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EXACT ALGEBRAIC CONDITIONS FOR INDIRECT
CONTROLLABILITY OF QUANTUM SYSTEMS∗

DOMENICO D’ALESSANDRO†, FRANCESCA ALBERTINI‡ , AND RAFFAELE ROMANO†

Abstract. In several quantum control schemes, a target quantum system S is put in contact
with an auxiliary system A and the coherent control can directly affect only A. The system S is
controlled indirectly through the interaction with A. The system S is said to be indirectly controllable
if every unitary transformation can be performed on the state of S with this scheme. The indirect
controllability of S will depend on the dynamical Lie algebra L characterizing the dynamics of the
total system S + A and on the initial state of the auxiliary system A. In this paper, we describe
this characterization exactly. A natural assumption is that the auxiliary system A is minimal, which
means that there is no part of A that is not coupled to S, and we denote by nA the dimension of
such a minimal A, which we assume to be fully controllable. We show that if nA is greater than or
equal to 3, indirect controllability of S is verified if and only if complete controllability of the total
system S + A is verified, i.e., L = su(nSnA) or L = u(nSnA), where nS denotes the dimension
of the system S. If nA = 2, it is possible to have indirect controllability without having complete
controllability. The exact condition for that to happen is given in terms of a Lie algebra LS which
describes the evolution of the system S only. We prove that indirect controllability is verified if and
only if LS = u(nS) and the initial state of the auxiliary system A is pure.
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1. Introduction. In the paper [18], Lloyd proposed a scheme for control of
quantum systems where the controller itself was a quantum system that was affecting
the target system via the interaction. This scheme, named coherent feedback control,
was later expanded in several ways (see [26] for a recent review) and it is currently the
object of intensive research. The consideration of this approach motivates the fun-
damental question of to what extent one can control a quantum system S indirectly
through the interaction with an auxiliary system A. A further motivation comes from
the fact that, in many experimental set-ups, the target system is not directly acces-
sible for control or it is not advisable to control it directly as the influence of the
environment might become too strong during the experiment, therefore destroying
the peculiar (potentially useful) features of quantum dynamics (see, e.g., [13], [20]).
Schemes of indirect control are, for example, given by spin chains where the control
field can affect only a selected number of spins [12]. Several recent papers in quantum
information have discussed the experimental need of implementing quantum opera-
tions by acting only on a selected number of qubits (see, e.g., [27] and the references
therein). Further motivation comes from situations where one wants to effectively
switch off the interaction of a system S with an additional system A such as in solid
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state implementations of quantum information (see, e.g., [9]). Indirect controllability
gives a way to achieve this by controlling system A only.

Mathematical controllability studies for systems where only one subsystem (A)
can be directly accessed, but another system (S) is the target of control, have been
carried out in several papers (see, e.g., [3], [10]). However, conditions have always
been given so that the complete controllability of the whole system S + A (see Def-
inition 2.1 below) is verified. In a recent paper [8], a study was started of indirect
controllability (for a precise definition see Definition 2.2 below) and the case where
both system S and A are two dimensional was treated in detail. It was shown that it
is possible to have indirect controllability of system S without having complete con-
trollability on the system S + A (while the converse implication is obvious). It was,
however, shown later in [7] that if the system A is assumed to be in a perfectly mixed
state at the beginning of the control experiment, then complete controllability is nec-
essary to have indirect controllability. In this paper, we solve the general problem
to give exact conditions for indirect controllability for systems S and A of arbitrary
dimensions.

It is well known in quantum control theory that the dynamical Lie algebra L
generated by the Hamiltonians available for the evolution of a finite dimensional
system of dimension n describes the set of available evolutions for that system (see,
e.g., [15], [17]). In particular, if L = su(n) (resp., L = u(n)), every special unitary
evolution (resp., every unitary evolution) is available for the system. This is called the
Lie algebra rank condition. It is a result of practical use as it reduces a problem on a
Lie group to a linear algebraic test, and it suggests the use of the theory of Lie algebras
and Lie groups as a comprehensive approach to the analysis and control of quantum
systems. In this approach, the dynamical Lie algebra is the fundamental object of
study as it describes how “rich” the dynamics of the system is. In this paper, we shall
use the dynamical Lie algebra to characterize the indirect controllability properties
in indirect control schemes.

The paper is organized as follows. In the next section, we give the main defini-
tions and state the main results, while deferring the proofs to the rest of the paper.
Section 3 is devoted to some technical lemmas concerning the general structure of Lie
subalgebras of the Lie algebra u(n). In this section, we also recall some results proved
in other papers by the authors (in particular [7] and [8]), which are used in the proof
of the main results. In section 4, we prove the result for the case where the (minimal)
dimension of the auxiliary system A is greater than or equal to three. In this case,
indirect controllability and complete controllability are equivalent properties indepen-
dently of the initial state of the system A. This equivalence does not hold in the case
where this dimension is 2. The proof of the indirect controllability condition in this
case is separated in two parts, presented in sections 5 and 6. This proof is, in fact,
quite long and technical and is made up of the treatment of several special cases. In
order to streamline the proof, we report some of the special cases in Appendix B. We
give some concluding remarks in section 7.

2. Basic definitions and main results. Although the general definitions of
controllability for quantum mechanical systems can be given for systems of infinite
dimension, this property is much better understood in the finite dimensional case. We
shall restrict ourselves to this case and denote byHS the Hilbert space of dimension nS

of the target system S and by HA the Hilbert space of dimension nA of the auxiliary
system A. The total system S +A evolves on the Hilbert space H := HS ⊗HA. The
dimension of the total system S+A is nSA := nS×nA. In assigning a dimension nA to
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A, we are making a natural minimality assumption, namely, we assume that A is fully
coupled to S, that is, it does not contain any subsystem that is completely decoupled
from S. It is clear, in fact, that the dimension of A could be made arbitrarily large
by adding “dummy” subsystems or energy levels that are not coupled to S.

Recall that the state of a quantum mechanical system is described by a density
matrix ρ (see, e.g., [23]), i.e., a Hermitian, trace 1, positive semidefinite operator
(matrix) on the Hilbert space associated with the system. We shall denote by ρS ,
ρA, and ρTOT the states of the systems S, A, and S + A, respectively. We also shall
make the assumption that the system S + A has been prepared at the beginning of
the control experiment in an uncorrelated state, i.e., at time t = 0,

(1) ρTOT = ρS ⊗ ρA.

In typical experimental set-ups, the dynamics of the total system S+A is determined
by a set F of Hermitian operators on the Hilbert space H. These are the Hamilto-
nians associated with the system. In the control theory setting, elements in F are
parametrized by a control variable u which is allowed to take values in a set U , so
that F := {Hu |u ∈ U}. Thus, the dynamics of the model is given by

(2) ρTOT (t) = U(t)ρTOT (0)U
†(t),

where the unitary operator U(t) is the solution of the Schrödinger operator equation,

(3) iU̇(t) = HuU(t), U(0) = 1nSA ,
1

and the control parameter u varies with time in the set U . In the Schrödinger equation
(3), we have assumed to use units so that the Planck constant � is equal to 1. A typical
situation in experiments is when the Hu’s are linear in u, i.e., they have the form
Hu := H0 +

∑
j Hjuj for some finite number of Hamiltonians H0, Hj ’s and control

variables uj . We shall assume in the following that all the Hamiltonians involved
have zero trace. This is done without loss of generality because the introduction of
the trace in the Hamiltonians only has the effect of introducing a phase factor in the
evolution of the state which has no physical meaning.

The controllability of a finite dimensional quantum system (see, e.g., [4], [15],
[17]) can be assessed by analyzing the (dynamical) Lie algebra L generated by the
Hamiltonians available for the evolution of the system. This is the smallest subalgebra
of su(nSnA) containing iF .2 If eL denotes the Lie group associated with L, then the
set of possible evolutions for the quantum system is dense in eL, and it is equal to eL

if eL is compact.
Definition 2.1. A quantum system is said to be completely controllable if, for

any special unitary transformation Uf , there exists a feasible evolution (i.e., a se-
quence of exponentials of the form e−iHut with t ≥ 0 and Hu in F) realizing that
transformation (i.e., whose product is equal to Uf).

Theorem 1 (see [15], [17]). A system S + A is completely controllable if and
only if L = su(nSA).

In the case where L is only a proper Lie subalgebra of su(nSA), the knowledge of
L still gives information on the dynamics of the system. In particular, decompositions

11q (0q) denotes the identity (zero) operator on a Hilbert space of dimension q. We shall often
omit this subscript when the dimension is obvious from the context. 1r,s denotes the square matrix

of dimension r + s,
(

1r 0
0 −1s

)
.

2For a set or space F of matrices, we shall often use the notation iF to indicate the set or
space consisting of the elements in F multiplied by the imaginary unit i. This allows us to go from
Hermitian to skew-Hermitian matrices and vice versa.
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of L correspond to decompositions of the dynamics of the system, [5], [21], and there
exists a fascinating interplay between symmetries in quantum dynamics and the struc-
ture of the dynamical Lie algebra L [25].

In the indirect control setting, the Hilbert space associated to the system S + A
is the tensor product of the space associated with S and the space associated with
A. In all operators expressed as tensor product in the following, the operator on the
left acts on the Hilbert space associated with S while the operator on the right acts
on the Hilbert space associated with A. In this setting, we make the following two
assumptions on the dynamics of our model:

(A-a) The set F contains at least one element with nonzero component on the
space of operators

span{S ⊗ σ |S ∈ su(nS), σ ∈ su(nA)}.
This is a natural assumption because it means that there exists an available Hamil-
tonian modeling the interaction between S and A. If that was not the case, then
all the operators in F would be of the form FS ⊗ 1nA and of the form 1nS ⊗ FA,
and systems S and A would evolve independently. (All elements in eL would be of
the form US ⊗ UA (local transformations) with US unitary on the system S and UA

unitary on the system A.)
(A-b) The dynamical Lie algebra L contains all matrices of the form 1nS ⊗σ with

σ ∈ su(nA). This fact means that we have full unitary control on the auxiliary system
A. Whether this control is directly available in the experimental set-up or results
from the back-action of the system S on A is irrelevant from a mathematical point of
view.

We also recall that we have a standing minimality assumption on A in that nA

denotes the dimension of the part of A which is fully coupled to S and does not take
into account possibly decoupled additional subsystems.

With initial condition ρTOT = ρS ⊗ ρA, the set of available states for S + A is
(dense in)3

(4) O := {UρS ⊗ ρAU
†|U ∈ eL}.

The set of possible values for ρS is obtained by taking the partial trace with
respect to the system A of the elements in O, i.e., it is the set of matrices

(5) TrA(O) := {TrA(UρS ⊗ ρAU
†) |U ∈ eL}.

The topic of this paper is indirect controllability as described in the following
definition.

Definition 2.2. A quantum system S is said to be indirectly controllable given
ρA, initial state of the auxiliary system A, if for every X ∈ SU(nS), there exists a
reachable evolution U ∈ eL of the whole system S +A such that

(6) TrA(UρS ⊗ ρAU
†) = XρSX

†,

i.e., XρSX
† ∈ TrA(O), in (4), (5), for every ρS, initial state of S. Equivalently, in

terms of maps, the system S is indirectly controllable given ρA if, for every unitary
X, there exists U ∈ eL such that the map ρS → TrA(UρS ⊗ ρAU

†) coincides with the
map ρS → XρSX

†.

3We shall neglect in the following this distinction and refer to the set O as the set of available
states for S +A. In fact all the Lie groups we will encounter will be compact so that equality holds.
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Our goal is to give necessary and sufficient conditions for indirect controllability
given ρA, in terms of the dynamical Lie algebra L and ρA itself. The situation is
different if nA ≥ 3 and if nA = 2. Theorems 2 and 3 below are our main results.

Theorem 2. Assume nA ≥ 3, and let ρA be any initial state of the auxiliary
system A. S is indirectly controllable given ρA if and only if S + A is completely
controllable, i.e., L = su(nSA).

As a consequence of this result, for nA ≥ 3 indirect controllability does not depend
on the initial state ρA of A.

In the case nA ≥ n2
S , the condition of complete controllability gives much more

than indirect controllability of S. An important result of quantum information theory
(see, e.g., [19], the lecture notes [22, section 3.2] or the lecture notes [24, Theorem 2.5])
says that any trace preserving, completely positive linear map on ρS (a quantum
channel) can be obtained as ρS → TrA(UρS ⊗ ρAU

†) with an appropriate choice of
a pure state ρA and choice of unitary U . Therefore, in this case, as the controlled
dynamics can generate any unitary evolution on the system S + A, any completely
positive map on S can be obtained, not just a unitary one.

In the case nA = 2, the equivalence of Theorem 2 is false as shown in [1], [8]. In
order to state the result in this case, we consider two subspaces of su(nS). We let

(7)
K = {K ∈ su(nS) | K ⊗ 1nA ∈ L} ,
P = {P ∈ su(nS) | ∃σ1 ∈ su(nA), σ1 �= 0, with iP ⊗ σ1 ∈ L} .

