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Abstract

Let D be a commutative domain with field of fractions K, let A be a torsion-free D-algebra,
and let B be the extension of A to a K-algebra. The set of integer-valued polynomials on A is
Int(A) = {f ∈ B[X] | f(A) ⊆ A}, and the intersection of Int(A) with K[X] is IntK(A), which is
a commutative subring of K[X]. The set Int(A) may or may not be a ring, but it always has the
structure of a left IntK(A)-module.

A D-algebra A which is free as a D-module and of finite rank is called IntK-decomposable
if a D-module basis for A is also an IntK(A)-module basis for Int(A); in other words, if Int(A)
can be generated by IntK(A) and A. A classification of such algebras has been given when D is
a Dedekind domain with finite residue rings. In the present article, we modify the definition of
IntK-decomposable so that it can be applied to D-algebras that are not necessarily free by defining
A to be IntK-decomposable when Int(A) is isomorphic to IntK(A)⊗DA. We then provide multiple
characterizations of such algebras in the case where D is a discrete valuation ring or a Dedekind
domain with finite residue rings. In particular, if D is the ring of integers of a number field K, we
show that an IntK-decomposable algebra A must be a maximal D-order in a separable K-algebra
B, whose simple components have as center the same finite unramified Galois extension F of K and
are unramified at each finite place of F . Finally, when both D and A are rings of integers in number
fields, we prove that IntK-decomposable algebras correspond to unramified Galois extensions of K.

Keywords: Integer-valued polynomial, algebra, Int-decomposable, Maximal order, Finite unramified
Galois extension
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1. Introduction

Let D be a commutative integral domain with field of fractions K. The ring of integer-valued
polynomials over D is defined to be Int(D) := {f ∈ K[X] | f(D) ⊆ D}. The ring Int(D), its
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elements, and its properties have been popular objects of study over the past several decades and
continue to be so today. The book [4] is the standard reference on the topic.

Beginning around 2010, attention turned to polynomials that are evaluated on D-algebras rather
than on D itself. This can be seen in the work of Evrard, Fares and Johnson [6, 7], Frisch [8, 9, 10,
11], Loper [16], Peruginelli [5, 13, 21, 22, 23, 24], Werner [31, 33, 34], and Naghipour, Rismanchian,
and Sedighi Hafshejani [18]. A good example of these new rings of integer-valued polynomials comes
from considering the polynomials in K[X] that map each element of the matrix algebra Mn(D)
back to Mn(D).

Example 1.1. Associate K with the scalar matrices in Mn(K). Then, for any polynomial f(X) =∑t
i=0 qiX

i ∈ K[X] and any matrix a ∈ Mn(D), we can evaluate f at a to produce the matrix

f(a) =
∑t

i=0 qia
i. If f(a) ∈ Mn(D) for each a ∈ Mn(D), then f is said to be integer-valued on

Mn(D). The set of all such polynomials is denoted by

IntK(Mn(D)) := {f ∈ K[X] | f(Mn(D)) ⊆Mn(D)},

and it is easy to verify that IntK(Mn(D)) is a subring of K[X].
We can form a larger collection of polynomials that are integer-valued on Mn(D) by considering

polynomials whose coefficients come from Mn(K) rather than from K. That is, we form the set

Int(Mn(D)) := {f ∈Mn(K)[X] | f(Mn(D)) ⊆Mn(D)}.

Since Mn(K) is noncommutative, we follow standard conventions regarding polynomials with non-
commuting coefficients, as in [14, §16]. In Mn(K)[X], we assume that the indeterminate X com-
mutes with each element of Mn(K), and we define evaluation to occur when the indeterminate is
to the right of any coefficients. So, given f(X) =

∑t
i=0 qiX

i ∈Mn(K)[X], we consider f(X) to be

equal to
∑t

i=0X
iqi as an element of Mn(K)[X], but to evaluate f(X) at a matrix a ∈Mn(D), we

must first write f(X) in the form f(X) =
∑t

i=0 qiX
i, and then f(a) =

∑t
i=0 qia

i. A consequence
of this is that evaluation is no longer a multiplicative homomorphism; that is, if f(X) = g(X)h(X)
in Mn(K)[X], then it may not be true that f(a) equals g(a)h(a). Because of this difficulty, it is not
clear whether Int(Mn(D)) is closed under multiplication. Despite the complications associated with
evaluation of polynomials in this setting, one may prove that Int(Mn(D)) is a (noncommutative)
subring of Mn(K)[X] [32, Thm. 1.2]. Thus, we are able to construct a noncommutative ring of
integer-valued polynomials.

We can actually say more. In [8, Thm. 7.2], Sophie Frisch proved that Int(Mn(D)) is itself
a matrix ring. Specifically, Int(Mn(D)) ∼= Mn(IntK(Mn(D))), where the isomorphism is given by
associating a polynomial with matrix coefficients to a matrix with polynomial entries. (This isomor-
phism is the restriction of the classical isomorphism between the polynomial ring Mn(K)[X] and
the matrix ring Mn(K[X])). Because of Frisch’s theorem, many questions about Int(Mn(D)) can
be reduced to questions about IntK(Mn(D)), and the latter ring—being commutative—is usually
easier to work with.

Broadly speaking, the point of this paper is to study the relationship between a commutative ring
of integer-valued polynomials such as IntK(Mn(D)) and its extension Int(Mn(D)). In particular,
we wish to determine when and how Frisch’s theorem [8, Thm. 7.2] can be generalized to algebras
other than matrix rings. While matrix rings will be prominent in our work, the majority of our
theorems deal with general algebras. However, our basic definitions are inspired by the situation
described in Example 1.1.
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We begin by giving notation and conventions for working with polynomials over algebras. As
before, let D be a commutative integral domain with field of fractions K. Let A be a torsion-free
D-algebra and take B = K ⊗D A to be the extension of A to a K-algebra. We associate K and
A with their canonical images in B via the maps k 7→ k ⊗ 1 and a 7→ 1 ⊗ a. Much of our work
will involve polynomials in B[X]. The algebra B may be noncommutative, but we will assume
that X commutes with all elements of B. Moreover, we define evaluation of polynomials in B[X]
at elements of A just as we did in Example 1.1 where A = Mn(D) and B = Mn(K). Given
f(X) =

∑t
i=0 ciX

i ∈ B[X] and b ∈ B, we define

f(b) :=

t∑
i=0

cib
i.

Note that the map B[X]→ B given by evaluation at b is not a multiplicative homomorphism unless
b lies in the center of B.

Finally, we define
Int(A) := {f ∈ B[X] | f(A) ⊆ A}

and
IntK(A) := Int(A) ∩K[X] = {f ∈ K[X] | f(A) ⊆ A}.

We will also require that A ∩K = D; this assumption is equivalent to the containment IntK(A) ⊆
Int(D).

Definition 1.2. When A is a torsion-free D-algebra such that A ∩ K = D, we say that A is a
D-algebra with standard assumptions. When A is finitely generated as a D-module, we say that A
is of finite type.

With these definitions, it is clear that IntK(A) is always a subring of the commutative ring K[X].
The algebraic structure of Int(A) is more difficult to analyze. It is straightforward to verify that
Int(A) is closed under addition, and in fact has the structure of a left IntK(A)-module. However,
because B[X] may contain polynomials with non-commuting coefficients, there is no guarantee that
Int(A) is closed under multiplication. Indeed, let g, h ∈ Int(A) and let f = gh be the product of
g and h in B[X]. Then, we have g(a), h(a) ∈ A for all a ∈ A, but because f(a) need not equal
g(a)h(a), it is not clear whether or not f(a) is in A. Thus, we arrive at an important question: is
Int(A) a ring when B is noncommutative?

