
euro

MAPE
%

Hour
MAE
euro

RMSE
euro

MAPE
%

AR(1)

7

10.35 14.15 15.09

19

30.43 46.78 26.33
FAR(1) (5 functions) 7.80 11.15 11.60 23.27 38.21 19.06
FAR(1) (10 functions) 8.36 11.77 12.77 24.53 38.40 20.99
SAR(1) 9.13 12.29 13.70 26.13 41.06 22.01
SFAR(1) (5 functions) 8.42 11.75 12.74 24.91 39.04 21.16
SFAR(1) (10 functions) 9.07 11.99 14.11 25.98 38.99 22.84

AR(1)

8

18.91 27.67 22.79

20

23.26 41.01 21.08
FAR(1) (5 functions) 15.27 24.08 18.51 19.08 35.09 16.11
FAR(1) (10 functions) 16.13 23.97 20.55 18.85 34.54 16.43
SAR(1) 18.14 26.08 22.25 22.62 37.70 19.90
SFAR(1) (5 functions) 17.37 24.80 21.74 20.87 36.16 18.16
SFAR(1) (10 functions) 18.60 25.46 24.09 22.22 36.56 20.00

AR(1)

9

26.71 41.73 28.29

21

15.29 22.04 15.91
FAR(1) (5 functions) 22.56 38.91 23.33 13.34 20.24 13.49
FAR(1) (10 functions) 22.40 36.46 24.12 13.47 19.69 13.83
SAR(1) 27.24 39.85 29.50 15.85 21.60 16.80
SFAR(1) (5 functions) 26.21 39.85 28.64 16.51 23.04 17.30
SFAR(1) (10 functions) 26.62 38.01 30.35 15.28 21.66 15.88

AR(1)

10

23.25 40.09 25.17

22

10.21 17.07 12.41
FAR(1) (5 functions) 19.58 36.07 20.59 10.61 17.56 12.54
FAR(1) (10 functions) 19.70 36.96 21.37 11.45 18.48 13.46
SAR(1) 23.68 38.14 25.96 11.25 17.26 13.79
SFAR(1) (5 functions) 22.92 36.55 25.82 13.43 19.27 16.23
SFAR(1) (10 functions) 23.12 37.02 26.37 12.91 19.23 15.43

AR(1)

11

15.77 22.79 19.62

23

7.23 10.92 10.31
FAR(1) (5 functions) 13.66 20.20 17.10 6.37 9.62 8.92
FAR(1) (10 functions) 14.88 21.57 19.02 7.09 10.76 9.87
SAR(1) 16.04 22.24 20.42 6.97 10.54 9.72
SFAR(1) (5 functions) 15.82 22.02 20.42 6.84 10.00 9.54
SFAR(1) (10 functions) 18.59 24.78 24.15 7.55 11.02 10.45

AR(1)

12

14.92 21.56 18.95

24

6.55 8.37 10.43
FAR(1) (5 functions) 11.67 18.19 15.07 5.74 7.36 9.23
FAR(1) (10 functions) 12.63 19.20 16.37 5.83 7.79 9.35
SAR(1) 14.90 20.61 19.56 5.74 7.41 9.08
SFAR(1) (5 functions) 13.66 19.76 18.19 6.07 7.88 9.67
SFAR(1) (10 functions) 15.23 20.83 20.54 6.58 8.50 10.55
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Figure 15: Mean absolute error for demand forecasting.

Figure 16: Root mean square error for demand forecasting.

Figure 17: Mean absolute percentage error for demand forecasting.
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Table 5: Demand prediction accuracy statistics.