Notice that under assumption (A-b), P contains at least i1nS . Moreover, it follows
from the simplicity lemma (Lemma 2.2 in [7]), under assumption (A-b), that if iP ⊗
σ1 ∈ L, then iP ⊗ σ ∈ L for every σ ∈ su(nA). Thus, in the definition of P above, we
may write ∀ instead of ∃. It also follows from the disintegration lemma (Lemma 2.3
in [7]), again under assumption (A-b), that if an element in L contains iP ⊗ σ as a
summand,4 then iP ⊗σ also belongs to L. Therefore, L is the (direct) sum of K⊗1nA

and iP ⊗ su(nA), i.e.,

(8) L = {K ⊗ 1nA}+ {iP ⊗ su(nA)}.
We shall denote by LS the subspace (which is in fact a Lie algebra)

(9) LS := K + P .
Notice that this definitions hold for any value of nA ≥ 2, and we shall, in fact, use
it both for the case nA ≥ 3 and the case nA = 2. In the case nA = 2, the space LS

is used in the statement of the next theorem to give the characterization of indirect
controllability.

Theorem 3. Assume nA = 2. System S is indirectly controllable given ρA if and
only if one of the following two situations occurs:

1. L = su(nSA), i.e., the system S +A is completely controllable.
2. ρA is a pure state and LS = u(nS).

Example 2.3. Consider a Hamiltonian for two spin 1
2 particles, S and A, inter-

acting via Ising interaction. We assume a constant electromagnetic field on the spin
S and full (time varying electromagnetic) control on A. Such a Hamiltonian may be
given by

(10) Hu = Jσx ⊗ σx + i12 ⊗ σxux(t) + i12 ⊗ σyuy(t) + ωziσz ⊗ 12.

4Here, all the σ’s in the sum are assumed to be linearly independent.
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Here, σx,y,z are the Pauli matrices defined in (15) below, J is the coupling constant,
ux and uy are the components of the (control) electromagnetic field in the x and y
direction, and ωz is the Larmor frequency. By setting (ux, uy) = (0, 0), then (ux, uy) =
(1, 0), and then (ux, uy) = (0, 1), we find that the dynamical Lie dynamical L contains
the matrices {iJσx ⊗ σx − ωzσz ⊗ 12,12 ⊗ σx,1 ⊗ σy}. Using the commutation and
anticommutation relations for Pauli matrices (see (16), (17) below),5 the Lie algebra
generated by these matrices is given by

(11) L = span{i{σx, σy} ⊗ {σx, σy, σz}, 12 ⊗ {σx, σy , σz}, σz ⊗ 12} .

This is in fact the dynamical Lie algebra associated with the system since iHu in (10)
for every u ∈ R that belongs to L. A simple dimension count shows that L �= su(4).6

Therefore, the system is not completely controllable. However, the subspaces K and
P of Theorem 3 are given by K := span{σz} and P := span{i12, σx, σy}. Therefore,
(see (9)) condition 2 of Theorem 3 is verified if the initial state ρA of A is a pure
state. In this case, system S is indirectly controllable. A more complete analysis of
this example along with a constructive algorithm for indirect control is presented in
[1]. Some additional remarks will be given in section 7.

Remark 2.4. The fact that the condition of indirect controllability is weaker in
the case nA = 2 than in the case nA ≥ 3 seems counterintuitive since, in the latter
case, we have a larger auxiliary system to use in the control experiment. We could, in
principle, use a subsystem of dimension 2 of A and limited dynamics to achieve the
goal of indirect control. We recall, however, that we have assumed full interaction
between S and A, and therefore there will be a back action of S onto A which cannot
be neglected. Therefore, A has to be considered necessarily in its entirety. Moreover,
we shall see in the proof of Theorem 2 that the rank condition on LS of part 2 of
Theorem 3 is sufficient for indirect controllability in the case nA ≥ 3 as well. However,
in this case, since we have assumed that A is fully controllable (assumption (A-b)),
the set of generators of the Lie algebra is rich enough to generate the whole su(nSnA),
something that does not necessarily happen in the “smaller” case nA = 2.

The remainder of the paper is devoted to proving Theorems 2 and 3.

3. Preliminary results. The following lemma, which was proved in [8] (cf.
Theorem 1 in that paper), is going to be a basic tool to prove the necessity of the
conditions for indirect controllability. Let ρS ⊗ ρA be the initial condition of the
system S + A, and, given the dynamical Lie algebra L, consider the space7

(12) V :=

∞⊕
k=0

adkL span{iρS ⊗ ρA}.

We have the following.
Lemma 3.1. Given ρS �= 1

nS
1nS and ρA, assume that for every X ∈ SU(nS),

there exists a U ∈ eL such that

(13) TrA
(
UρS ⊗ ρAU

†) = XρSX
†.

5See also (18), (19).
6This is the case since dim(L) = 10 and dim(su(4)) = 15.
7Recall that, for a Lie algebra L and a vector space of matrices M, the space adkLM is defined

recursively as ad0LM = M, adk+1
L = adL(adkLM), where adLM is the span of all matrices of the

form [L,M ] with L ∈ L and M ∈ M.
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Then,

(14) TrA(V) = u(nS).

Notice that this necessary condition is given for “nonuniform” indirect controlla-
bility, which is a weaker property than the one defined in Definition 2.2. This means
that the transformation U in (13) could, in principle, depend on ρS . The property
(14) is therefore also necessary for indirect controllability as in Definition 2.2. It is
known that this condition is, in general, not sufficient [6].

We now recall the definition of the Pauli matrices σx,y,z in quantum mechanics,

(15) σx :=
1

2

(
0 i
i 0

)
, σy :=

1

2

(
0 −1
1 0

)
, σz :=

1

2

(
i 0
0 −i

)
,

which satisfy the commutation relations,

(16) [σx, σy ] = σz , [σy, σz ] = σx, [σz , σx] = σy,

and anticommutation relations,

(17) {σj , σk} = −1

2
δj,k12,

j, k = x, y, z.8

Much of the proof of our theorems will be based on understanding the nature of
the subspaces K and P defined in (7). These spaces satisfy the commutation relations
of a Riemannian symmetric space [11], i.e.,

(20) [K,K] ⊆ K, [K,P ] ⊆ P , [P ,P ] ⊆ K.

The first two of these relations are obvious from the definition, while the third one is
obtained by calculating, given P1 and P2 in P ,

(21) −1

2

nA∑
j=1

[iP1 ⊗ Σj , iP2 ⊗ Σj ] = [P1, P2]⊗ 1nA ∈ L.

Here, Σj , j = 1, . . . , nA, denotes the matrix in su(nA) with i and −i in position j and
j + 1 mod(nA), on the main diagonal, respectively, and zeros everywhere else.

We also have the anticommutation relation

(22) i{P ,P} ⊆ P .

In order to see this, consider σx and σy the standard Pauli matrices in su(2) which
satisfy the commutation and anticommutation relations (16), (17). In su(nA), with

8In the following, we shall be interested in commutators and anticommutators of matrices that are
tensor products of two matrices. The following relations will be repeatedly used without necessarily
being explicitly mentioned:

[A⊗ B,C ⊗D] =
1

2
([A,C]⊗ {B,D}+ {A,C} ⊗ [B,D]) ,(18)

{A⊗ B,C ⊗D} =
1

2
({A,C} ⊗ {B,D}+ [A,C]⊗ [B,D]) .(19)
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nA ≥ 3, we denote in the following calculation (23), with some abuse in notation, by
σx,y,z, matrices which have the corresponding Pauli matrix in the diagonal block cor-
responding to the first two rows and columns and zeros everywhere else. By extending
naturally the commutation and anticommutation relations (16), (17), we have for any
P1 and P2 in P

(23) [iP1 ⊗ σx, iP2 ⊗ σy ] =
i

2
i{P1, P2} ⊗ σz ∈ L.

From this, (22) follows by definition.9

The following two lemmas are the first step to understand the structure of P .
Lemma 3.2. Let A be a maximal Abelian subalgebra of LS with A ⊆ P.10 After

a possible change of coordinates on LS ,
11 a basis of A is given by

D1 := diag{i1n1,0n2 , . . . ,0nl
}, . . . ,(24)

Dl := diag{0n1 ,0n2 , . . . , i1nl
}

for some integers n1, . . . , nl.
The proof is given in Appendix A.
To further investigate the subspace P ⊆ LS , we introduce a partition of the

row and the column indexes and a block structure in the matrices in P according
to (24). Each index j = 1, . . . , l, corresponds to a set of indices of the rows and the
columns of matrices in P , the set being of cardinality nj . Let us introduce an auxiliary
undirected graph GP whose nodes correspond to the indices {1, 2, . . . , l}. There is an
edge between the node j and the node k, (j �= k) if and only if there is a matrix in
P such that the (j, k)th block (and therefore the (k, j)th block, since the matrix is
skew-Hermitian) is different from zero. We have the following lemma on the structure
of P .

Lemma 3.3. Let GP be the indirect graph defined above. Then we have the
following:

1. If GP is not connected, there exists a change of coordinates to put all matrices
of P in block diagonal form with the rth block, corresponding to the indices
of the rth connected component of GP , Ir, having dimension

∑
j∈Ir

nj.
2. If GP is connected, then n1 = n2 = · · · = nl.

The proof is given in Appendix A.

3.1. Some results on Lie subalgebras of u(n) and symmetric spaces,
with application to LS. In the attempt to understand the nature of LS , we shall
use some results about general Lie algebras and, in particular, Lie subalgebras of u(n).
We recall here these results, refer to standard texts on Lie algebras, Lie groups, and
symmetric spaces such as [11] for further details, and report (in Appendix A) some
proofs that we were not able to find in the literature.

Given a Lie algebra L, a representation of L is a homomorphism Φ : L →
End (V), i.e., a linear map from L to the Lie algebra of endomorphisms of a vector
space V , satisfying for any A,B ∈ L, Φ([A,B]) = [Φ(A),Φ(B)]. In this equality, with
some abuse of notation, the commutator [·, ·] on the left-hand side is the commutator

9See the comment on the simplicity lemma and the definition of P after formula (7).
10The word maximal means that it is not a proper subalgebra of any Abelian subalgebra which

is also contained in P.
11By a change of coordinates, we mean a transformation LS → TLST

† with T ∈ U(nS). Such a
transformation does not affect the properties of indirect controllability of system S.
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in the Lie algebra L, while the commutator on the right-hand side is the standard
matrix commutator, i.e., [A,B] := AB − BA. A particular representation is the
adjoint representation, A → adA, where the space V is L itself and adAB := [A,B].
The Killing form 〈·, ·〉K on L is defined as

(25) 〈A,B〉K = Tr(adAadB).

This form is bilinear and symmetric (i.e., 〈A,B〉K = 〈B,A〉K) as well as invariant,
i.e.,

(26) 〈[A,B], C〉K = 〈[B,C], A〉K .

Moreover, it is invariant under automorphisms θ of the Lie algebra, i.e., one to one
and onto homomorphism of the Lie algebra to itself. This invariance property means
that 〈θ(A), θ(B)〉K = 〈A,B〉K .

A Lie algebra L is called simple if it has no ideals except the trivial ones, i.e.,
L and zero, and its dimension is at least two. It is called semisimple if it is the
direct sum of simple ideals.12 A Lie algebra is called reductive if it is the direct sum
of a semisimple Lie algebra and an Abelian Lie algebra. Subalgebras of u(n) are
always reductive. The Killing form is a very important tool in the analysis of Lie
algebras. Cartan’s criterion states that a Lie algebra L is semisimple if and only if
the corresponding Killing form is nondegenerate.13 Another equivalent condition of
semisimplicity is that [L,L] = L. For a semisimple Lie subalgebra of u(n), L, the
Killing form is negative definite and the corresponding Lie group, eL, is compact.
Moreover, see, e.g., [14, (II 5.1)], if I is an ideal of L, the Killing form of I is equal
to the restriction to I × I of the Killing form on L.

Let us now consider again the subspace LS of u(nS) defined in (9). From the
commutation relations (20), it follows that LS is a Lie algebra and, in fact, a Lie
subalgebra of u(nS), and therefore it is reductive. The following fact will be useful.
(See Appendix A for the proof.)

Lemma 3.4. Assume K⋂P = {0}. The subalgebra K of LS can be written as

(27) K = [P ,P ] +R,

where R commutes with P and it is an ideal in K (and therefore in LS).
The next corollary is a consequence of Lemma 3.4.
Corollary 3.5. Assume that su(n) has a decomposition su(n) = K + P with

K⋂P = {0} and satisfying conditions (20). Then [P ,P ] = K. Furthermore, [K,P ] =
P.

Proof. Since su(n) is a simple Lie algebra, it does not have any nontrivial ideal, so
in (27), the space R must be zero, which implies [P ,P ] = K. The fact that [K,P ] = P
can be seen as follows. Assume that P̂ := [K,P ] � P and define L̂ := P̂ + K, which
is a proper subspace of su(n). We have

(28) [su(n), L̂] = [K + P ,K + P̂] ⊆ [K,K] + [K, P̂ ] + [P ,K] + [P , P̂ ] ⊆ L̂,

and it follows that L̂ is an ideal in su(n) which contradicts the fact that su(n) is a
simple Lie algebra.