There are cases where Int(A) has been proved to be closed under multiplication, and thus has
a ring structure under the usual operations inherited from B[X]. For instance, this will be true if
A itself is a commutative ring. More generally, if each element of A is a sum of units and central
elements, then Int(A) is a ring [32, Thm. 1.2]. In particular, this theorem applies when A = Mn(D),
the algebra of n × n matrices with entries in D, because Mn(D) has a D-module basis consisting
of invertible matrices. The condition in [32, Thm. 1.2] is sufficient for Int(A) to be a ring, but is
not necessary; counterexamples may be found in [34, Ex. 3.8] and in [11]. To date, no example has
been given of a noncommutative D-algebra A for which Int(A) is not a ring.

As mentioned in Example 1.1, Frisch proved in [8, Thm. 7.2] that the rings Int(Mn(D)) and
Mn(IntK(Mn(D))) are isomorphic. This result led the second author to search for other algebras
with a similar property [31]. To do this, the problem was recast in the following way. Assume that
A, as a D-module, is free of finite rank, with D-basis α1, . . . , αt. Then, when does α1, . . . , αt form
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a basis for Int(A) as an IntK(A)-module? With this formulation, Frisch’s theorem shows that

Int(Mn(D)) =
⊕

1≤i,j≤n

IntK(Mn(D))Eij (1.3)

where the Eij are the standard matrix units that form a D-basis of Mn(D). An algebra A =
⊕

iDαi

such that
Int(A) =

⊕
i

IntK(A)αi (1.4)

is called IntK-decomposable with respect to {αi}i. By [31, Prop. 1.4], this property is independent
of the D-basis chosen for A. Thus, a free D-algebra A such that (1.4) holds is called simply IntK-
decomposable. We will use the adjective Int-decomposable (with no subscript K) when we wish to
speak of these algebras collectively, without reference to a specific domain D or base field K.

The main theorem of [31] proved that there is a close connection between Int-decomposable
algebras and direct sums of matrix algebras. In [31, Thm. 6.1] it is shown that for D a Dedekind
domain with finite residue rings and A a free D-algebra of finite rank, A is IntK-decomposable
if and only if for each nonzero prime P of D, there exist n, t ∈ N and a finite field Fq such that

A/PA ∼=
⊕t

i=1Mn(Fq).
The work in [31] depended crucially on the presence of a D-module basis for A, and it was

desirable to know if Int-decomposable algebras could be defined and studied without assuming that
A was free. This is indeed possible, and doing so is the focus of the current paper. The key insight
was to notice that an IntK-decomposable algebra is one for which Int(A) can be generated (as a
subring of B[X]) by A and IntK(A), and this property can be precisely expressed in terms of tensor
products of D-algebras. We say that A is IntK-decomposable if and only if Int(A) ∼= IntK(A)⊗DA
(see Definition 2.3); the only limitations we impose on A are our standard assumptions that A
is torsion-free and A ∩ K = D. Note that for the case of the full matrix algebra A = Mn(D)
considered initially by Frisch, the matrix ring Mn(IntK(Mn(D))) is canonically isomorphic to the
ring IntK(Mn(D))⊗D Mn(D).

If D is Dedekind with finite residue rings and A is finitely generated as a D-module, then we are
able to extend the classification given by [31, Thm. 6.1] (Theorem 2.10). Hence, IntK-decomposable
algebras are those which are residually a direct sum of copies of a matrix ring over a finite field.
Moreover, we are able to obtain two alternate characterizations of Int-decomposability, one in terms
of the completions of A at primes of D (Theorem 3.6) and the other in terms of the extended K-
algebra B = K ⊗D A (Theorem 4.10). We are also able to describe when IntK(A) = Int(D)
(Theorem 2.11), which answers a question raised in [10].

In Section 2, we state the more general definition of IntK-decomposable and prove several of the
theorems mentioned above. Section 3 discusses the classification of IntK-decomposable algebras in
terms of completions. As our work will show, IntK-decomposable algebras are related to matrix
algebras via their residue rings and completions, but the two types of algebras are not the same.
Theorem 3.11 clarifies this situation by presenting various counterexamples.

We close the paper by studying the consequences of Theorems 2.10 and 3.6. An easy corollary
of our classification theorems is that an IntK-decomposable algebra A must be a maximal D-order
in the K-algebra B, and B must be a semisimple K-algebra. Along these lines, in Section 4, we use
the theory of maximal orders (as presented in [29]) to establish the last part of our classification.
In Theorem 4.10 we prove that if D is the ring of integers of a number field K, then A is IntK-
decomposable if and only if the following four conditions are satisfied: B is a separable K-algebra
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with simple components which have the same center F ; F is a finite unramified Galois extension
of K; the simple components of B are unramified at each finite place of F ; and A is a maximal
D-order in B.

From this general theorem, we obtain two relevant corollaries. First, if A is the ring of integers
of a finite extension L of K, then A is IntK-decomposable if and only if L is an unramified Galois
extension of K (Corollary 4.11). Second, if D = Z, then A is IntQ-decomposable if and only if for
some n, A is isomorphic to a finite direct sum of copies of Mn(Z) (Corollary 4.12). This last result
implies that if IntQ(A) = Int(Z), then A is isomorphic to a finite direct sum of copies of Z.

2. Int-decomposable Algebras

We begin by recalling the definition of IntK-decomposability in the case of free D-algebras which
was given in [31].

Definition 2.1. ([31, Def. 1.2]) Let A be a D-algebra that, as a D-module, is free of finite rank,
so that A =

⊕t
i=1Dαi for some D-module basis {α1, . . . , αt}. We say that A is IntK-decomposable

with respect to {αi}ti=1 if Int(A) =
⊕t

i=1 IntK(A)αi as an IntK(A)-module.

It is shown in [31, Prop. 1.4] that the IntK-indecomposability of A does not depend on the
D-module basis {α1, . . . , αt}. That is, A is IntK-decomposable with respect to one basis if and only
if it is IntK-decomposable with respect to every basis. Thus, we can—and will—say algebras are
IntK-decomposable without referring to a specific basis.

A useful way to interpret Definition 2.1 is the following. Assume A =
⊕

iDαi. Then, we
have B =

⊕
iKαi and it follows that any f ∈ B[X] can be expressed (uniquely) in the form

f =
∑

i fiαi, where each fi ∈ K[X]. If f ∈ Int(A) and A is IntK-decomposable then we may
conclude that each fi ∈ IntK(A). This property can sometimes be used to quickly show that an
algebra is not Int-decomposable. For example, let D = Z and A = Z[i], the Gaussian integers.

Then, (1+i)(X2−X)
2 ∈ Int(A), but (X2−X)

2 /∈ IntQ(A); hence, A = Z[i] is not IntQ-decomposable. As
we shall see in Corollary 4.11, this is related to the fact that 2 is a ramified prime of Z[i].

The most prominent examples of IntK-decomposable algebras are the matrix rings Mn(D). As
mentioned in the introduction, Frisch proved in [8, Thm. 7.2] that when A = Mn(D), there is
a D-algebra isomorphism between Mn(IntK(A)) and Int(A), as in (1.3). Some rings of algebraic
integers and certain quaternion algebras can also be Int-decomposable [31, Sec. 6].

The main theorem of [31] shows that IntK-decomposable algebras can be recognized by the
structure of their residue rings A/PA, where P runs through the primes of D.

Theorem 2.2. ([31, Thm. 6.1]) Let D be a Dedekind domain with finite residue rings. Let A
be a free D-algebra of finite rank with standard assumptions. Then, A is IntK-decomposable if
and only if for each nonzero prime P of D, there exist n, t ∈ N and a finite field Fq such that

A/PA ∼=
⊕t

i=1Mn(Fq).