Model Hour
MAE
mW

RMSE
mW

MAPE
%

Hour
MAE
mW

RMSE
mW

MAPE
%

AR(1)
1

1749 2134 6.7575
13

4955 5750 14.9272
SAR(1) 1650 1960 6.349 4381 5629 13.1578
FAR(1) (5 functions) 1197 1534 4.5906 3941 4824 11.9352

AR(p)
2

1723 2054 7.0308
14

5477 6313 16.9839
SAR(1) 1584 1897 6.458 4731 6132 14.596
FAR(1) (5 functions) 1173 1531 4.7919 4117 5272 12.9417

AR(p)
3

1773 2071 7.4811
15

6154 7033 18.9165
SAR(1) 1573 1887 6.6261 5214 6897 15.9249
FAR(1) (5 functions) 1206 1523 5.0349 4747 5964 14.6323

AR(p)
4

1789 2098 7.6647
16

6378 7243 19.1183
SAR(1) 1576 1892 6.7444 5364 7098 16.0223
FAR(1) (5 functions) 1365 1690 5.8724 5113 6164 15.3625

AR(p)
5

1825 2162 7.7768
17

6439 7211 18.1779
SAR(1) 1566 1912 6.6696 5334 7022 15.1515
FAR(1) (5 functions) 1343 1656 5.7846 5476 6630 15.1782

AR(p)
6

2029 2505 8.2893
18

6055 6690 15.406
SAR(1) 1870 2254 7.6712 4869 6316 12.6027
FAR(1) (5 functions) 1589 1913 6.5373 4905 6158 12.5699

AR(p)
7

3502 4065 12.6681
19

5259 5887 13.3915
SAR(1) 3299 3987 12.125 4341 5543 11.2166
FAR(1) (5 functions) 2903 3464 10.6912 4142 4948 10.6123

AR(p)
8

5272 6000 17.1605
20

4387 5009 11.3723
SAR(1) 4938 6097 16.2434 3758 4798 9.8719
FAR(1) (5 functions) 4461 5316 14.9315 3294 4079 8.6847

AR(p)
9

6270 7132 19.0464
21

3670 4220 10.0831
SAR(1) 5772 7345 17.5386 3231 4109 8.909
FAR(1) (5 functions) 4847 6016 14.6453 2960 3516 8.1968

AR(p)
10

6098 6954 17.8199
22

3111 3741 9.2407
SAR(1) 5618 7145 16.4139 2732 3483 8.0774
FAR(1) (5 functions) 4818 6103 14.0522 2353 2842 6.9697

AR(p)
11

5761 6618 16.7452
23

2485 3016 8.0533
SAR(1) 5236 6704 15.1949 2211 2752 7.1536
FAR(1) (5 functions) 4445 5389 12.8906 1764 2216 5.7381

AR(p)
12

5641 6476 16.4409
24

2067 2534 7.3591
SAR(1) 5011 6449 14.573 1883 2289 6.6889
FAR(1) (5 functions) 4377 5240 12.6463 1646 2015 5.8758
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6 Conclusions

We presented a parsimonious way for representing supply and demand curves, using a mesh-
free method based on Radial Basis Functions. Using the tools of functional data analysis, we
are able to approximate the original curves with far less parameters than the original ones.
Namely, in order to approximate piecewise constant monotone functions, we are using linear
combinations of integrals of Gaussian functions.

The real data about supply and demand bids from the Italian day-ahead electricity market
showed that there is no direct relationship between the number of offer and bid layers and the
hour of the day, the day of the week, and the time of the year. Based on this observation, we
decided to choose the same number of basis functions independently of these three seasonality
modes. The numerical results showed that the accuracy of our approximation is good enough,
if we use 5 basis function for the demand curve and 10 basis function for the supply curve, and
then the increase in the number of functions leads to more time-consumption, but the increase
of the accuracy is less significant.

We also tested this new approach with the aim of forecasting supply and demand curves and
finding the intersection of the predicted curves in order to obtain the market clearing price.
In assess the goodness of our method, we compared it with models with similar complexity in
terms of dependence of the past, but only based on the clearing price. Our forecasting errors
are smaller compared with these univariate models. In particular, our analyses show that our
multivariate approach leads to better results than the univariate one in terms of error measures
like MAE, MAPE and RMSE.
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