12That is, L = S1 + S2 + · · ·+ Sm with ideals Sj ’s with [Sj ,Sk] = 0 and Sj
⋂Sk = {0} if j �= k.

13This means that the only X ∈ L such that 〈X, Y 〉K = 0 for every Y is X = 0.
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Decompositions su(n) = K+P with K⋂P = {0} with (20), are also called Cartan
decompositions of su(n) and correspond to symmetric spaces of the corresponding Lie
group SU(n) [11]. According to Cartan classification, modulo a change of coordinates,
there are only three types of such decompositions, which are denoted by AI, AII,
and AIII. We shall use in the following the decompositions AI and a special case of
decomposition AIII. In particular for the decomposition AI, K is the space of (skew-
Hermitian, zero trace) real matrices, Re, and P is the space of (skew-Hermitian, zero
trace) purely imaginary matrices, Im. Therefore, we write

(29) su(n) = Re + Im.
If we take Re as K and Im as P , conditions (20) are verified. In the AIII Cartan
decomposition, we collect two groups of row and column indices and decompose the
matrices in su(n) in terms of matrices that are block diagonal with respect to this
decomposition, Di, and antidiagonal with respect with respect to this decomposition,
An. So that we have

(30) su(n) = Di +An.
If we take Di as K and An as P , conditions (20) are verified. In this paper, we shall
use the special case where the first group of row and column indexes contains only
the first row and column and the other group contains the remaining indexes. By
combining the two above Cartan decompositions, we can construct another one, by
defining

(31) L1 :=
(
Re
⋂

An
)
+
(
Im

⋂
Di
)

and

(32) L2 :=
(
Re
⋂

Di
)
+
(
Im

⋂
An
)
.

It is easily verified that su(n) = L2 +L1 with L1 and L2 satisfying the relations (20)
with K = L2 and P = L1, i.e.,

(33) [L2,L2] ⊆ L2, [L2,L1] ⊆ L1, [L1,L1] ⊆ L2.

One can also readily verify the following anticommutation relations:
(34)
i{L1,L1} ⊆ L1 + span{i1n}, i{L2,L2} ⊆ L1 + span{i1n}, i{L1,L2} ⊆ L2.

If L is a semisimple Lie subalgebra of u(n) with a Cartan decomposition L =
K+P , K⋂P = {0} with K and P satisfying (20), Cartan’s theorem (cf. [11]) provides
a way to parametrize the corresponding Lie group eL. In particular, if A ⊆ P is a
maximal Abelian subalgebra of P , every element Y ∈ eL can be written as Y =

K1e
ÃK2 with K1,K2 ∈ eK and Ã ∈ A. We shall use this representation of elements

in eL several times in the following.

3.2. Normal vector spaces. When analyzing the structure of the Lie algebra
LS and in particular using the property (22), we will have to consider subspaces of the
algebra of n×n complex matrices which satisfy a “normalization” condition. We will
say that a vector space Nn of n× n complex matrices over the field of real numbers
is normal if for every pair of matrices A and B in Nn, it holds that

(35) A†B +B†A = BA† +AB† = α1n
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for some real number α. In particular, any matrix A ∈ Nn is normal since

(36) AA† = A†A = α1n

for some real α.
Normal vector spaces can be mapped isomorphically one to the other by doubly

unitary conjugacy transformations (DUCT) determined by a pair of unitary matrices
U and V and defined as A ∈ Nn → UAV. Notice in particular that a DUCT
transformation does not modify the defining relation (35). A normal vector space
can be defined recursively up to a DUCT tranformation, as described in the following
Proposition.

Proposition 3.6. Modulo a DUCT transformation, a normal vector space Nn

of n× n matrices is spanned by the following matrices:
1. 0n, or
2. 1n, or
3. 1n, i1r,s with r, s ≥ 0 and r + s = n, or

4. 1n, i1r,s with r = s = n
2 and matrices of the form C :=

( 0 C1,2

−C†
1,2 0

)
, where

the matrices C1,2 span a normal vector space of n
2 × n

2 matrices, Nn
2
.

The proof can be found in Appendix A.
Using DUCT transformations, it is always possible to put the matrices of a basis

of Nn in a canonical form in which all matrices in Nn and the following vector spaces
Nj, j =

n
2 ,

n
4 , . . ., are the identity 1j j = n, n2 , . . . or the matrix i1r,s, with rj+sj = j,

according to the algorithm described in the proof of the proposition.
In the following, we shall also be interested in cases where the normal vector

space of matrices Nn is not only a vector space but also a Lie algebra when equipped
with the standard matrix Lie bracket ([A,B] := AB −BA). We first notice that this
property is not invariant anymore under DUCT transformation. However, it will be
enough for us to consider the case where the basis of Nn is in the canonical form
described in Proposition 3.6.14 In this case, there is only a finite number of possible
cases, as we shall see in the following lemma.

Lemma 3.7. Consider a normal vector space Nn with a basis in canonical form.
If Nn is a Lie algebra, there are only the following possibilities:

1. Nn = {0}.
2. Nn = span{1n}.
3. Nn = span{1n, i1r,s}.
4.

(37) Nn = span

{
1n, i1n

2 ,n2
,

(
0 1n

2−1n
2

0

) (
0 i1n

2

i1n
2

0

)}
.

Proof. Cases 1–3 correspond to the first three cases in the construction of Propo-
sition 3.6 in Appendix A. The intermediate case between case 3 and 4 is not possible
because the Lie bracket between the second and third term of the right-hand side of
(37) gives the fourth term, which therefore has to belong to Nn. However, as noted in
the proof of Proposition 3.6, the presence of this matrix implies that no other linearly
independent matrix can be found. Therefore, these four cases are the only admissible
ones.

14The normal spaces Nn that we will consider are a factor in a tensor product space and are
obtained after a change of coordinates on this space. We shall be able to assume that this change of
coordinates puts Nn in canonical form.
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Remark 3.8. In the last case of the above list, we can write the basis of Nn in
terms of the Pauli matrices so that

(38) Nn = span{1, σz ⊗ 1n
2
, σy ⊗ 1n

2
σx ⊗ 1n

2
}.

4. Proof of Theorem 2. In Theorem 2, we consider the case nA ≥ 3. However,
the first lemma holds for any value of nA.

Lemma 4.1. Assume that P in (9) is Abelian. Then system S is not indirectly
controllable (independently of ρA).

Proof. If P is Abelian, we can assume that all the matrices in P are linear
combinations of the elements in the basis (24) of Lemma 3.2 and we can take the
basis of P as in (24). Partition any K ∈ K according to the partition in the basis
of P . Since [K,P ] ⊆ P , every matrix in [K,P ] must be a linear combination of the
elements in (24). From this fact, it is easy to see that the matrices K ∈ K must have
the following block diagonal structure:

(39) K =

⎛
⎜⎜⎜⎝

K1,1 0 0 0
0 K2,2 0 0
...

...
...

...
0 0 0 Kl,l

⎞
⎟⎟⎟⎠

with Kj,j ∈ su(nj). Matrices in the Lie algebra LS also have this block diagonal
structure,15 and matrices in L also have a block diagonal structure induced by this
structure. Thus, a matrix U ∈ eL is of the form

(40) U =

⎛
⎜⎜⎜⎝

U1 0 0 0
0 U2 0 0
...

...
...

...
0 0 0 Ul

⎞
⎟⎟⎟⎠ ,

where the blocks Uj, j = 1, . . . , l have dimension njnA.
16 Choose any initial state

ρS ⊗ ρA where ρS has the same block structure as in (39). Then for any U ∈ eL,
the matrix TrA(UρS ⊗ ρAU

†) will have the same block diagonal structure as in (39).
Since not all the matrices unitarily equivalent to ρS have this diagonal structure, the
model is not indirectly controllable.

Lemma 4.2. Assume that nA ≥ 3 and let ρA be any initial state of the auxiliary
system A. If S is indirectly controllable given ρA, then LS = u(nS)

Proof. Assume that S is not indirectly controllable and assume by contradiction
that LS �= u(nS). If P is Abelian, from the previous lemma we already know that
indirect controllability is not verified. Therefore, we can assume that P is not Abelian.
We prove the lemma in two steps:

(a) If P is not Abelian, then K ∩ P �= 0.
(b) If K ∩ P �= {0} and LS �= u(nS), then indirect controllability is not verified.

For step (a), assume that P is not Abelian and let P1, P2 ∈ P such that [P1, P2] =
K �= 0 with K ∈ K. Since nA ≥ 3, there exist σ1, σ2 ∈ su(nA) such that

(41) [σ1, σ2] = 0, {σ1, σ2} = 1+ iσ̂,

15Notice that this structure assumes a particular system of coordinates, but the transformation to
get in these coordinates is a local transformation acting on S only, so it does not affect the indirect
controllability properties of system S.

16Recall that l ≥ 2 since P is not the span of multiples of the identity because of assumption
(A-a). It has dimension at least 2, and it contains multiples of the identity.
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with σ̂ ∈ su(nA), different from zero. We have

(42)
[iP1 ⊗ σ1, iP2 ⊗ σ2] = −1/2[P1, P2]⊗ (1+ iσ̂)

= −1/2K ⊗ (1+ iσ̂) ∈ L.
Since K ⊗ 1 ∈ L, it follows that iK ⊗ σ̂ ∈ L. Thus, K ∈ K⋂P , which shows that
K ∩ P �= {0}. Now we show part (b). It will follow from the proof that part (b)
holds for any value of nA. If K ∩ P �= {0}, then given any matrix B �= 0 such that
B ∈ K ∩ P , we choose as initial state ρS = 1

nS
1 + αiB with α �= 0 and sufficiently

small so that ρS is an admissible density matrix.17 Given any ρA = 1
nA

1 + iσ, for

σ ∈ su(nA), we have that iρS ⊗ ρA belongs to L̃ = span{i1 ⊗ 1} + L, which is
invariant under L. Therefore, V defined in (12) of Lemma 3.1 is such that V ⊆ L̃, and
we have TrA(V) ⊆ TrA(L̃) = K + span{i1} ⊆ LS � u(nS), which contradicts Lem-
ma 3.1.

The proof of Theorem 2 is now a consequence of the previous two lemmas.
Proof of the theorem. We only need to prove that indirect controllability (for

a fixed ρA) implies L = su(nSnA). The converse implication is obvious. Assume
indirect controllability. From Lemmas 4.1 and 4.2, we know that LS = u(nS). Let
P̃ be the subspace of matrices in P with zero trace. We will establish that all the
matrices of the type iK ⊗ σ and P ⊗ 1 with K ∈ K, P ∈ P̃, and σ ∈ su(nA) are in
L. This implies that L = su(nSnA). Notice that since L̃S := K + P̃ = su(nS), from
Corollary 3.5 (or from Lemma 4.1) it follows that P̃ cannot be Abelian.

Since nA ≥ 3, we may take σ1, σ2 ∈ su(nA) such that (41) is satisfied. Then, as
computed in (42), given P1, P2 ∈ P we have

(43) [iP1 ⊗ σ1, iP2 ⊗ σ2] = −1/2K ⊗ (1+ iσ̂)

forK ∈ K. We can assumeK �= 0 since P̃ cannot be Abelian. In fact, since [P̃, P̃ ] = K
from Corollary 3.5, we have

iK ⊗ σ̂ ∈ L for all K ∈ K.
Since 1⊗ su(nA) ∈ L, from the previous equation we get that18

(44) iK ⊗ σ ∈ L for all K ∈ K, and σ ∈ su(nA).

Now calculate

(45) −1

2

nA∑
j=1

[iK ⊗ σj , iP ⊗ σj ] = [K,P ]⊗ 1 ∈ L.

Here, σj , j = 1, . . . , nA, denotes the matrix in su(nA) with i and −i in position j and
j + 1 mod(nA), on the main diagonal, respectively, and zeros everywhere else, while
K and P are general matrices in K and P̃. Since [K, P̃ ] = P̃ from Corollary 3.5, we
have

(46) P ⊗ 1 ∈ L for all P ∈ P̃ .
From (44) and (46), the statement follows.

17Note that B cannot be a multiple of the identity because we have assumed at the beginning that
all Hamiltonians involved in the dynamics have zero trace, that is, L is a subalgebra of su(nSnA).

18This is from the simplicity lemma in [7].
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5. Proof of Theorem 3, Part I. From this point on, nA = 2. In the next
subsection, we prove the sufficiency of conditions 1 and 2 of Theorem 3. In fact,
condition 1 being obviously sufficient, we need to treat only the sufficiency of condition
2. Then the proof of necessity is divided in two parts: one in subsection 5.2 and one
in section 6. Much of the proof of necessity is carried out by looking at the various
possibilities for the Lie algebra LS . From this analysis, there are several special cases
to be treated. Some special cases are presented in Appendix B.