Both Definition 2.1 and the proof of Theorem 2.2 depended on the presence of a D-basis for A.
Our first goal in this paper is to generalize the definition of IntK-decomposable so that it applies
to algebras that are not necessarily free. We will then go on to show (Theorem 2.10) that Theorem
2.2 still holds under this more general definition.
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Definition 2.3. LetD be an integral domain andA a torsion-freeD-algebra. Consider the following
D-bilinear map:

IntK(A)×A→ Int(A)

(f(X), a) 7→ f(X) · a

By the universal property of the tensor product, there exists a unique D-module homomorphism

Φ : IntK(A)⊗D A→ Int(A) (2.4)

which maps every elementary tensor product f(X) ⊗ a to f(X) · a. We say that A is IntK-
decomposable if Φ is an isomorphism of D-modules, so that Int(A) ∼= IntK(A)⊗D A.

Recall that the tensor product IntK(A)⊗D A has a natural D-algebra structure with multipli-
cation given by (f1(X)⊗ a1)(f2(X)⊗ a2) = (f1(X)f2(X))⊗ (a1a2) (see [2, Chapt. III, §4, n. 1]) ,
for all fi ∈ IntK(A), ai ∈ A, i = 1, 2. Moreover, since the elements of K are central in B, the map
Φ above induces a D-algebra structure on Int(A) (and so, Φ becomes a D-algebra homomorphism).
Therefore, when A is IntK-decomposable, Φ is an isomorphism of D-algebras.

This definition has a number of immediate consequences, among them that Definition 2.3 reduces
to the original Definition 2.1 when A is free.

Proposition 2.5.

(1) If A is IntK-decomposable, then Int(A) is a ring.

(2) The following are equivalent:

(i) A is IntK-decomposable.

(ii) the D-module Int(A) satisfies the universal property of the tensor product of IntK(A) and
A.

(iii) Int(A) is equal to the subring of B[X] generated by IntK(A) and A.

(3) Assume A =
⊕t

i=1Dαi is free of finite rank as a D-module. Then, A is IntK-decomposable in
the sense of Definition 2.1 if and only if A is IntK-decomposable in the sense of Definition 2.3.

Proof. (1) This is a generalization of [31, Prop. 2.2]. When A is IntK-decomposable, it is actually
isomorphic as a ring to the D-algebra IntK(A)⊗D A.

(2) The equivalence of (i) and (ii) is clear. For (iii), note that for any A (IntK-decomposable or
not), the module Int(A) contains all products of the form f(X) · a, where f ∈ IntK(A) and a ∈ A.
Since Int(A) is closed under addition, it also contains the subring of B[X] generated by IntK(A)
and A. Given the definition of Φ, A being IntK-decomposable is equivalent to Int(A) equaling this
subring.

(3) Since A =
⊕

iDαi, we have the chain of equalities

IntK(A)⊗D A = IntK(A)⊗D (
⊕
i

Dαi) =
⊕
i

(IntK(A)⊗D Dαi) =
⊕
i

IntK(A)αi

from which the equivalence of the definitions is clear.

Remark 2.6.
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• While A being IntK-decomposable implies that Int(A) is a ring, the converse is not true.
There are numerous examples of D-algebras A which are not IntK-decomposable but still
Int(A) is a ring. For instance, when G is a finite group and A is the group algebra DG,
Int(A) is a ring by [32, Thm. 1.2]. However, whenever the characteristic of D/P divides |G|,
the group ring A/PA ∼= (D/P )G is not semisimple [27, Cor. 3.4.8], and hence cannot satisfy
Theorem 2.2. Thus, the group algebra DG will not be IntK-decomposable in such cases.

Also, if p is an odd prime of Z, D = Z(p), and A is a free D-algebra of finite rank, then for

each k > 0 the residue ring A/pkA has odd order. It then follows from [34, Thms. 2.4, 3.7]
that Int(A) is a ring; but certainly A can be chosen so that A is not IntQ-decomposable.

Finally, let Tn(D) be the D-algebra of n × n upper triangular matrices. Frisch has recently
shown [11] that Int(Tn(D)) is a ring. But, Tn(D) does not satisfy the condition of Theorem
2.2, so Tn(D) is not IntK-decomposable.

• According to Proposition 2.5, Frisch’s result (1.3) can be restated as follows:

Int(Mn(D)) = IntK(Mn(D))⊗D Mn(D).

When D is a Dedekind domain, we can prove that the map Φ in Definition 2.3 is always injective.

Lemma 2.7. Let D be a Dedekind domain and A a D-algebra of finite type with standard assump-
tions. Then, Φ : IntK(A)⊗D A→ Int(A) is injective.

Proof. Define Ψ : K[X]⊗D A→ B[X] by Ψ(f(X)⊗D a) = f(X)a. Then, Ψ is an isomorphism of
K-algebras. Since D is Dedekind and A is torsion-free, it follows that A is a projective D-module,
hence flat. Therefore, the containment IntK(A) ⊆ K[X] implies that IntK(A)⊗D A ⊆ K[X]⊗D A.
Thus, the map Φ is the restriction of Ψ to IntK(A)⊗D A, and since Ψ is injective so is Φ.

In this way, for D Dedekind, we may identify IntK(A)⊗DA with the subring of B[X] generated
by IntK(A) and A. We use this fact in proving the next proposition.

Proposition 2.8. Let D be a Dedekind domain and A a D-algebra of finite type with standard
assumptions. If IntK(A) = Int(D) then A is IntK-decomposable.

Proof. Since D is Dedekind, Int(A) contains IntK(A)⊗D A via the map Φ by Lemma 2.7. For the
other containment, assume IntK(A) = Int(D) and let Int(D,A) be the set Int(D,A) := {f ∈ B[X] |
f(D) ⊆ A}. Clearly, Int(A) ⊆ Int(D,A). By [4, Prop. IV.3.3] we have Int(D,A) = Int(D) ⊗D A,
so that

Int(A) ⊆ Int(D,A) = Int(D)⊗D A = IntK(A)⊗D A,

as required.

We can also generalize [31, Thm. 3.3] and prove that IntK-decomposability is a local property
when A is finitely generated. Note that this will hold without the assumption that D is Dedekind.

Proposition 2.9. Let D be a domain and let A be a D-algebra of finite type with standard as-
sumptions. Then A is IntK-decomposable if and only if AP is IntK-decomposable for each prime P
of D.
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Proof. By definition, A is IntK-decomposable if and only if the map Φ in (2.4) is an isomorphism.
By [1, Prop. 3.9], this holds if and only the D-modules Int(A) and IntK(A) ⊗D A are isomorphic
locally at each prime ideal P of D, that is, the induced maps

ΦP : (IntK(A)⊗D A)⊗D DP → Int(A)⊗D DP

are isomorphisms for each prime P of D.
Recall that for a D-module M and a multiplicative set S ⊂ D, we have S−1M ∼= M ⊗D S−1D.

Thus, we always have AP
∼= A ⊗D DP and IntK(A)P ∼= IntK(A) ⊗D DP . Since A is finitely

generated, by [31, Prop. 3.2] we have IntK(A)P = IntK(AP ) and Int(AP ) = Int(A)P . Hence,
IntK(A)⊗D DP

∼= IntK(AP ) and Int(A)⊗D DP
∼= Int(AP ).

Using this and other standard properties of tensor products (as in [2, Chap. II, §5]), we have

(IntK(A)⊗D A)⊗D DP
∼= IntK(A)⊗D (A⊗D DP )
∼= IntK(A)⊗D AP

∼= (IntK(A)⊗D DP )⊗DP
AP

∼= IntK(AP )⊗DP
AP .

Hence, the induced map ΦP is an isomorphism if and only if

Int(AP ) ∼= (IntK(A)⊗D A)⊗D DP
∼= IntK(AP )⊗DP

AP ,

which means that AP is IntK-decomposable.

We can now extend the classification of Int-decomposable algebras given in Theorem 2.2.

Theorem 2.10. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of
finite type with standard assumptions. Then, A is IntK-decomposable if and only if for each nonzero
prime P of D, there exist n, t ∈ N and a finite field Fq such that A/PA ∼=

⊕t
i=1Mn(Fq).