5.1. LS = u(nS) and ρA pure imply indirect controllability of S.
Proof. The argument is a generalization to nS ≥ 2 of the one given in [8]. Assume

that we want to steer any ρS to the unitarily equivalent XρSX
† with X ∈ SU(nS),

i.e., we need to find a reachable evolution U ∈ eL, such that

(47) TrA(UρS ⊗ ρAU
†) = XρSX

†

for every ρS . Since LS = u(nS), if we define P̃ the subspace of P of matrices with
zero trace, we have from (9) su(nS) = K + P̃, where K and P̃ provide a Cartan
decomposition of su(nS) (see (20) with P̃ replacing P).19 Thus, we can write X as

(48) X = K1e
ÃK2,

where K1,2 ∈ eK and Ã ∈ A, where A is a maximal Abelian subalgebra (Cartan

subalgebra) in P̃ [11] (cf. the discussion at the end of subsection 3.1).
Let σ̄ :=

(−i 0
0 i

)
. The Lie group eL contains all elements of the form K ⊗ 1, 1⊗

B, eitÃ⊗σ̄ with K ∈ eK, B ∈ SU(2), and Ã ∈ A. Since ρA is a pure state, there exists
a unitary T such that TρAT

† = E1, where E1 is the 2× 2 matrix with 1 in the (1, 1)
position and zero elsewhere. With this T , we choose U ∈ eL given by (cf (48))

(49) U := (K1 ⊗ 1)(eiÃ⊗σ̄)(K2 ⊗ 1)(1⊗ T ).

We verify that

(50) U (ρS ⊗ ρA)U
† = XρSX

† ⊗ E1.

This follows from the definitions of U and X in (49) and (48) and from the observation
that since iσ̄E1 = iE1σ̄ = E1, for a general matrix ρ we have

(51) eitÃ⊗σ̄ (ρ⊗ E1) e
−itÃ⊗σ̄ =

(
etÃρe−tÃ

)
⊗ E1.

Taking the partial trace with respect to the system A of (50), we get (47), as
desired.

5.2. If L �= su(nSnA), ρA pure is necessary for indirect controllability.
We use the main result of [7], i.e., the following theorem (which we state for nA = 2).

Theorem 4. Assume ρA = 1
21. If for each X ∈ SU(nS) there exists U ∈ eL

which verifies (47) for every density matrix ρS, then L = su(nSnA), i.e., complete
controllability is verified.

In other terms, indirect controllability with ρA = 1
21 implies complete controlla-

bility.

19Notice that K⋂ P̃ = {0} because if this was not the case (from (20)), K⋂ P̃ would be an ideal
of su(nS) which is excluded since su(nS) is simple, unless su(nS) = K = P̃, which would imply
L = su(nSnA), which gives complete controllability and therefore obviously indirect controllability.
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Proof. Assume that L �= su(nSnA) and ρA has the property that for each X ∈
SU(nS), there exists U ∈ eL with (47) for every density matrix ρS . From Theorem 4,
it follows that ρA cannot be the perfectly mixed state, i.e., ρA �= 1

21. We want to
prove that ρA is necessarily a pure state. Assume this is not the case. Therefore,
ρA = c1ρA,1 + c2ρA,2 with c1 > 0, c2 > 0, c1 + c2 = 1, and ρA,1 and ρA,2 are two
projection matrices with ρA,1 + ρA,2 = 12. From (47), we have

(52) c1γ1[ρS ] + c2γ2[ρS ] = XρSX
†,

where we have used the definitions of the two trace-preserving completely positive
maps (cf., e.g., [2]) γ1 and γ2, γ1[ρS ] := TrA(UρS⊗ρA,1U

†) and γ2[ρS ] := TrA(UρS⊗
ρA,2U

†). Their convex combination can be a unitary map if and only if both of them
realize the same unitary transformation, that is, for every ρS ,

(53) γ1[ρS ] = γ2[ρS ] = XρSX
†.

This follows from the Choi–Jamiolkowski isomorphism between trace-preserving com-
pletely positive maps and states [16]. According to this isomorphism, given a trace-
preserving completely positive map γ, acting on the density operators on the Hilbert
space H, the corresponding state is a density operator Γ acting on the space H⊗H.
For our purposes, it is not necessary to describe the exact form of Γ.20 This can be
found, along with the proof of the one-to-one correspondence between γ and Γ in [16].
In [16], it is also shown that there is a one-to-one correspondence between unitary
maps acting on the space of density matrices (a special case of completely positive
maps) and pure states in H ⊗H. Therefore, the state corresponding to the unitary
transformation in the right-hand side of (52), denoted here by ΓX , is a pure state. If
we call Γ1 and Γ2 the states corresponding to γ1 and γ2 in (52), we have, because of
the isomorphism,

(54) ΓX = c1Γ1 + c2Γ2.

Since ΓX is pure, this implies Γ1 = Γ2 = ΓX , which, from the isomorphism, implies
(53). From (53), we obtain

1

2
(γ1[ρS ] + γ2[ρS ]) =

1

2
TrA

(
UρS ⊗ ρA,1U

†)+ 1

2
TrA

(
UρS ⊗ ρA,2U

†)(55)

= TrA

(
UρS ⊗

(
1

2
1

)
U †
)

= XρSX
†

for every ρS . Therefore, 1
21 has the indirect controllability property. However, this,

from Theorem 4, implies L = su(nSnA), which is not verified. Therefore, if L �=
su(nSnA), the only possibility to have indirect controllability given ρA is when ρA is
a pure state.

6. Proof of Theorem 3, Part II: If the system is indirectly controllable
given ρA, then LS = u(nS). This is the longest part of the proof. We have
to analyze the Lie algebra LS in (9) under the assumption that there is indirect

20Γ has the form Γ := (1⊗γ) ρ0, where ρ0 is a given maximally entangled state in H⊗H and 1 is
the identity operator. In other words, in the Choi–Jamiolkowski isomorphism, the state Γ associated
to the map γ is obtained by acting with γ on a single subsystem of a maximally entangled pair. More
details can be found in [16].
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controllability given ρA. We know that LS is a subalgebra of u(nS), and therefore it
is a reductive Lie algebra.

We can assume K⋂P = {0}. In fact, if K⋂P �= {0}, then indirect controlla-
bility implies LS = u(nS) from statement (b) in the proof of Lemma 4.2, which is
independent of the assumption nA ≥ 3.

We can also assume that the graph GP of Lemma 3.3 is connected. If this is
not the case, in appropriate coordinates, P will have a block diagonal form and K
will have a corresponding block diagonal form.21 This structure is incompatible with
the assumption of indirect controllability because it implies a corresponding block
diagonal structure on the matrices in L. If ρS is chosen having this block-diagonal
structure, this structure will be preserved after evolution and partial trace. Therefore,
ρS cannot be transformed into every matrix which is unitarily equivalent to itself. A
similar argument was used in the proof of Lemma 4.1 to show that P cannot be
Abelian, and the same argument which was independent of the dimension nA shows
that P cannot be Abelian in this case either.

Given that the graph GP is connected, we denote by n0 the dimension n1 = n2 =
· · · = nl of Lemmas 3.3 and 3.2. Notice that l is always ≥ 2. l = 1 would mean that
P only contains the identity which is incompatible with the assumption (A−a), since
in this case there would be no interaction between S and A.

The proof can therefore be carried out under the above assumptions, which, as
we have seen, can be considered without loss of generality. We assume, therefore, P
not Abelian, K⋂P = {0}, GP of Lemma 3.3 connected, and l of Lemmas 3.2, and
3.3, l ≥ 2.

6.1. Overview of the proof. In almost all cases, the proof is carried out show-
ing that if LS �= u(nS), then for a suitable initial state ρS , the necessary condition of
Lemma 3.1 is not satisfied. In order to do this, we construct subspaces V invariant
under the Lie algebra L which contain an appropriate tensor product state iρS ⊗ ρE
and such that when the partial trace is taken, it does not give all of u(nS). The
first step is to describe the structure of the subspace P . We arrive at formula (57)
of Lemma 6.2, where P is described in terms of the spaces L1 and L2 of (31) and
(32) and a normal vector space Ñn0 . In the case l > 2, Ñn0 , is not only a normal
vector space but also a Lie algebra (Lemma 6.3), and therefore we prove violation
of Lemma 3.1 in the cases enumerated in Lemma 3.7. In the case l = 2, this is not
true anymore. Therefore, Ñn0 only has the general (recursive) structure described in
Proposition 3.6. According to how the recursion of Proposition 3.6 ends, P has the
structure (67) or (69). In both cases, it is easy to find the above invariant subspace
V unless nS is a power of 2, i.e., nS = 2p. This is done in subsection 6.4. Therefore,
the remainder of subsection 6.4 is devoted to treating the various cases of nS = 2p

for p = 0, 1, 2, 3, . . . . The cases p = 0 and p = 1 are treated in subsection 6.4.1, while
the case p > 2 is treated in subsection 6.4.3 by induction after having proved some
properties of the Lie algebra LS for the case p = 2. We in detail study the commuta-
tion and anticommutation of subspaces K and P , from which, introducing additional
vector spaces, we are able to construct the invariant subspace V to be used in the
application of Lemma 3.1. For the case p = 2, we were not able to construct such
invariant vector space. Therefore, the proof uses a different technique. It is given in
Appendix B. We work here at the level of the group eL rather than the Lie algebra

21Any element with nonzero off diagonal in K would give from [K,P] ⊆ P a corresponding element
with nonzero off diagonal in P, using Lie brackets with elements in the basis (24) of Lemma 3.2.
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L and explicitly display a transformation which cannot be performed on every initial
state. This part of the proof is reported in Appendix B.

6.2. Structure of P. We examine the proof of Lemma 3.3 in Appendix A and
the graph GP and notice that P is spanned by the matrices D1, . . . , Dl (with n1 =
· · · = nl = n0) in (24) of Lemma 3.2 as well as matrices Pj,k (j < k, j, k ∈ {1, . . . , l}),
which are zero in every block except for the (j, k)th (and (k, j)th) block. These blocks

are occupied by matrices Rj,k (and −R†
j,k), which are different from zero and in fact

nonsingular for all pairs j < k for which there is an edge in the graph GP . In fact,
there is a nonzero Pj,k for every pair j < k ∈ {1, . . . , l}. In order to see this, fix j and
k and, since GP is connected, fix a path joining j and k. Let j0, j1, and j2 be three
consecutive nodes on this path so that there is an edge connecting j0 and j1 and an
edge connecting j1 and j2. Taking the Lie bracket [Dj0 , [Pj0,j1 , Pj1,j2 ]], which is in
P , we obtain a matrix which has a nonzero (and nonsingular) block in the position
(j0, j2) (and (j2, j0)). Therefore, j0 and j2 also are connected in GP . Repeating this
argument and by induction, we see that j and k are also connected. Therefore, in P
there exists an element with all blocks zero except the (j, k)th and (k, j)th for every
j < k. Now denote by Nj,k (j < k, j, k ∈ {1, 2, . . . , l}) the space of n0 × n0 matrices
occupying the (j, k)th positions in the matrices in P . Because of property (22), for
every pair (j, k), Nj,k forms a normal vector space because any two matrices A and
B in Nj,k satisfy the defining property (35). The following property considerably
simplifies our analysis.

Proposition 6.1. Modulo a change of coordinates on LS,

(56) N1,2 = N1,3 = · · · = N1,l := Nn0

and if j �= 1, j < k, Nj,k = iNn0 . Here, Nn0 (and therefore iNn0) is a normal vector
space of n0 × n0 matrices.

Proof. Consider given normal matrices R1,k ∈ N1,k, k = 2, . . . , l, satisfying

(cf. formula (36)) R1,kR
†
1,k = R†

1,kR1,k = α1,k1n0 . After renormalization R1,k →
1√
α1,k

R1,k (recall that N1,k is a vector space), we can assume that R1,k’s are unitary.

Perform a change of coordinates on LS and therefore P , LS → TLST
† with T =

diag(1n0 , R
†
1,2, . . . , R

†
1,l), so that the matrix 1n0 belongs to each of the N1,k. This

corresponds to DUCT transformations (cf. subsection 3.2) on the subspaces N1,k.
Every N1,k space is spanned by the identity and possibly (because of formula (36))
by skew-Hermitian matrices. Let us denote by E1,k the matrix in P with the identity
1n0 in the (1, k)th block (and −1n0 in the (k, 1)th block) and zeros everywhere else.
Let R1,j be a matrix in N1,j which we can assume skew-Hermitian, and let R̂1,j the
corresponding matrix in P which has zero blocks everywhere except in the blocks
(1, j)th and (j, 1)th which are occupied by R1,j and −R†

1,j = Rj,1, respectively. By

calculating [E1,j , [E1,k, R̂1,j ]] ∈ P , we obtain a matrix which has zeros in every block
except for the (1, k)th block which is (proportional to) R1,j (and accordingly for the
(k, 1)th block). This shows N1,j ⊆ N1,k, and since j and k are arbitrary, equality
holds for all j and k’s. Now using the definitions in (24), we calculate, for a given
R1,j ∈ N1,j , and corresponding R̂1,j ∈ P , [Dj , [E1,k, R̂1,j ]] ∈ P . This gives a matrix

which has zeros in all blocks except iR†
1,j in the (j, k)th position (and accordingly in

the (k, j)th position). This shows that iN1,j ⊆ Nj,k. To show the converse inclusion,

calculate [[R̂j,k, E1,k], D1] ∈ P .
It follows from the proof of the previous proposition that a change of coordinates

on the Lie algebra LS can be performed in order to achieve a DUCT transformation
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on the normal space Nn0 to put it in the canonical form described in Proposition 3.6.
We shall assume this to be the case in the following. Let Ñn0 be the subspace ofNn0 of
skew-Hermitian matrices. Therefore, Nn0 = Ñn0 + span{1n0}. From Proposition 6.1,
we know that a basis for P can be taken as made up of the following:

(1) the matrices D1, . . . , Dl in (24) and the matrices that have i1n0 in blocks
(j, k) (and (k, j)) with j, k = 2, . . . l j < k;

(2) the matrices which have the identity 1n0 in the blocks corresponding to the
first row (and −1n0 in the blocks corresponding to the first column) (except
the diagonal block);

(3) the matrices which have elements in a basis of Ñn0 in the blocks corresponding
to the first row (and first column) (except the diagonal block);

(4) the matrices which have elements in a basis of iÑn0 in blocks (j, k) (and
accordingly in (k, j)), with j, k = 2, . . . l, j < k.

This basis can be conveniently expressed using the subspaces defined in (29)–
(32), considering Cartan decompositions of su(l).22 In particular, the matrices of
point (1) above are the matrices of (Im⋂Di)⊗ 1n0 + span{i1l ⊗ 1n0}; the matrices
of point (2) are the ones in (Re⋂An)⊗1n0 ; the matrices of point (3) are the ones in
i(Im⋂An) ⊗ Ñn0 ; and the matrices of point (4) are the ones in i(Re⋂Di) ⊗ Ñn0 .
Therefore, we have the following.

Lemma 6.2. With the definitions (31), (32),

(57) P = (L1 ⊗ 1n0) +
(
iL2 ⊗ Ñn0

)
+ span{i1l ⊗ 1n0}.

The two cases l > 2 and l = 2 have to be treated separately, and this is done in
the following two subsections.

6.3. Case l > 2.
Lemma 6.3. Assume l > 2. Then Ñn0 (and therefore Nn0) is a Lie algebra.
Proof. Assume without loss of generality l = 3, since if l > 3, we can assume in

the following argument that all elements which are not at the intersection of the first
three rows and columns, in the l × l matrices on the left of the tensor products in
iL2 ⊗Ñn0 of (57), are zero. Denote by Ij,k and Rj,k with j < k ∈ {1, 2, 3} the matrix
with all zeros except in the (j, k)th position which is occupied by i or 1, respectively.
(Correspondingly, the (k, j)th position is given.) For any pair of elements N1, N2 in
Ñn0 , we calculate [iI1,2 ⊗ N1, iI1,3 ⊗ N2], which is in [P ,P ] because of (57). Since

elements in Ñn0 are skew-Hermitian and satisfy property (35), we have

Z := [iI1,2 ⊗N1, iI1,3 ⊗N2](58)

= −1

2
({I1,2, I1,3} ⊗ [N1, N2] + [I1,2, I1,3]⊗ {N1, N2})

= −1

2
(iI2,3 ⊗ [N1, N2] + αR2,3 ⊗ 1)

for some real α. By taking the Lie bracket with R1,2 ⊗ 1 which is in P , we obtain an
element in P , which is given by

[R1,2 ⊗ 1, Z] = −1

2
([R1,2, I2,3]⊗ [N1, N2] + α[R1,2, R2,3]⊗ 1)(59)

= −1

2
(iI1,3 ⊗ [N1, N2] + αR1,3 ⊗ 1) .

22Recall that, in the Cartan decomposition AIII, we have chosen to partition the matrices of
su(l) in block diagonal and antidiagonal parts so that the diagonal blocks have dimensions 1× 1 and
(l − 1)× (l − 1).
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Since the last term in (59) is already in P , in order for [R1,2 ⊗ 1, Z] to be in P , we

must have [N1, N2] ∈ Ñn0 , that is, Ñn0 is closed under commutation.
We have from Lemma 6.3 that Nn0 must be one of the Lie algebras listed in

Lemma 3.7.23 We can eliminate the first case which cannot be verified24 and the case
where n0 = 1, which would mean that LS = L1 + L2 + span{i1} = u(l) = u(nS),
which we have excluded. In case 2 of Lemma 3.7, Ñn0 = 0, so that P = L1 ⊗ 1n0 +
span{i1nS}⊗1n0. Since [L1,L1] = L2, from Corollary 3.5 (or by direct computation)
we have [P ,P ] = L2⊗1n0 ⊆ K. Since LS is reductive, from Lemma 3.4, we write K as
K = (L2⊗1n0)+R, where R commutes with P and it is an ideal in LS . If we write a
general element of R as

∑
j Rj⊗σj with Rj ∈ u(l) and σj , n0×n0, Hermitian, linearly

independent matrices, we find that [Rj ,L1] = 0, which also (using [L1,L1] = L2 and
the Jacobi identity) implies [Rj ,L2] = 0, and therefore [Rj , u(l)] = 0, which implies
that Rj is a multiple of the identity. Therefore, P = L1 ⊗ 1n0 + span{i1nS} ⊗ 1n0

and K = (L2 ⊗ 1n0) + (1l ⊗ R̃) for some subalgebra R̃ of u(n0). Consider now the
vector space

V := (iL1 ⊗ 1n0 ⊗ su(2)) + (L1 ⊗ 1n0 ⊗ 12) + (L2 ⊗ 1n0 ⊗ 12)(60)

+ (iL2 ⊗ 1n0 ⊗ su(2)) + (1l ⊗ 1n0 ⊗ su(2)) .

By using formulas (33) and (34), we can verify that adLV ⊆ V . Now consider initial
states (recall that ln0 = nS), ρS = 1

ln0
1ln0 + iL1⊗1n0 for some L1 ∈ L1, L1 �= 0, and

arbitrary initial state for A, ρA := 1
21+ iσ, for some σ ∈ su(2). The matrix

(61) iρS ⊗ ρA =
1

2n0l
(i1ln0 ⊗ 12 − L1 ⊗ 1n0 ⊗ 12 − 1ln0 ⊗ σ − iL1 ⊗ 1⊗ σ)

belongs to V + span{i1ln0 ⊗ 12}, which is also invariant under adL. Via direct com-
putation, we get

TrA (V + span(i1ln0 ⊗ 12)) = L1 ⊗ 1n0 + L2 ⊗ 1n0 + span{i1nS} �= u(nS),

which contradicts Lemma 3.1.
The cases 3 and 4 of Lemma 3.7 are treated with a similar technique. In case 3,

P is given by

(62) P = (L1 ⊗ 1n0) + (L2 ⊗ 1r,s) + span{i1l ⊗ 1n0}.

Calculating [P ,P ] using (33) and Corollary 3.5, we obtain

(63) [P ,P ] = L2 ⊗ 1n0 + L1 ⊗ 1r,s.

The ideal R of Proposition 3.4 has again the form 1l ⊗ R̃, where now R̃ is a subal-
gebra of u(n0) which commutes with 1r,s (and therefore spanned by block diagonal
matrices). If we consider the vector space,

V := (u(l)⊗ 1n0 ⊗ 12) + (u(l)⊗ 1r,s ⊗ 12)(64)

+ (iu(l)⊗ 1n0 ⊗ su(2)) + (iu(l)⊗ 1r,s ⊗ su(2)) ,

23Recall that we are assuming that we have performed a change of coordinates so that Nn0 has
the canonical form of Proposition 3.6 and Lemma 3.7.

24Recall that we are assuming P nonAbelian.
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it is easy to check that this space is invariant under adL. By considering the initial
condition

(65) ρS ⊗ ρA :=

(
1

n0l
1n0l + iL⊗ 1n0

)
⊗
(
1

2
12 + iσ

)

for some L ∈ iu(l), L �= 0, and any σ ∈ su(2), since iρS ⊗ ρA ∈ V and TrA(V) �=
u(nS) = u(n0l), we find a contradiction with Lemma 3.1. In case 4, we must assume
n0 even and at least equal to 4, since if n0 is equal to 2, using (37) and Lemma 6.2,
K+P = u(nS) = u(2l), which we have excluded. If n0 ≥ 4, the ideal R of Lemma 3.4
has (using (38) of Remark 3.8) the form R = 1l⊗12×R̃, where R̃ is a Lie subalgebra
of u(n0

2 ). We consider a vector space

(66) V :=
(
u(2l)⊗ 1n0

2
⊗ 12

)
+ i
(
u(2l)⊗ 1n0

2
⊗ su(2)

)
,

which is invariant under adL and such that TrA(V) �= u(nS) = u(n0l). By taking an
initial state iρS ⊗ ρA ∈ V , we find again a contradiction with Lemma 3.1.

6.4. Case l = 2. Recall Lemma 6.2 and Proposition 3.6. Aside from the trivial
case 1 of Proposition 3.6,25 the recursion described in this proposition ends with case
2 or 3 for some appropriate n. If the recursion ends with case 2, P is given by

(67) P := +jmax

j=0 span{(i)j(σx)⊗j ⊗ {σz, σy} ⊗ 1nj} + span{i1nS},

where nj := nS2
−(j+1).26 The number jmax is an integer number with jmax ≤

log2 nS − 1, which gives the number of iterations, i.e., how many times we return
to step 2. In order to see this,27 assume first that we reach step 2 and never come
back. Then, in Lemma 6.2, we only have L1⊗1n0 , and jmax = 0 and the only linearly
independent matrices to be included in a basis of P are (beside the i1nS) σy ⊗ 1nS

2

and σz ⊗1nS
2
. However, if Ñn0 �= 0, we move on to step 3 and have to add the matrix

iσx ⊗ i1nS
4 ,

nS
4

= iσx ⊗ σz ⊗ 1nS
4

and, since we are supposed to go back to 2, the
matrix

(68) iσx ⊗
(

0 1nS
4−1nS

4
0

)
= iσx ⊗ σy ⊗ 1nS

4
.

Continuing this way we obtain the basis in (67).
Analogously, in the case where the iteration ends with step 3, we obtain for P

P := +jmax

j=0 span{(i)jσ⊗j
x ⊗ {σy, σz} ⊗ 1nj}(69)

+ span
{
(i)jmaxσjmax+1

x ⊗ 1r,s

}
+ span{i1nS} ,

where jmax is some nonnegative integer number with jmax ≤ log2(nS − 2) − 1 and r
and s are two nonnegative integer numbers with r + s = nS2

−(jmax+1).

25This case would imply P Abelian, which we have excluded.
26With some abuse of notation, we are using the notation nj , here again as in Lemma 3.2.

However, the meaning of nj for j = 1, . . . , jmax is different here than in that lemma. In fact, we are
already in the situation where al the nj ’s of Lemma 3.2 are equal to n0. In formula (67), however,
n0 coincides with the one previously defined.

27We neglect here the factor 1
2
in the definition of the Pauli matrices (15), which has no effect on

the vector spaces we are describing.
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Consider the case (67) first. If njmax ≥ 2, we have28

[P ,P ] ⊆ u

(
nS

nj

)
⊗ 1njmax

.

Moreover, similar to what was described in the previous subsection, the ideal R ⊆ K
of (27) has the form 1 nS

njmax

⊗ R̃ for some subalgebra R̃ ⊆ u(njmax). The subspace

(70) V :=

(
u

(
nS

njmax

)
⊗ 1njmax

⊗ 12

)
+ i

(
u

(
nS

njmax

)
⊗ 1njmax

⊗ su(2)

)

is invariant under adL, and by taking an initial condition ρS ⊗ ρA of the form

(71) ρS ⊗ ρA =

(
1

2
1nS + iL⊗ 1njmax

)
⊗
(
1

2
12 + iσ

)

with L a nonzero matrix in su( nS

njmax
) and σ any matrix in su(2), we find a con-

tradiction with Lemma 3.1. Therefore, njmax must be 1 in this case. The same
thing can be proved in case (69). If njmax ≥ 2, then P and [P ,P ] are subspaces of
u( nS

njmax
) ⊗ {span{1njmax

,1r,s}}, and the ideal R of K defined in (27) has the form

1 nS
njmax

⊗ R̃, where now R̃ has to commute with 1r,s. The space

(72)

V :=

(
u

(
nS

njmax

)
⊗ {1njmax

,1r,s} ⊗ 12

)
+ i

(
u

(
nS

njmax

)
⊗ {1njmax

,1r,s} ⊗ su(2)

)

is invariant under adL and, once again, we find a contradiction with Lemma 3.1.
In conclusion, we have to study only the cases (67) and (69) only for njmax = 1,

which is jmax = log2 nS − 1 := p, assumed integer. The dimension nS is equal to 2p+1

for some integer p ≥ 0. In case (67), we have

(73) P = +p
j=0span{(i)j(σx)⊗j ⊗ {σz, σy} ⊗ 1nj} + span{i1nS},

and in case (69),

(74) P = +p
j=0span{(i)jσ⊗j

x ⊗ {σy, σz} ⊗ 1nj} + span(i)pσjmax+1
x span{i1nS}.