In particular, if A is commutative, then A is IntK-decomposable if and only if for each P there
exists a finite field Fq such that A/PA ∼=

⊕t
i=1 Fq for some t ∈ N.

Proof. Since D is Dedekind and A is finitely generated and torsion-free, A is a projective D-module
[19, Cor. p. 30]. Hence, for each prime P , AP is free as a DP -module, and AP has finite rank
because A is finitely generated. Applying Theorem 2.2 to AP , we see that AP is IntK-decomposable
if and only if AP /PAP

∼=
⊕

iMn(Fq) for some n and some Fq. Using Proposition 2.9 and the fact
that A/PA ∼= AP /PAP , we obtain the stated theorem.

Under the same hypotheses on D, we can describe those A for which IntK(A) = Int(D). This
generalizes [31, Thm. 4.6], which dealt with the case where A was free.

Theorem 2.11. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of
finite type with standard assumptions. Then, IntK(A) = Int(D) if and only if for each nonzero
prime P of D, A/PA ∼=

⊕t
i=1D/P for some t ∈ N.

Proof. We know that Int(D) =
⋂

P Int(D)P (where the intersection is over nonzero primes P of D)
and that Int(D)P = Int(DP ) for each P . The analogous equalities for IntK(A) are shown in [31,
Props. 3.1, 3.2]. Thus, IntK(A) = Int(D) if and only if IntK(AP ) = Int(DP ) for each P . But, as in
Theorem 2.10, each AP is a free DP -module of finite rank. By [31, Thm. 4.6], IntK(AP ) = Int(DP )
if and only if AP /PAP

∼=
⊕

iDP /PDP . The result now follows because AP /PAP
∼= A/PA and

DP /PDP
∼= D/P .
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3. Int-decomposable Algebras via Completions

In this section, we provide an alternate characterization of Int-decomposable algebras. As in
Section 2, we assume that D is a Dedekind domain with finite residue fields and that A is a D-
algebra of finite type with standard assumptions. Theorem 2.10 asserts that A is IntK-decomposable
precisely when for each nonzero prime P of D, A/PA is isomorphic to a direct sum of copies of
a matrix ring with entries in a finite field. Instead of focusing on A/PA, we can work with the

P -adic completion ÂP = lim←−A/P
kA of A, which in this case is isomorphic to D̂P ⊗D A (where D̂P

is the P -adic completion of D) because A is of finite type. In Theorems 3.6 and 3.10, we prove that
both Int-decomposability and the equality IntK(A) = Int(D) can be characterized in terms of the

completions ÂP . These results complement Theorems 2.10 and 2.11, respectively.
Recall first the following definition.

Definition 3.1. For a ring R and an R-algebra A, the null ideal of A with respect to R, denoted
NR(A), is the set of polynomials in R[X] that kill A. That is, NR(A) = {f ∈ R[X] | f(A) = 0}.
When R is commutative, NR(A) is easily seen to be an ideal of R[X]. If R = A, we set NR(A) =
N(A).

Null ideals are a useful tool for dealing with integer-valued polynomials because there is a
correspondence between the elements of IntK(A) and the null ideals ND/dD(A/dA), where d ∈ D.
Specifically, let f(X) = g(X)/d ∈ K[X], where g(X) ∈ D[X] and d ∈ D. Then, f ∈ IntK(A) if and
only if the residue of g in (D/dD)[X] is in ND/dD(A/dA).

Int-decomposability can be expressed in terms of null ideals (this was the main strategy employed
in [31]; see [31, Def. 4.3, Thm. 4.4]). To do this, we need a notion of “decomposability” for
N(A/P kA). This is accomplished in the next definition, which is the analog of Definition 2.3.

Definition 3.2. Let P be a nonzero prime of D and let k > 0. We say that A/P kA is ND/Pk -

decomposable if the canonical ring isomorphism (D/P k)[X] ⊗D/Pk A/P kA ∼= (A/P kA)[X] that
maps each elementary tensor product f(X) ⊗ a to f(X) · a induces the following isomorphism of
D/P k modules:

ND/Pk(A/P kA)⊗D/Pk A/P kA ∼= N(A/P kA).

Lemma 3.3. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of
finite type with standard assumptions. Then, A is IntK-decomposable if and only if A/P kA is
ND/Pk -decomposable for each nonzero prime P of D and each k > 0.

Proof. By Proposition 2.9 we may localize at a prime P and assume that D is a discrete valuation
ring, and hence that A is free. Furthermore, each A/P kA is free as a D/P k-module, so we can
always find α1, . . . , αt ∈ A/P kA such that A/P kA =

⊕t
i=1D/P

kαi. By Proposition 2.5 (3), A
is IntK-decomposable if and only if A is IntK-decomposable in the sense of Definition 2.1; and by
[31, Thm. 4.4, Def. 4.3], this is equivalent to having N(A/P kA) =

⊕t
i=1ND/Pk(A/P kA)αi for

each k > 0. Proceeding as in Proposition 2.5 (3), one may show this last condition is equivalent to
having ND/Pk(A/P kA)⊗D/Pk A/P kA ∼= N(A/P kA).

By Proposition 2.9, IntK-decomposability is a local property. So, in this section we will often
reduce to the local case, namely that D is a discrete valuation ring (DVR) with finite residue field
Fq0 and maximal ideal P = πD. Moreover, notice that when P is a maximal ideal of D, we have
A/PA ∼= AP /PAP , so that

ND/P (A/PA) = NDP /PDP
(AP /PAP ).
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We will use this fact freely in our subsequent work. In order to ease the notation, we set Ak =
A/P kA and Dk = D/P k, for each k ∈ N. Note that Dk ⊆ Ak and that Ak is a torsion-free
Dk-algebra, which is finitely generated as a Dk-module.

Lemma 3.4. ([31, Thm. 5.10]) Let k ∈ N. Then, Ak is NDk
-decomposable if and only if Ak

∼=⊕t
i=1Mn(Tk) for some n, t ∈ N and a finite commutative local ring Tk with principal maximal ideal

mk which is generated by the same uniformizer π of D, so that mk = πTk.

Recall that a commutative ring is chain ring if its set of ideals is totally ordered by inclusion.
In particular, a ring Tk as described in Lemma 3.4 is a chain ring, as in [17]. Note that T1 is equal
to a finite field Fq, which contains the residue field of D at P .

In Lemma 3.4, the Ak’s form an inverse system with respect to the natural projection maps
Ak → Ak/π

k−1Ak
∼= Ak−1, and these maps are compatible with finite direct product and matrix

rings. In particular, we have
Tk → Tk/π

k−1Tk ∼= Tk−1

so the Tk’s also form an inverse system of chain rings. Moreover, since the nilpotency of π in Ak is
k, it follows that the nilpotency of π in Tk is also k and the residue field of Tk is T1 = Fq.

Given that the P -adic completion ÂP is equal to the inverse limit lim←−Ak, it is natural to consider
the inverse limit of the chain rings Tk. It is well known that the completion of any DVR V with
maximal ideal m is realized as the inverse limit of the chain rings V/mk, k ∈ N. The next lemma
shows that, under certain mild assumptions, the converse is also true (it is probable that this lemma
is a known result, but a proof was not found in the available literature, so one is provided for the
sake of the reader).

Lemma 3.5. Let {Tk}k∈N be an inverse system of chain rings with maximal ideals mk = πkTk
such that k is the nilpotency of πk, and the transition maps θk : Tk → Tk−1 are all surjective (so,
without loss of generality, we may assume that πk 7→ πk−1). We assume that T1 is the common
residue field of the rings Tk.

Then the inverse limit T̂ = lim←−Tk is a complete DVR with residue field isomorphic to T1.