We have therefore reduced the problem to the case where nS is equal to nS = 2p+1,
and p+1 is the number of factors in the tensor products of 2× 2 matrices which span
LS . Recall that we denote by P̃ the subspace of P of matrices with zero trace. To be
more explicit in case (73), we have that P̃ is the span of the matrices

{σy, σz} ⊗ 1,(75)

iσx ⊗ {σy, σz} ⊗ 1,

σx ⊗ σx ⊗ {σy, σz} ⊗ 1,

...

(i)p+1σx ⊗ σx · · ·σx ⊗ σx ⊗ {σy, σz},
28This is trivially true even if njmax = 1, but this case will be treated later.
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while in case (74), we have that P̃ is the span of the matrices

{σy, σz} ⊗ 1,(76)

iσx ⊗ {σy, σz} ⊗ 1,

σx ⊗ σx ⊗ {σy, σz} ⊗ 1,

...

(i)p+1σx ⊗ σx · · ·σx ⊗ σx ⊗ {σy, σz , σx}.

The proof can be carried out by considering separately the cases p = 0, 1, 2 and
then by induction for p > 2. The case p = 2 is quite long, and it is postponed to
Appendix B. The other cases are treated below.

6.4.1. p = 0 and p = 1. If p = 0, then both in case (75) and in case (76),
LS := P +K = u(nS).

29 Therefore, the condition we want to prove is automatically
satisfied. If p = 1, then calculating [P ,P ] = K, we find that in case (76), LS = u(nS),
and therefore the theorem is automatically satisfied. In case (75),

P := span{{σy, σz} ⊗ 12}+ {span{i{σx} ⊗ {σy, σz}}}+ span{i14},(77)

K = [P ,P ] = span{i{σy, σz} ⊗ {σy, σz}}+ span{σx ⊗ 12 }+ span{12 ⊗ σx} ,(78)

which is 10-dimensional. Therefore, the condition LS = u(nS) is not verified. We
want to show that indirect controllability cannot be verified in this case. Once again,
consider the definition of P̃ , the subspace of P spanned by matrices with zero trace.
Moreover, define

(79) L⊥
S,1 := span{iσx ⊗ σx}, L⊥

S,2 := span{1⊗ σz , 1⊗ σy, iσz ⊗ σx, iσy ⊗ σx}.

By using (16), (17),30 it is straightforward to verify the commutation relations

[P̃ , P̃] = K,
[P̃ ,K] = P̃ ,

[P̃ ,L⊥
S,1] = L⊥

S,2,

[P̃ ,L⊥
S,2] = L⊥

S,1,

[K,K] = K,
[K,L⊥

S,1] = 0,

[K,L⊥
S,2] = L⊥

S,2,

[L⊥
S,1,L⊥

S,1] = 0,

[L⊥
S,1,L⊥

S,2] = P̃ ,
[L⊥

S,2,L⊥
S,2] = K

29In this case, n0 = 1 and nS = 2, and in the case (75), P̃ = span{σy , σz}, while in case (76),

P̃ = span{σx, σy , σz}. By using [P̃, P̃] ⊆ K, we obtain that LS = u(2).
30Equations (18), (19) are also used.
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and the anticommutation relations

i{P̃, P̃} = span{i1},
i{P̃,K} = LS,2,

i{P̃,L⊥
S,1} = 0,

i{P̃,L⊥
S,2} = K,

i{K,K} = L⊥
S,1 + span{i1},

i{K,L⊥
S,1} = K,

i{K,L⊥
S,2} = P̃ ,

i{L⊥
S,1,L⊥

S,1} = span{i1},
i{L⊥

S,1,L⊥
S,2} = 0

i{L⊥
S,2,L⊥

S,2} = span{i1}.

Consider now the vector space

V̄ := L+ {K ⊗ (i span{σx, σy, σz})}+ {P ⊗ 12}(80)

+
{L⊥

S,2 ⊗ (i span{σx, σy, σz})
}
+ {L⊥

S,1 ⊗ 12}.

From the fact that L is spanned by matrices of the form K ⊗ 1 with K ∈ K and
iP ⊗ σ with P ∈ P and σ any Pauli matrix, using the above commutation and
anticommutation relations, we verify that V̄ is invariant under L, i.e., [L, V̄ ] ⊆ V̄ .

Consider now Lemma 3.1 and pick initial conditions ρS and ρA of the form ρS =
1
41 +K for a K ∈ iK, K �= 0, and ρA = 1

21 + σ with σ ∈ isu(2). With this choice,
iρS ⊗ ρA ∈ V̄ , and from invariance V of Lemma 3.1, is such that V ⊆ V̄ . Since
TrA(V̄) �= u(4), the necessary condition of Lemma 3.1 is not satisfied, and therefore
indirect controllability cannot be verified.

6.4.2. p = 2. See Appendix B.

6.4.3. p > 2. P in (75) is a subspace of P in (76), and a straightforward
computation shows that, for case (76), [P ,P ] = K (namely, the ideal R of Lemma 3.4
is {0}31 and LS �= u(8). Therefore, it is enough to prove that indirect controllability
cannot be verified in case (76).

Consider first the slightly more general case p ≥ 2. To simplify the notation, we
make a change of coordinates local on each one of the first p positions so as to change
the span of σx into the span of σz and vice versa and leave the span of σy unchanged.

We denote by Pn, P̃ for the case of n := p+ 1 positions and Kn, K in that case. By
defining Y := span{iσx, iσy}, Z := span{iσz}, σ := span{iσx, iσy, iσz}, we have in
particular32

iP̃ := iP3 := Y ⊗ 1⊗ 1+ Z ⊗ Y ⊗ 1+ Z ⊗ Z ⊗ σ,(81)

iK := iK3 = i[P3,P3] = 1⊗ Z ⊗ 1+ Z ⊗ 1⊗ 1(82)

+ Y ⊗ Y ⊗ 1+ 1⊗ 1⊗ σ + 1⊗ Y ⊗ σ + Y ⊗ Z ⊗ σ,

31This can be seen in both cases (75) and (76), imposing the fact that R commutes with P as
from Lemma 3.4.

32See formulas (84) and (85) below for a recursive expression of Pn and Kn.
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so that LS in the case p = 2 can be taken equal to LS = K3+P3+span{i18}. Define
the subspace of su(8)

B3 = iY ⊗ Z ⊗ 1+ i1⊗ Y ⊗ 1+ Y ⊗ 1⊗ su(2) + Y ⊗ Y ⊗ su(2)(83)

+ 1⊗ Z ⊗ su(2) + Z ⊗ Y ⊗ su(2) + Z ⊗ 1⊗ su(2) + iZ ⊗ Z ⊗ 1.

We have that

su(8) = K3 + P3 + B3.

We can verify the following commutation and anticommutation relations:
(B1) i{K3,P3} = B3,
(B2) i{B3,P3} = K3,
(B3) [K3,B3] = B3,
(B4) [P3,B3] = B3,
(B5) i{P3,P3} = span{i1}.
From (76) (and after the local change of coordinates defined above), it is straight-

forward to verify the following recursive relations:

Pn+1 = Z ⊗ Pn + Y ⊗ 12,(84)

Kn+1 = 12 ⊗Kn + Y ⊗ Pn + Z ⊗ 12.(85)

Using (B5) and (84) above, by induction on n we find, for every n,

(86) i{Pn,Pn} = span{i1}.
Lemma 6.4. For any n ≥ 4, there exist disjoint subspaces Bn and Cn such that

(A1) i{Kn,Pn} = Bn,
(A2) i{Pn,Bn} = Kn,
(A3) [Kn,Bn] = Bn,
(A4) [Kn, Cn] = Cn,
(A5) [Pn,Bn] = Cn,
(A6) [Pn, Cn] = Bn.
See Appendix C.
Given the above set-up, the proof of the Theorem for the case p > 2 is based on

the following observation.
Lemma 6.5. Consider the Lie algebra LS = Kn+Pn+span{i1} and the disjoint

subspaces of 2n × 2n matrices, Bn and Cn, defined above, so that for every n ≥ 4,
the four disjoint subspaces Kn, Pn, Bn, and Cn satisfy conditions (A1)–(A6) (besides
(86)). Then the following space V is invariant under L:
(87) V = Kn ⊗ 12 + iKn ⊗ su(2) + Pn ⊗ 12 + iPn ⊗ su(2) + iBn ⊗ su(2) + Cn ⊗ 12.

Proof. Using properties (A1)–(A6) and the definition (8), we verify that [Kn ⊗
1,V ] ⊆ V , [iPn ⊗ su(2),V ] ⊆ V , and [12n ⊗ su(2),V ] ⊆ V .

This lemma allows us to conclude the proof for any p > 2 (n ≥ 4). Take an initial
state ρS = 1+K, with K ∈ iKn, and ρA = 1+ σ̃, with σ̃ ∈ isu(2). Then

ρS ⊗ ρA = 12n ⊗ 12 + 12n ⊗ σ +K ⊗ 12 +K ⊗ σ ∈ V + spani{1}2n+1,

where V is the subspace defined in (87). Since, from Lemma 6.5, V + span{i12n+1} is
invariant under L, we have that

TrA (V + span{i12n+1}) = 1+Kn + Pn + Cn.
This is not equal to u(nS) since Bn is missing, thus contradicting the necessary con-
dition of Lemma 3.1. Therefore, the model is not indirectly controllable.
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7. Concluding remarks. It is possible to have full unitary control on a target
system by controlling it indirectly via an auxiliary system without having full control-
lability on the total system. The necessary and sufficient conditions for this to happen
have been given in this paper. These conditions are given in terms of the dynamical
Lie algebra associated with the total system and the initial state of the auxiliary sys-
tem. Further research is needed to design protocols for constructive indirect control,
to investigate indirect controllability in cases where there exists a network of quantum
systems in between the auxiliary (fully controlled) system and the target system, and
to investigate more general notions of indirect controllability. These notions may be
given in terms not only of unitary maps but of more general completely positive maps.
We believe that the results and the framework developed here will be useful for the
treatment of these problems as well. In order to give an illustration of this, we go back
to Example 2.3 and investigate the possibility of driving ρS to an arbitrary state, not
necessarily unitarily equivalent to ρS .

According to Theorem 3, we assume that ρA is a pure state. From the proof
of the theorem, it follows that we can transform ρS into any unitarily equivalent
matrix by keeping A in the state ρA = E1. Therefore, there is no loss of gener-
ality in assuming that ρS is diagonal, i.e., ρS = diag(x, 1 − x). Using a Cartan
decomposition of the Lie algebra L in (11), the possible transformations of the ini-
tial state of the total system S + A can be written as ρTOT → XρTOTX

† with
X = (eiσzt1 ⊗ Y1)e

iσx⊗σxθ1eiσy⊗σyθ2(eiσzt2 ⊗ Y2) for parameters t1, t2, θ1, θ2 ∈ R and
general Y1, Y2 ∈ SU(2). Using this and the fact that ρS is diagonal, we obtain

TrA(XρS ⊗ ρAX
†)(88)

= TrA(XρS ⊗ E1X
†)

= eσzt1TrA

(
eiσx⊗σxθ1eiσy⊗σyθ2(ρS ⊗ Y2E1Y

†
2 )e

−iσy⊗σyθ2e−iσx⊗σxθ1
)
e−σzt1 .

We can choose t1 to adjust to an arbitrary value the phase of the resulting density
matrix. Moreover, a direct computation using (88) shows that there exists free real
parameters α, β, ψ, and φ so that the (1,1) entry of the resulting ρS matrix is

(89)
ρ1,1 := x(cos2(ψ) cos2(α)+sin2(ψ) cos2(β))+(1−x)(cos2(ψ) sin2(β)+sin2(ψ) sin2(α)),

while the (1,2) entry is, up to a phase,

(90) ρ1,2 := sin(ψ) cos(ψ)(1 − 2x)
(
eiφ cos(α) sin(β) + e−iφ sin(α) cos(β)

)
.

From these formulas, it is easily seen that it is not possible to go from a perfectly
mixed state (x = 1

2 ) to a state with off diagonal element different from zero. It
is, however, possible to go from a pure state (x = 1) to any arbitrary mixed state
(choose cos2(α) = cos2(β) equal to the desired diagonal (1,1) element, φ = 0 and then
determine ψ according to the desired absolute value of the off diagonal element). It is
also possible to go from an arbitrary state to a pure state (purification) by choosing
ψ = 0, cos2(α) = sin2(β) = 1.

Appendix A. Some proofs of the results in section 3.