Proof. We identify the inverse limit T̂ with the subset of coherent sequences of the direct product
of the Tk’s:

T̂ = lim←−Tk = {(ak) ∈
∏
k≥1

Tk | ak+1 7→ ak,∀k ≥ 1}.

Let
m̂ = {(ak) ∈ T̂ | ak ∈ mk,∀k ≥ 1}.

Note that, for (ak) ∈ T̂ , (ak) is in m̂ if and only if for some k we have ak ∈ mk. Clearly, m̂ is an

ideal of T̂ . We claim that every element of T̂ \ m̂ is invertible, which shows that T̂ is a local ring

with maximal ideal m̂. Indeed, let (ak) ∈ T̂ \ m̂. Then for each k ∈ N, ak is invertible in Tk, and it

is easy to see that (a−1k ) is a coherent sequence and is the inverse of (ak) in T̂ .

Moreover, m̂ = πT̂ , where π = (πk) ∈ T̂ . In fact, by definition π ∈ m̂. Conversely, if (ak) ∈ m̂,
then, for all k ∈ N, we have ak = πkbk, for some bk ∈ Tk. One may verify that (bk) is a coherent

sequence, so (ak) = π(bk) ∈ πT̂ . Note also that π is not a nilpotent element of T̂ , because if e ∈ N
is such that πe = (πe

k) = 0, then we have e ≥ k, for all k ∈ N, a contradiction.

Now, we clearly have
⋂

k≥1 m̂
k = (0), so by [3, Chap. VI, §1, n. 4, Prop. 2] T̂ is a DVR. It

remains to show that T̂ is complete with respect to the m̂-adic topology.
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Since each transition map θk : Tk → Tk−1 is surjective, each projection ψk : T̂ → Tk is also

surjective. Furthermore, the kernel of ψk is πkT̂ , since the maximal ideal of Tk has nilpotency k by
assumption. So, we may identify each chain ring Tk with the residue ring T̂ /πkT̂ = T̂ /m̂k. Hence,

T̂ = lim←− T̂ /m̂
k, which shows that the topology on T̂ as the inverse limit of the chain rings {Tk}k∈N

coincides with the m̂-adic topology and that T̂ is complete with respect to the m̂-adic topology [3,
Chap. III, §2, n. 6].

The next theorem gives the promised characterization of IntK-decomposable algebras in terms
of the completions ÂP . Given a prime ideal P of D, we denote by D̂P the P -adic completion of D,
and denote by K̂P the P -adic completion of K (which is also the fraction field of D̂P ).

Theorem 3.6. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of
finite type with standard assumptions. Then, A is IntK-decomposable if and only if, for each nonzero
prime ideal P ⊂ D, there exist n, t ∈ N such that

ÂP
∼=

t⊕
i=1

Mn(T̂P ) (3.7)

where T̂P is a complete DVR with finite residue field and quotient field which is a finite unramified
extension of K̂P .

In particular, if A is commutative then A is IntK-decomposable if and only if, for each nonzero
prime ideal P ⊂ D, ÂP

∼=
⊕t

i=1 T̂P , where T̂P is as above.

Proof. Without loss of generality, we may suppose that D is a DVR with maximal ideal P = πD.
We retain the notation introduced at the beginning of this section.

Suppose first that A is IntK-decomposable. Then, the P -adic completion ÂP of A is equal to
the inverse limit of the rings Ak [3, Chap. III, §2, n. 6]. For each k ∈ N, let Tk be as in Lemma

3.4, and let T̂P be their inverse limit, which is a complete DVR with maximal ideal m̂P by Lemma
3.5. Since the formation of inverse limit commutes with finite direct sums, by Lemma 3.4 we have

ÂP = lim←−
k≥1

Ak =

t⊕
i=1

lim←−
k≥1

Mn(Tk) =

t⊕
i=1

Mn(T̂P ). (3.8)

Now, Dk ⊆ Ak
∼=

⊕
iMn(Tk), so by [31, Lem. 5.1] each matrix ring Mn(Tk) contains a (central)

copy of Dk, which is contained in the set of scalar matrices Tk. Since the maximal ideals of Dk and
Tk have the same generator π, Dk ⊆ Tk is an unramified extension of chain rings [17, p. 281]. So,

by Lemma 3.5, D̂P = lim←−Dk ⊆ T̂P = lim←−Tk is an unramified extension of complete DVRs since π

generates the maximal ideals of both D̂P and T̂P . Let F̂P be the quotient field of T̂P , let Fq be

the residue field of T̂P , and let Fq0 be the residue field of D̂P . Then, F̂P /K̂P is an unramified field

extension of finite degree [F̂P : K̂P ] = [Fq : Fq0 ]. This establishes that if A is IntK-decomposable,

then we have the desired decomposition (3.7) for ÂP .

Conversely, suppose (3.7) holds, where T̂P is a complete DVR which is a finite unramified

extension of D̂P . In particular, P̂ · T̂P = m̂, the maximal ideal of T̂P . As above, let Fq be the

(finite) residue field of T̂P . Then,

Â/P̂ Â ∼= A/PA ∼=
t⊕

i=1

Mn(Fq)
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so by Theorem 2.10 A is IntK-decomposable.

Theorem 3.6 is the analog of Theorem 2.10. There is also an analogous form of Theorem 2.11,
the proof of which requires the next lemma.

Lemma 3.9. Let D be a DVR with maximal ideal P = πD. Let A be a D-algebra with standard
assumptions, and let Â be the P -adic completion of A. Then, IntK(Â) = IntK(A).

Proof. The containment IntK(Â) ⊆ IntK(A) is clear, since A embeds in Â. Conversely, let f ∈
IntK(A) and α ∈ Â. Suppose f(X) = g(X)/πk, where g ∈ D[X] and k ∈ N. If k = 0, then

f ∈ D[X] ⊆ IntK(Â), so assume that k > 1.

Via the canonical projection Â → A/πkA, we see that there exists a ∈ A such that α ≡ a

(mod πkÂ). Since the coefficients of g are central in A, we get g(α) ≡ g(a) (mod πkÂ). Thus,

f(α) = f(a) + λ/πk, where λ ∈ πkÂ, so that f(α) ∈ Â. Hence, f ∈ IntK(Â) and IntK(Â) =
IntK(A).

Theorem 3.10. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of
finite type with standard assumptions. Then, IntK(A) = Int(D) if and only if, for each nonzero

prime ideal P of D, ÂP
∼=

⊕t
i=1 D̂P , for some t ∈ N.

Proof. Note that if t is the rank of A, defined as the dimension of B = K ⊗D A over K, then, for
each prime ideal P of D, the rank of AP = DP ⊗D A ⊂ B is equal to t, so that t does not depend
on the particular prime ideal P . As we have already remarked, AP is free as a DP -module, so that
AP
∼=

⊕t
i=1DP (as DP -modules).

We may work locally since ÂP = (ÂP )PDP
. So, we will assume that D is a DVR and we will

omit the suffix P .
If IntK(A) = Int(D) then A is IntK-decomposable, by Proposition 2.8. Hence, by Theorem 2.11,

we have A/PA ∼=
⊕t

i=1D/P . By Theorem 3.6, the completion Â decomposes as a finite direct sum

of matrix rings over a complete DVR T̂ , which is a finite unramified extension of D̂ (so that P̂ · T̂
is equal to the maximal ideal m̂ of T̂ ). Since Â/P̂ Â ∼= A/PA, formula (3.7) becomes Â ∼=

⊕t
i=1 D̂,

that is, n = 1 and D̂ = T̂ , because the residue field T̂ /m̂ of T̂ must be isomorphic to D/P , the

residue field of D̂.
Conversely, if Â is isomorphic to a finite direct sum of copies of D̂, then by Lemma 3.9 we have

IntK(A) = IntK(Â) = IntK(
⊕
i

D̂) = IntK(D̂) = Int(D)

as desired.

At this point, it is apparent that Int-decomposable algebras are related to matrix algebras via
their residue rings and completions. At the close of this paper, we will prove (Corollary 4.12) that
when D = Z, A is IntQ-decomposable if and only if there exist n, t ∈ N such that A ∼=

⊕t
i=1Mn(Z)

(which implies that if A is IntQ-decomposable, then IntQ(A) = IntQ(Mn(Z)) for some n). However,
in general Int-decomposable algebras need not be direct sums of matrix algebras. We end this
section with a theorem that considers some of the conditions that link matrix algebras with Int-
decomposable algebras, and examines the implications among these conditions.
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Theorem 3.11. Let D be a Dedekind domain with finite residue rings and A a D-algebra of finite
type with standard assumptions. Consider the following four conditions:

(i) there exists n ∈ N such that A ∼= Mn(D).

(ii) there exists n ∈ N such that ÂP
∼= Mn(D̂P ), for all primes P of D.

(iii) A is IntK-decomposable.

(iv) there exists n ∈ N such that IntK(A) = IntK(Mn(D)).

Then, the following implications hold: (i) ⇒ (ii), (ii) ⇒ (iii), and (ii) ⇒ (iv); but for none of
these three implications does the converse hold. Finally, (iii) 6⇒ (iv) and (iv) 6⇒ (iii).

Proof. The implication (i)⇒ (ii) is clear, and (ii)⇒ (iii) is Theorem 2.10.

((ii) ⇒ (iv)) Clearly, it is sufficient to prove the statement locally at each maximal ideal P

of D. Thus, we suppose that D is a DVR. By Lemma 3.9 we have IntK(A) = IntK(Â) and

IntK(Mn(D)) = IntK(Mn(D̂)), and since Â ∼= Mn(D̂) the statement holds.

We now show by counterexamples that the other stated implications do not hold.

((ii) 6⇒ (i)) Let p be an odd prime of Z, let D = Z(p), and let A be the standard quaternion
algebra A = D ⊕Di ⊕Dj ⊕Dk (so that i2 = j2 = −1 and ij = k = −ji). Then, it is well known

(cf. [12, Exer. 3A]) that A/pkA ∼= M2(D/pkD) ∼= M2(Z/pkZ) for all k > 0, so that Â ∼= M2(Zp).
However, A 6∼= M2(D), because (among other reasons) A contains no nonzero nilpotent elements.

((iii) 6⇒ (ii)) Take A = Mn(D)⊕Mn(D). Then, A is IntK-decomposable by Theorem 2.10, but
A/PA ∼= Mn(D/P )⊕Mn(D/P ), so (ii) does not hold.

((iv) 6⇒ (ii)) Again take A = Mn(D) ⊕ Mn(D). Then, (ii) does not hold, but IntK(A) =
IntK(Mn(D)) by [31, Thm. 2.3].

((iii) 6⇒ (iv)) Let K $ L be an unramified Galois extension of number fields. Let D = OK

and take A = OL. Then—as we will show in Corollary 4.11—A is IntK-decomposable. How-
ever, we argue that for all n ∈ N we have IntK(OL) 6= IntK(Mn(D)). First, if n = 1, then
IntK(OL) = IntK(D) = Int(OK); but, by Corollary 4.11, this is impossible because L 6= K. So,
assume that n > 1. Then, by [24, Prop. 7] IntK(OL) is integrally closed (this also follows from
[16, Thm. 3.7]). But, IntK(Mn(D)) is never integrally closed when n > 1 [25, Cor. 3.4], so
IntK(OL) 6= IntK(Mn(D)) for n > 1.

((iv) 6⇒ (iii)) Let n > m ≥ 1 and take A = Mn(D) ⊕ Mm(D). Then, IntK(Mn(D)) ⊆
IntK(Mm(D)), so IntK(A) = IntK(Mn(D)) by [31, Thm. 2.3]. But, for any prime P of D, we have
A/PA ∼= Mn(D/P )⊕Mm(D/P ), which does not satisfy Theorem 2.10.

4. Extended Algebras and Maximal Orders

In this final section, we examine the consequences of Theorems 2.10 and 3.6, which allows us
to give a global characterization of Int-decomposable algebras. The descriptions given in Theorems
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2.10 and 3.6 show that an Int-decomposable algebra can be described—either residually or in terms
of its completions—in terms of matrix rings. In the case where D is the ring of integers of a
number field K, we are able to completely classify IntK-decomposable algebras A as those which
are the maximal orders of the extended K-algebra B; B is a separable K-algebra whose simple
components share a common center F ; F is a finite unramified Galois extension of K; and each
simple component of B is unramified at each finite place of F .

The work in this section relies heavily on the theory of maximal orders, as presented in [29].
We begin by recalling several definitions from [29] and [30]. As in earlier sections, D denotes a
Dedekind domain with fraction field K.

Definitions 4.1. Let B be a finite dimensional K-algebra.

• By the Wedderburn Structure Theorem [28, Thm. 3.5], if B is semisimple, then we have
B =

⊕r
i=1Mni

(Di), for some uniquely determined r, ni ∈ N and division rings Di; the
Bi = Mni

(Di) are the simple components of B. We denote by Z(Di) the center of Di,
which is a finite field extension of K. We say that B is separable if B is a finite dimensional
semisimple K-algebra, such that the center of each simple component of B is a separable field
extension of K [29, p. 99].

• A D-order in B is a subring A of B such that A is a finitely generated D-submodule of B and
K ·A = B. A maximal D-order in B is a D-order that is not properly contained in any other
D-order of B (see [29, p. 108, 110]). Note that in the setting of this paper, a D-algebra A of
finite type is a D-order in the extended K-algebra B = K ⊗D A (and vice versa, a D-order
A in a K-algebra B is a D-algebra of finite type).

• We say that a field extension F/K is a splitting field of the K-algebra B if the extended F -
algebra B⊗KF is a direct sum of full matrix algebras over F , that is, B⊗KF ∼=

⊕s
i=1Mni

(F )
[30, Def. 18.30]. It is easy to see that if a finite dimensional K-algebra B admits a splitting
field F , then B is semisimple, since the extended F -algebra B ⊗K F is semisimple (cf. [30, p.
151]).

• If B = Mn(D) is a K-central simple algebra, where D is a division algebra, we denote by
deg(B) =

√
[B : K] the degree of B. If D is a Dedekind domain and P ⊂ D a maximal ideal,

then K̂P is a splitting field of B if and only if B is unramified at P in the sense of [29, Chap.

8, §32], that is, B̂P = B ⊗K K̂P
∼= Mnd(K̂P ), where d is the degree of D.

When D is the ring of integers of a number field, we will demonstrate that IntK-decomposable
algebras can be completely classified in terms of these definitions. We first consider the local case
where D is a DVR, and then globalize this to the general case.

4.1. Local case

In this subsection, D is a DVR with maximal ideal P and finite residue field. As in Section 3,
we denote by D̂ and Â the P -adic completions of D and A (and in general all completions are with
respect to the P -adic topology).

Theorem 4.2. Let A be a D-algebra of finite type with standard assumptions and let B = A⊗DK
be the extended K-algebra. Then A is IntK-decomposable if and only if A is a maximal order in B,
B is a separable K-algebra with simple components B1, . . . , Br and there exists a finite unramified
extension F̂ of K̂ and n ∈ N which satisfy these conditions for each i = 1, . . . , r:
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(i) Fi ⊗K K̂ ∼=
∏ki

j=1 F̂ for some ki ∈ N.

(ii) Bi ⊗Fi
F̂ = Mn(F̂ ).