Proof of Lemma 3.2.
Proof. All matrices in A can be simultaneously diagonalized via a change of

coordinates. So we can assume that all matrices in A are diagonal. Consider a basis
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of A, BS := {A1, . . . , Al}. Take any element Aj in the basis BS. We have that Aj

can be written as

(91) Aj :=
∑
k

iλj,kΠ
j
k,

where Πj
k are diagonal projections and λj,k are all distinct eigenvalues. Since from (22)

and the fact that A is maximal, we have i{A,A} ⊆ A, and it follows that if im−1Am
j ∈

A, imAm+1
j is also in A, since i{Aj, i

m−1Am
j } ∈ A. Therefore, i

∑
k λ

m
j,kΠ

j
k ∈ A

for every m ≥ 0 (since A also contains multiples of the identity). A Vandermonde
determinant argument, using the fact that the λj,k’s are all different, shows that the

diagonal projections Πj
k also belong to A. Repeating this argument for all Aj ’s, we

find a set of diagonal projections which (multiplied by i) span A. In this set, choose a
maximal linearly independent set {iΠ1, . . . , iΠl}. Starting from the set {iΠ1, . . . , iΠl},
it is possible to construct another spanning set for A of the form {iΠ̃1, . . . , iΠ̃s} with
s ≥ l, and Π̃j all diagonal projections, with the property that

(92) Π̃jΠ̃k = δj,kΠ̃j .

This is done recursively starting from the set {Π1, . . . ,Πl}. Given two projections, say,
Π1 and Π2, we can replace them in the set with three projections Π1Π2, Π1 −Π1Π2,
and Π2 −Π1Π2, which still span the subspace spanned by Π1 and Π2, which are such
that when multiplied by i they belong to A because of the property i{A,A} ⊆ A, and
which have the property that the product of any pair of them give zero. Repeating
this process recursively, we obtain a spanning set, {iΠ̃1, . . . , iΠ̃s}, for A, with all the
products between different projections equal to zero. A basis is obtained choosing
a minimal spanning set in this set. The basis (24) is obtained after a change of
coordinates which groups together the 1’s in the same matrix.

Proof of Lemma 3.3.
Proof. The first statement of the lemma is a consequence of the definition of the

graphGP . Perform a change of coordinates which puts together indexes corresponding
to the same connected component of the graph. If j and k are two block indices
corresponding to different components, each block at the intersection of the jth and
kth row and column block for every matrix in P is zero, by definition. So the matrices
in P have the corresponding block diagonal structure.

To show the second point of the lemma, denote by Pj,k a matrix different from
zero at the intersection of the jth and kth row and column block. Let Rj,k be the
block different from zero at the intersection of the jth and kth index in Pj,k (with

the block at the intersection of the kth and jth position equal to −R†
j,k). Using the

basis matrices D1, . . . , Dl, defined in (24), we calculate P̂j,k := [Dj , [Dk, Pj,k]], which

is in P because of (20). The matrix P̂j,k contains only zeros except in the (j, k)th

and (k, j)th block, which are occupied by Rj,k and −R†
j,k, respectively. Consider the

matrix P̂j,k ∈ P with j < k, as defined above. Calculating i{P̂j,k, P̂j,k} ∈ P , we see
that this matrix is zero except for the (j, j)th and (k, k)th block that are equal to

−2iRj,kR
†
j,k and −2iR†

j,kRj,k, respectively. Since this new matrix commutes with the

maximal Abelian algebra in A defined in Lemma 3.2, both matrices must be multiples
of the identity in dimensions nj and nk, respectively, from which we get

(93) Rj,kR
†
j,k = α1nj , R†

j,kRj,k = β1nk
.
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Since Rj,k �= 0, both α and β must be different from zero, and we have

(94) nj = rank(Rj,kR
†
j,k) = rank(R†

j,kRj,k) = nk.

Since the graph GP is connected, taking a path between any two nodes and repeating
this argument between neighboring nodes, it follows that n1 = n2 = · · · = nl.

Proof of Lemma 3.4.
Proof. First, write LS as LS = [LS ,LS ] +AS , where [LS ,LS ] is the semisimple

part of LS and AS the Abelian part. Observe that if Y ∈ [LS ,LS ] and 〈Y, Y 〉K = 0,
then Y = 0 since the restriction of the Killing form on [LS ,LS ] is equal to the Killing
form on this semisimple Lie algebra, which is (negative) definite.

Now, given a basis in [P ,P ], complete it inK with matrices {R1, . . . , Rr} which are
orthogonal to [P ,P ] with respect to the Killing form and set R := span{R1, . . . , Rr}.
Let R ∈ R and P1, P2 ∈ P . We have

(95) 〈[R,P1], P2〉K = 〈[P1, P2], R〉K = 0,

which says that [R,P1] ∈ P⊥.33 However, [R,P1] ∈ [R,P ] ⊆ [K,P ] ⊆ P . Therefore,
[R,P1] ∈ P ∩P⊥. Since [R,P1] ∈ [LS ,LS ] and the Killing form is negative definite in
[LS ,LS ], necessarily [R,P1] = 0. Thus, R commutes with P .

Now we show that R is also an ideal in K. Let R be an arbitrary element in
R, K an arbitrary element in K, and P1 and P2 arbitrary elements in P . Using the
invariance property (26) and the Jacobi identity for Lie algebras, we have

〈[K,R], [P1, P2]〉K = 〈[[P1, P2],K], R〉K(96)

= −〈[[P2,K], P1], R〉K − 〈[[K,P1], P2], R〉K = 0,

where the last equality follows from [K,P ] ⊆ P and the fact that R is orthogonal with
respect to the Killing form to [P ,P ]. Therefore, [K,R] not only belongs to K but is
also orthogonal to [P ,P ]. Now write [K,R] as [K,R] = Y + R̃ with Y ∈ [P ,P ] and
R̃ ∈ R. Since R̃ ∈ [P ,P ]⊥ and [K,R] ∈ [P ,P ]⊥, Y ∈ [P ,P ]⊥ as well. Therefore, we
have Y ∈ [LS ,LS ] and Y ∈ [P ,P ]∩[P ,P ]⊥, which as before implies Y = 0. Therefore,
[K,R] = R̃ ∈ R and R is an ideal in K

Proof of Proposition 3.6.
Proof. If Nn is not zero, consider a matrix A �= 0 in Nn. Because of (36), we can

replace A with 1√
α
A and assume that A is unitary. Moreover, by applying a DUCT

transformation on Nn, A ∈ Nn → UAV, with U equal to the identity and V := A†,
we can assume that A is the identity matrix 1n. Using A = 1n in (35), we find
that the Hermitian part of every matrix B ∈ Nn is a multiple of the identity, which
means that (modulo a DUCT transformation) Nn is spanned by the identity and
skew-Hermitian matrices (if any). If Nn has dimension ≥ 2, let us consider a nonzero
skew-Hermitian matrix B. We apply a DUCT transformation of a special form with
V = U† above (that is, a single unitary conjugacy transformation) B → UBU† which
does not modify the identity matrix and diagonalizes B. With these coordinates,
B = diag(ia1, ia2, . . . , ian), and from the fact that BB† is a multiple of the identity,
it follows that a21 = a22 = · · · = a2n. By scaling B, we can assume that all of the aj ’s are
either 1 or −1, so that, modulo a reordering of row and column indexes, B = i1r,s. In
the special case where s = 0 and r = n, applying relation (35) with a skew-Hermitian

33Orthogonality is meant with respect to the Killing form.
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A and B = i1n, we see that A must necessarily be a multiple of i1n. So there is no
other skew-Hermitian matrix in Nn except for multiples of i1n in this case. If Nn has
dimension ≥ 3, we must have that 1 ≤ r ≤ n − 1. We decompose one extra (not a
multiple of i1r,s) skew-Hermitian matrix C in a basis of Nn as

(97) C :=

(
C1,1 C1,2

−C†
1,2 C2,2

)
,

where C1,1 and C2,2 are skew-Hermitian and of dimension r×r and s×s, respectively.
By using (35) with A = C and B = i1r,s, we discover that −2iC1,1 = α1r and
2iC2,2 = α1s, so that the block diagonal part of C is a multiple of i1r,s. Therefore,
in the basis of Nn, we can take C of the form (97) with C1,1 and C2,2 equal to the
r × r and s× s zero matrix, respectively. The possible matrices C12 form themselves
a vector space. Moreover, take any possible matrix C. By applying (35) with both

A and B qual to C, we find that C1,2C
†
1,2 = α1r and C†

1,2C1,2 = α1s for some real
number α. This shows that C1,2 is either zero or it has full rank, and in that case
r = s. Therefore, the only case where we can have normal vector space of dimensions
≥ 3 is when r = s = n

2 . In particular, n must be even. Moreover, the space of
all matrices C1,2 is such that if we apply (35) with the corresponding matrices C,
we obtain relation (35) again for matrices of dimension n

2 . Therefore, the matrices
C1,2 span a normal space, Nn

2
, of n

2 × n
2 matrices. Moreover, notice that a DUCT

transformation on this space An
2

→ UAn
2V can be obtained by a single unitary

conjugacy transformation on Nn of the form

(98) An →
(
U 0
0 V†

)(
0 An

2

−A†
n
2

0

)(
U† 0
0 V

)
,

which does not affect the first two matrices that we have found in the basis of Nn.
This gives the recursive construction described in the statement of the theorem.

Appendix B. Case p = 2 in subsection 6.4.
Proof. The same considerations done at the beginning of subsection 6.4.3 hold

for the case p = 2 to argue that it is enough to prove that indirect controllability is
not verified in the case (76). We also use the notation and the change of coordinates
described at the beginning of subsection 6.4.3.

Observe that the dynamical Lie algebra L admits a Cartan decomposition,34

(99) L := K̂ + P̂ ,
with K̂ := (K3 ⊗ 1) + (18 ⊗ su(2)) and P̂ = iP3 ⊗ su(2). Using such a Cartan
decomposition, a general transformation U in eL can be parametrized as35 U = T2 ⊗
V2e

ÃT1 ⊗ V1, where T1 and T2 are general unitary transformations in eK3 , V1 and V2
are general matrices in SU(2), and Ã is a matrix in a Cartan subalgebra A (maximal
Abelian subalgebra) in P̂. A general unitary matrix U in eL gives a transformation
on the state ρS of the form

ρS → TrA(UρS ⊗ ρAU
†)(100)

= TrA

(
T2 ⊗ V2e

ÃT1 ⊗ V1ρS ⊗ ρAT
†
1 ⊗ V †

1 e
−ÃT †

2 ⊗ V †
2

)
= T2TrA

(
eÃ(T1ρST

†
1 ⊗ ρ̃A)e

−Ã
)
T †
2

34Recall that we are including now the auxiliary system A in the analysis. The matrices in L are
16× 16.

35See the discussion at the end of subsection 3.1.
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with ρ̃A := V1ρAV
†
1 . In this case, the Cartan subalgebra A is three-dimensional. We

define (cf. (15))

(101) σ̃x := −2iσx, σ̃y := 2iσy, σ̃z := −2iσz,

and we take as a basis of A, {iσ̃z⊗ σ̃z⊗ σ̃x⊗ σ̃x, iσ̃z⊗ σ̃z⊗ σ̃y⊗ σ̃y, iσ̃z⊗ σ̃z⊗ σ̃z⊗ σ̃z},
so that Ã in (100) is written as

(102) Ã := ixσ̃z ⊗ σ̃z ⊗ σ̃x ⊗ σ̃x + iyσ̃z ⊗ σ̃z ⊗ σ̃y ⊗ σ̃y + izσ̃z ⊗ σ̃z ⊗ σ̃z ⊗ σ̃z

for real parameters x, y, and z. Moreover, since ρ̃A is assumed pure according to
what was proved in subsection 5.2, we can write ρ̃A as

(103) ρ̃A :=

(
cos2(θ) − 1

2 sin(2θ)e
it

− 1
2 sin(2θ)e

−it sin2(θ)

)

for parameters θ and t in R. Formula (100) describes the set of available transfor-
mations on ρS . Each of these transformations can be seen as the cascade of three
transformations:

1. a unitary transformation ρ → T1ρT
†
1 with T1 ∈ eK3 and therefore depending

on 21 = dim K3 parameters;

2. a, not necessarily unitary, transformation ρ → TrA(e
Ãρ ⊗ ρ̃Ae

−Ã), which
depends on five parameters, i.e., x, y, z in (102) and θ and t in (103);

3. another unitary transformation ρ → T2ρT
†
2 , with T2 ∈ eK3 and therefore

depending on 21 = dimK3 parameters.
To prove the claim, it is enough to show that there is a unitary similarity transforma-
tion Xf , ρS → XfρSX

†
f , which cannot be obtained as the cascade of the above three

transformations, no matter what parameters are chosen in the various steps. We shall
show that this is the case for the transformation Xf = X1−2, which switches the first
and second position in a tensor product of three 2× 2 Hermitian matrices σ̃1, σ̃2, σ̃3,
i.e.,

(104) X1−2σ̃1 ⊗ σ̃2 ⊗ σ̃3X
†
1−2 = σ̃2 ⊗ σ̃1 ⊗ σ̃3 for all σ̃1, σ̃2, σ̃3 ∈ iu(2).

Let us set up a few more definitions.
With spaces of 4× 4 Hermitian matrices

(105) L := {1⊗ Z}+ {Z ⊗ 1}+ {Y ⊗ Y } and R := {1⊗ Y }+ {Y ⊗ Z},

we can rewrite iK3 as

(106) iK3 := {L⊗ 1}+ {R⊗ (isu(2))}+ {1⊗ (isu(2))}.

Consider now a general matrix ρ̃S of the form ρ̃S = 1
818 + S with S ∈ iK3. Such a

matrix can be written as

(107) ρ̃S :=
1

8
18 + L⊗ 12 +

∑
j=x,y,z

Rj ⊗ σ̃j +
∑

k=x,y,z

ak14 ⊗ σ̃k

with L ∈ L, Rx,y,z ∈ R, and ax,y,z real numbers. For such a type of matrix, we

calculate explicitly TrA(e
Ãρ̃S ⊗ ρ̃Ae

−Ã). Using the definition where Ej,k is the 4× 4
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matrix with all zeros except for the entries j and k on the diagonal which are occupied
by 1, we obtain

(108)

TrA(e
Ãρ̃S ⊗ ρ̃Ae

−Ã)

=
1

8
18 + (sin2(y)− sin2(x)) cos(2θ)14 ⊗ σ̃z

+ sin(2θ) sin(2z) cos(t) sin(x− y)14 ⊗ σ̃x

+ sin(2θ) sin(2z) sin(t) sin(x+ y)14 ⊗ σ̃y + L⊗ 12

+(sin2(y)− sin2(x)) cos(2θ)L⊗ σ̃z + sin(2θ) sin(2z) cos(t) sin(x − y)L⊗ σ̃x

+ sin(2θ) sin(2z) sin(t) sin(x+ y)L⊗ σ̃y

+
1

2
cos(2θ) cos(2z)(cos(2x)− cos(2y))Rz ⊗ 12

+ cos(2z)Rz ⊗ σ̃z +
1

2
cos(2θ) sin(2z)(cos(2x)

+ cos(2y)) (iE1,4RzE2,3 − iE2,3RzE1,4)⊗ 12

+
1

2
sin(2z) sin(2θ) cos(t) (sin(2x)− sin(2y))Rx ⊗ 12 + cos(x + y)Rx ⊗ σ̃x

+ − 1

2
cos(2z) sin(2θ) cos(t)(sin(2x) + sin(2y)) (iE1,4RxE2,3 − iE2,3RxE1,4)⊗ 12

+
1

2
sin(2θ) sin(t) sin(2z) (sin(2x) + sin(2y))Ry ⊗ 12 + cos(x − y)Ry ⊗ σ̃y

− 1

2
sin(2θ) sin(t) cos(2z) (sin(2x)− sin(2y)) (iE1,4RyE2,3 − iE2,3RyE1,4)⊗ 12

+ az
(
cos2(x)− sin2(y)

)
14 ⊗ σ̃z − az sin(2θ) cos(2z) sin(t) sin(y − x)σ̃z ⊗ σ̃z ⊗ σ̃x

+ az sin(2θ) cos(2z) cos(t) sin(x + y)σ̃z ⊗ σ̃z ⊗ σ̃y + ax cos(2z) cos(x− y)14 ⊗ σ̃x

−ax
2
(sin(2x)− sin(2y)) sin(2θ) sin(t)σ̃z ⊗ σ̃z ⊗ σ̃z

− ax sin(2z) cos(x+ y) cos(2θ)σ̃z ⊗ σ̃z ⊗ σ̃y + ay cos(2z) cos(x+ y)14 ⊗ σ̃y

− ay
2

cos(t) sin(2θ)(sin(2y) + sin(2x))σ̃z ⊗ σ̃z ⊗ σ̃z

+ ay sin(2z) cos(x − y) cos(2θ)σ̃z ⊗ σ̃z ⊗ σ̃x.

Since X1−2 is unitary, the transformation in (108) must be unitary and in particular
it must leave multiples of the identity unchanged. This implies that we have in (108)

(sin2(y)− sin2(x)) cos(2θ) = 0,(109)

sin(2θ) sin(2z) cos(t) sin(x− y) = 0,(110)

sin(2θ) sin(2z) sin(t) sin(x+ y) = 0.(111)

This also implies that if ρ̃S is of the form ρ̃S = 1
818 + L ⊗ 12 with L ∈ L, it is left

unchanged by the transformation (108). From this, we try to obtain information on

the form of T1. Denote by ρini := ρS − 1
818 and by ρfin = X1−2ρSX

†
1−2 − 1

818.

Assume that ρini ∈ T †
1L⊗ 12T1. Since T1 ∈ eK3 , ρini belongs to iK3. Moreover, since

T2 ∈ eK3 , ρfin ∈ iK3 as well. Since ρfin is obtained from ρini by switching the first
and second position in the tensor products, ρini must belong to the subspace of iK3,
which remains in iK3 once we permute the first two positions. This subspace is given
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by {L⊗ 12}+ {14 ⊗ isu(2)}. This reasoning shows that T1 is such that

(112) T †
1L⊗ 1T1 ⊆ {L⊗ 12}+ {14 ⊗ isu(2)} .

Now we proceed to a parametrization of T1 according to a Cartan decomposition of
K3. Let K3 := D+Q, with D := {iL⊗ 12}+ {14 ⊗ su(2)}, and Q := R⊗ su(2), with
(cf. (20))

(113) [D,D] ⊆ D, [Q,D] ⊆ Q, [Q,Q] ⊆ D.
Choosing a basis of a Cartan subalgebra in Q given by {iσ̃x ⊗ σ̃z ⊗ σ̃x, iσ̃y ⊗ σ̃z ⊗
σ̃y, i12 ⊗ σ̃x ⊗ σ̃z}, we write T1 ∈ eK3 as

(114) T1 := P1 ⊗ Ṽ1e
BP2 ⊗ Ṽ2

with P1, P2 ∈ eiL, Ṽ1, Ṽ2 ∈ SU(2), and

(115) B := iaσ̃x ⊗ σ̃z ⊗ σ̃x + ibσ̃y ⊗ σ̃z ⊗ σ̃y + ic12 ⊗ σ̃x ⊗ σ̃z

for real parameters a, b, and c. With the structure of T1 in (114), condition (112)
implies that, for every L ∈ L,

(116) e−BL⊗ 12e
B =M ⊗ 12 + 14 ⊗ σ̃

for some M ∈ L and σ̃ ∈ su(2). Imposing this for a basis of L, we find, for the
parameters a, b, and c in (115),

(117) sin(2a) = sin(2b) = sin(2c) = 0.

This, by writing eB as

(118) eB = eiaσ̃x⊗σ̃z⊗σ̃xeibσ̃y⊗σ̃z⊗σ̃yeic12⊗σ̃x⊗σ̃z ,

implies that the first factor is equal to ±18 or ±iσ̃x ⊗ σ̃z ⊗ σ̃x, the second factor is
equal to ±18 or ±iσ̃y⊗ σ̃z⊗ σ̃y, and the third factor is equal to ±18 or ±i12⊗ σ̃x⊗ σ̃z.
In particular, in every case, eB has the form of a “local” transformation

(119) eB = C1 ⊗ C2 ⊗ C3

with unitary 2 × 2 transformations C1, C2, C3. This, combined with (114), shows
that T1 must be of the form

(120) T1 := Q1 ⊗ Ṽ1C3Ṽ2

with Q1 := P1(C1 ⊗ C2)P2.
Let us now apply the full cascade of the three transformations in points 1, 2, and

3 above, which, by assumption, gives X1−2, to 14⊗ (Ṽ †
2 C

†
3Ṽ

†
1 σ̃z Ṽ1C3Ṽ2). Application

of the transformation ρ→ T1ρT
†
1 gives 1⊗ σ̃z . By applying (108) to 1⊗ σ̃z with the

conditions (109), (110), (111), we have

TrA(e
Ã14 ⊗ σ̃z ⊗ ρ̃Ae

−Ã) =
(
cos2(x)− sin2(y)

)
14 ⊗ σ̃z(121)

− sin(2θ) cos(2z) sin(t) sin(y − x)σ̃z ⊗ σ̃z ⊗ σ̃x

+sin(2θ) cos(2z) cos(t) sin(x+ y)σ̃z ⊗ σ̃z ⊗ σ̃y .
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Since the result of this transformation must be in iK3, because the third transforma-
tion T2 ∈ eK3 and X1−214 ⊗ σ̃zX

†
1−2 = 14 ⊗ σ̃z ∈ iK3, we must have sin(2θ) cos(2z)

sin(t) sin(y − x) = 0, and sin(2θ) cos(2z) cos(t) sin(x + y) = 0. These imply in (121),
since the norm has to be preserved (because the total transformation must be unitary),

(122) (cos2(x)− sin2(y))2 = 1.

This condition along with (109), (110), (111) gives the following simplification of (108)

TrA(e
Ãρ̃S ⊗ ρ̃Ae

−Ã)(123)

=
1

8
18 + L⊗ 12 + cos(2z)Rz ⊗ σ̃z

± cos(2θ) sin(2z) (iE1,4RzE2,3 − iE2,3RzE1,4)⊗ 12 ±Rx ⊗ σ̃x

± Ry ⊗ σ̃y ± az14 ⊗ σ̃z ± ax cos(2z)14 ⊗ σ̃x

± ax sin(2z) cos(2θ)σ̃z ⊗ σ̃z ⊗ σ̃y ± ay cos(2z)14 ⊗ σ̃y

± ay sin(2z) cos(2θ)σ̃z ⊗ σ̃z ⊗ σ̃x.

Now assume we start from 14 ⊗ (Ṽ †
2 C

†
3 Ṽ

†
1 σ̃xṼ1C3Ṽ2). Application of the transforma-

tion ρ→ T1ρT
†
1 gives 1⊗ σ̃x. Using (123) with ρ̃S = 1

818 + 14 ⊗ σ̃x gives

(124) TrA(e
Ã (14 ⊗ σ̃x ⊗ ρ̃A) e

−Ã) = ± cos(2z)14⊗ σ̃x± sin(2z) cos(2θ)σ̃z ⊗ σ̃z ⊗ σ̃y.
Imposing that this belongs to iK3 gives

(125) sin(2z) cos(2θ) = 0.

Moreover, norm preservation gives cos2(2z) = 1. Using this in (123), we get

TrA(e
Ãρ̃S ⊗ ρ̃Ae

−Ã) =
1

8
18 + L⊗ 12(126)

± Rz ⊗ σ̃z ±Rx ⊗ σ̃x ±Ry ⊗ σ̃y ± az14 ⊗ σ̃z

± ax14 ⊗ σ̃x ± ay14 ⊗ σ̃y.

Therefore, ρ̃S → TrA(e
Ãρ̃S ⊗ ρ̃Ae

−Ã) does not modify ρ̃S except for possibly some
changes in the sign of the coefficients. It follows that if ρ̃S = 1

818 + S with S ∈ iK3,

the transformed also can be written as 18 + S̃ with S̃ ∈ iK3. It follows that if the
initial ρS has the property that ρS − 1

818 ∈ iK3, the final value of the density matrix
has this property as well (since the similarity transformations by T1 and T2 do not
modify the property of a matrix to belong to iK3). However, this is incompatible

with the form of X1−2 since the transformation ρ → X1−2ρX
†
1−2 does not leave iK3

invariant. This concludes the proof of this part of the theorem.

Appendix C.
Proof. We use induction on n. We first verify that (A1)–(A6) are satisfied for

n = 4. This can be done using (84), (85), and (B1)–(B5) and defining

(127) i {K4,P4} = Z ⊗ B3 + Y ⊗K3 + 1⊗ P3 := B4

and

(128) [P4,B4] = 1⊗ B3 + Y ⊗ B3 + Z ⊗K3 := C4.
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Then we show that, if (A1)–(A6) hold for a certain n, they hold for n + 1, which
completes the proof by induction. In order to do that, define

(129) Bn+1 := i {Kn,Pn} = Z ⊗ Bn + Y ⊗Kn + 1⊗ Pn

and

(130) Cn+1 := [Pn+1,Bn+1] = 1⊗[Pn,Bn]+Y ⊗Bn+Z⊗Kn = 1⊗Cn+Y⊗Bn+Z⊗Kn.

So both (A1) and (A5) are automatically satisfied. Using (86), we have

i {Pn+1,Bn+1} = i1⊗{Pn,Bn}+Y ⊗Pn+ iZ⊗1 = 1⊗Kn+Y ⊗Pn+ iZ⊗1 = Kn+1.

Therefore, (A2) holds. Now we verify (A3):

[Kn+1,Bn+1] = Z ⊗ [Kn,Bn] + Y ⊗ [Kn,Kn] + 1⊗ [Kn,Pn]

+ iY ⊗ {Pn,Bn}+ iZ ⊗ {Kn,Pn}
+ 1⊗ [Pn,Kn] + Y ⊗ [Pn,Pn] + Y ⊗Kn

= Z ⊗ Bn + Y ⊗Kn + 1⊗ Pn = Bn+1.

Moreover, we have

[Kn+1, Cn+1] = 1⊗ Cn + Y ⊗ Bn + Z ⊗Kn := Cn+1.

Thus, (A4) holds. Next, we verify that (A6) holds:

[Pn+1, Cn+1] = Z ⊗ [Pn, Cn] + Y ⊗ i {Pn+1,Bn+1}+ 1⊗ [Pn,Kn] + Z ⊗ Bn + Y ⊗Kn

= Z ⊗ Bn + Y ⊗Kn + 1⊗ Pn := Bn+1.
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