Note that, by [19, Chap. 6, Prop. 6.1] the above condition (i) is equivalent to the following:
for each i = 1, . . . , r, all the prime ideals in the integral closure DFi of D in Fi (which necessarily

lie above P ) are unramified and have the same residue field degree, equal to [F̂ : K̂] (which is

independent of i). In particular, F̂ is the completion of Fi at each prime ideal of DFi . The second

condition says that F̂ is a splitting field of each simple component Bi, that is, Bi is unramified at
each finite place of its center Fi and the degree of each simple component Bi as a Fi-central simple
algebra is constant, independent of i. So we can say that P is unramified in each Bi.

Proof. (⇐) Assume the above conditions on A,B are satisfied. Since B is semisimple, we have

B =

r⊕
i=1

Mni(Di) (4.3)

for some r, ni ∈ N and division rings Di. We denote by Bi the simple component Mni
(Di) of B

and by Fi the center of Di, for i = 1, . . . , r.
Note that for each i = 1, . . . , r by condition (i) we have

Bi ⊗K K̂ = (Bi ⊗Fi
Fi)⊗K K̂ = Bi ⊗Fi

(Fi ⊗K K̂)

= Bi ⊗Fi (

ki∏
j=1

F̂ ) =

ki∏
j=1

(Bi ⊗Fi F̂ ) (4.4)

so by condition (ii) we conclude that Bi⊗K K̂ =
∏ki

j=1Mn(F̂ ). Hence, the P -adic completion of B
is:

B̂ ∼=
r⊕

i=1

(Bi ⊗K K̂) =

r⊕
i=1

ki⊕
j=1

Mn(F̂ ) =

t⊕
h=1

Mn(F̂ ). (4.5)

Finally, since B is a separable K-algebra and A is a maximal D-order in B, it follows by [29,

Thm. 11.5] that Â is a maximal D̂-order in B̂. Moreover, by [29, Thm. 10.5], A decomposes as

A =
⊕r

i=1Ai, where Ai is a maximal D-order in Bi, for all i = 1, . . . , r. Similarly, Â decomposes

as Â =
⊕t

i=1 Âi, where each Âi is a maximal D̂-order in the simple component Mn(F̂ ) of B̂. By

[29, Thm. 17.3], each Âi is conjugated by a unit of Mn(F̂ ) to the maximal D̂-order Mn(T̂ ), where

T̂ is the DVR of the local field F̂ . In particular, each maximal D̂-order Âi is isomorphic to Mn(T̂ ),
so by Theorem 3.6 A is IntK-decomposable.

(⇒) Assume that A is IntK-decomposable. By Theorem 3.6 we have that Â = A ⊗D D̂ ∼=⊕t
i=1Mn(T̂ ) for some n, t ∈ N and a finite unramified extension T̂ of D̂. Then,

B̂ = B ⊗K K̂ = (A⊗D K)⊗D D̂ = Â⊗D K ∼=
t⊕

h=1

Mn(F̂ ) (4.6)

(note that T̂ ⊗D K = F̂ ). Therefore, B̂ is a K̂-semisimple algebra with center equal to Z(B̂) ∼=⊕t
i=1 F̂ . Since an unramified extension of a local field is separable [19, Thm 5.26], B̂ is a separable
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K̂-algebra. Moreover, each component Mn(T̂ ) of Â is a maximal D̂-order in the respective simple

component B̂i = Mn(F̂ ) of B̂ (see [29, Thm. 8.7]), so, by [29, Thm. 10.5], Â is a maximal D̂-order

in B̂. By [29, Thm. 11.5], A is a maximal D-order in B.
Now, by [28, Prop. 10.6b] B is K-separable, hence semisimple. Therefore, B decomposes as a

finite direct sum of matrix algebras Bi = Mni
(Di) as in (4.3) for some r, ni ∈ N and division rings

Di whose centers Fi = Z(Di) are finite separable field extensions of K.

By [19, Prop. 6.1], for each i = 1, . . . , r, Fi ⊗K K̂ =
∏ki

j=1 F̂ij , where F̂ij is a finite separable

extension of K̂ for all i, j (the F̂ij are the completions of Fi at the different prime ideals of DFi which

lie above P ). Moreover, Bi ⊗Fi
F̂ij is a central simple algebra over F̂ij , say equal to Mmij

(D̂ij),

where D̂ij is a central division algebra over F̂ij [29, Cor. 7.8]. As in (4.4) we get

B̂ ∼=
r⊕

i=1

(Bi ⊗K K̂) =

r⊕
i=1

ki⊕
j=1

(Bi ⊗Fi F̂ij) =

r⊕
i=1

ki⊕
j=1

Mmij (D̂ij). (4.7)

By comparing (4.6) and (4.7) and applying the Wedderburn Structure Theorem, we deduce that

mij = n, D̂ij = F̂ for all i and j, and
∑r

i=1 ki = t. This forces F̂ij = F̂ for all i and j, so that

condition (i) is satisfied. Also, Bi ⊗Fi F̂ij = Bi ⊗Fi F̂ = Mn(F̂ ), so that condition (ii) is satisfied,
too.

Remark 4.8. Assume A is IntK-decomposable, so B decomposes as in (4.3). For each i = 1, . . . , r,
let DFi

be the integral closure of D in the center Fi of the simple component Bi of B and consider
it as a (commutative) D-algebra. Then the theorem shows (via condition (ii)) that the DFi

are
IntK-decomposable (according to Theorem 2.10). It also shows that each component Ai of A is
IntK-decomposable and also IntFi-decomposable as well.

Note that while the degree of the Bi’s as Fi-central simple algebras is the same for all i, it is
not necessarily true that the dimension of the Bi’s over K is the same for all i. The point is that
the centers Fi’s may be different from each other (and, in particular, have different degree over K).
For example, let D = Z(p) where p is an odd prime, let A1 be the standard quaternion algebra
A1 = D ⊕Di⊕Dj⊕Dk (so that i2 = j2 = −1 and ij = k = −ji). Then, B1 = Q⊕Qi⊕Qj⊕Qk,
so n1 = 1 and m1 = 2. Let F/Q be a quadratic field extension in which p splits completely and let
DF,p be the integral closure of Z(p) in F (so DF,p/pDF,p

∼= Z/pZ × Z/pZ). Let A2 = M2(OF,p),
so B2 = M2(F ), n2 = 2, and m2 = 1. Then A = A1 ⊕ A2 is IntK-decomposable. Note that
n1m1 = n2m2 = 2 and B1 and B2 have different dimension over Q: [B1 : Q] = 4 but [B2 : Q] = 8.

In the global case where D is the ring of integers of a number field, which will be treated in the
next subsection, we will see that if condition (ii) of Theorem 4.2 holds at each maximal ideal of D,
then the simple components of the separable K-algebra B have all the same center F , which is an
unramified Galois extension of K.

Remark 4.9. Let A be an IntK-decomposable algebra, as in the statement of Theorem 4.2. Since
the finite unramified extension F̂ of K̂ of condition (ii) of the statement is a Galois extension,

from (4.5) it is easy to see that F̂ is a splitting field of the K-algebra B. However, in general the

converse does not hold, that is, a finite unramified extension F̂ of K̂ can be a splitting field of B
without A being IntK-decomposable. For example, let F be a finite field extension of K such that
the maximal ideal P of D is unramified in DF and the prime ideals above P have different residue
field degree. Then, by Theorem 2.10 the D-algebra A = DF is not IntK-decomposable. Let F̂ be
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a finite unramified extension of K̂ containing all the completions of A at the different prime ideals
above P . Then F ⊗K F̂ = (F ⊗K K̂)⊗K̂ F̂ =

∏
j F̂j ⊗K̂ F̂ =

∏
j F̂ (notice that F̂j ⊗K̂ F̂ is equal

to a direct product of copies of F̂ ), so F̂ is a splitting field of B = F .

4.2. Global case

We now establish a global variant of Theorem 4.2. In this final subsection, we assume that D is
the ring of integers of a number field K. This enables us to use some of the powerful tools of algebraic
number theory, such as the Tchebotarev Density Theorem and the Hasse-Brauer-Noether-Albert
Theorem. As usual, A is a D-algebra of finite type with standard assumptions.

Theorem 4.10. Let K be a number field with ring of integers D. Let A be a D-algebra of finite
type with standard assumptions and let B = A⊗D K be the extended K-algebra. Then, A is IntK-
decomposable if and only if A is a maximal order in B and B is a separable K-algebra with simple
components B1, . . . , Br such that the following hold:

(i) the Bi share a common center F .

(ii) F is a finite unramified Galois field extension of K.

(iii) for each i, Bi is unramified at each finite place of F .

(iv) the degree of Bi as an F -central simple algebra is the same for each i.

Proof. (⇐) Assume the above conditions on A and B are satisfied. Let P be a fixed maximal ideal

of D. Then, by conditions (ii) and (iii) and [19, Prop. 6.1] we have F ⊗K K̂ =
∏k

j=1 F̂P , for some

k ∈ N, where F̂P is a finite unramified extension of K̂P ; note that F̂P is the completion of F at any
prime ideal which lies above P . Therefore, by (4.4) and conditions (i) and (iv) we have

B̂P = B ⊗K K̂P =

r⊕
i=1

(Bi ⊗K K̂P ) =

r⊕
i=1

k⊕
j=1

(Bi ⊗F F̂P ) =

t⊕
h=1

Mn(F̂P )

Since A is a maximal D-order in B, by [29, Cor. 11.2 & Thm. 11.5] ÂP is a maximal D̂P -order

in B̂P , so by [29, Thm. 10.5] ÂP decomposes as ÂP =
⊕t

h=1 Âh, where each Âh is a maximal

D̂P -order in Mn(F̂P ). If T̂P is the valuation ring of F̂P , then by [29, Thm. 17.3] Âh is a conjugate

of (hence isomorphic to) Mn(T̂P ), for each h = 1, . . . , t. Since P was an arbitrary maximal ideal of
D, by Theorem 3.6 it follows that A is IntK-decomposable.

(⇒) Assume now that A is IntK-decomposable. Since IntK-decomposability is a local property
(Proposition 2.9), for each maximal ideal P of D, AP = A ⊗D DP is IntK-decomposable, so we
may apply Theorem 4.2 to AP . Thus, AP is a maximal DP -order in B, and B is a separable
K-algebra and decomposes as B =

⊕r
i=1Bi with simple components Bi with centers Fi which are

finite separable field extensions of K, for i = 1, . . . , r. Moreover, there exists n ∈ N such that
[Bi : Fi] = n2, for each i = 1, . . . , r, and hence (iv) holds. Note that r is independent of the
particular maximal ideal P of D. Moreover, since A is locally a maximal DP -order in B, A is a
maximal D-order in B ([29, Cor. 11.2]).

For each prime ideal P of D, by condition (i) of Theorem 4.2 there exists a finite unramified

extension F̂P of K̂P such that, for each i = 1, . . . , r, F̂P is the completion of Fi at any prime ideal
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Q of the ring of integers DFi which lies over P . Furthermore, by condition (ii) of Theorem 4.2 F̂P

is a splitting field of the Fi-central simple algebra Bi. These facts imply that all the field extensions
F1, . . . , Fr are unramified over K and by the Tchebotarev Density Theorem they also are Galois
extensions (see [20, Cor. VII.13.8]). Moreover, since a finite Galois extension F of K is completely
determined by the set of prime ideals of K which split completely in F (again by the same theorem
of Tchebotarev, see [20, Cor. VII.13.10]), it follows that F1, . . . , Fr are all equal to the same finite
unramified Galois extension F . All of this proves conditions (i), (ii), and (iii).

We close this paper with two corollaries. In the first one we specialize Theorems 2.10 and 2.11
to the case where D and A are rings of integers in number fields, which results in a very clean
description of IntK-decomposable algebras. In the second corollary, we show that over Q, an IntQ-
decomposable algebra A must be isomorphic to a finite direct sum of copies of Mn(Z), for some
n ∈ N. This corollary also demonstrates that—with our usual assumptions in place—a matrix
algebra over Z can be recognized by its residues and completions.

Corollary 4.11. Let K ⊆ L be number fields with rings of integers OK and OL, respectively.
Consider OL as an OK-algebra. Then

(1) OL is IntK-decomposable if and only if L/K is an unramified Galois extension.

(2) IntK(OL) = Int(OK) if and only if L = K.

Proof. (1) This follows from Theorem 4.10.
(2) Clearly, L = K implies that IntK(OL) = Int(OK). So, assume that IntK(OL) = Int(OK).

By Theorem 2.11, OL/POL
∼=

⊕
iOK/P for each nonzero prime P of OK . From this, we see that

OL is IntK-decomposable as an OK-algebra, and moreover that f(Q|P ) = 1 for each P and each
Q above P (note that the same conclusion can be obtained from Theorem 3.10). By (1), L is an
unramified Galois extension of K with all inertial degrees equal to 1, and so L = K by [20, Thm.
VI.3.8].

Corollary 4.12. Let A be a Z-algebra of finite type with standard assumptions. The following are
equivalent.

(1) A is IntQ-decomposable

(2) There exist n, r ∈ N such that A ∼=
⊕r

i=1Mn(Z)

(3) For all primes p, there exist n, r ∈ N such that A/pA ∼=
⊕r

i=1Mn(Z/pZ)

(4) For all primes p, there exist n, r ∈ N such that Âp
∼=

⊕r
i=1Mn(Zp)

In particular, if A is IntQ-decomposable, then IntQ(A) = IntQ(Mn(Z)) for some n; and if IntQ(A) =
Int(Z), then A ∼=

⊕r
i=1 Z.

Proof. It suffices to prove (1) ⇔ (2). The other equivalences follow by Theorems 2.10 and 3.6.
By Theorem 4.10, if A is isomorphic to a finite direct sum of copies of Mn(Z), then A is IntQ-

decomposable (the same conclusion follows by the application of either Theorem 2.10 or Theorem
3.6). Conversely, if A is IntQ-decomposable then by the same theorem A is a maximal Z-order in
B and B is a separable Q-algebra, say B =

⊕r
i=1Bi, where the Bi’s are the simple components
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of B. Since there is no proper unramified extension of Q, the center of each Bi is equal to Q, by
condition (ii) of Theorem 4.10.

Now, for each i = 1, . . . , r, by the Hasse-Brauer-Noether-Albert Theorem [29, Thm. 32.11]
either Bi

∼= Mn(Q) or there are at least two primes of Q (finite or infinite) which ramify in Bi (see
[29, Chap 8, §32.1, Exer. 1]). The latter situation cannot occur, because Bi is unramified at each
finite place of its center Q by condition (iii) of Theorem 4.10. Since this holds for each i = 1, . . . , r,
we must have B =

⊕r
i=1Mn(Q) (the fact that n is the same for each simple component of B is a

consequence of condition (iv) of Theorem 4.10). Finally, since Z is a PID, each maximal Z-order of
Mn(Q) is conjugate (hence isomorphic) to Mn(Z), so A ∼=

⊕r
i=1Mn(Z), as desired. The implication

that IntQ(A) = IntQ(Mn(Z)) is clear, and the last claim follows from Proposition 2.8 and Theorem
2.11.

The following example shows that the conclusion of Corollary 4.12 may fail if we work over a
number field which is a proper extension of Q.

Example 4.13. Let K = Q(
√

5). Consider the standard quaternion algebra B over K, which is
B = K ⊕Ki⊕Kj⊕Kk, where i2 = j2 = −1 and ij = k = −ji. This algebra is unramified at each
finite prime of the ring of integers D of K but is ramified at the two infinite real primes. Hence,
any maximal D-order A in B is IntK-decomposable, by Theorem 4.10, but A cannot be isomorphic
to a direct sum of matrix rings because B is a division ring.
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