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Abstract. In this paper we study the minimization of a nonsmooth black-box type function,
without assuming any access to derivatives or generalized derivatives and without any knowledge
about the analytical origin of the function nonsmoothness. Directional methods have been derived
for such problems, but to our knowledge no model-based method like a trust-region one has yet
been proposed. Our main contribution is thus the derivation of derivative-free trust-region methods
(TRMs) for black-box type function. We propose a trust-region model that is the sum of a max-
linear term with a quadratic one so that the function nonsmoothness can be properly captured,
but at the same time the curvature of the function in smooth subdomains is not neglected. Our
TRMs enjoy global convergence properties similar to those of the directional methods, provided the
vectors randomly generated for the max-linear term are asymptotically dense in the unit sphere.
The numerical results reported demonstrate that our approach is both efficient and robust for a
large class of nonsmooth unconstrained optimization problems. Our software is made available under
request.

Key words. nonsmooth optimization, derivative-free optimization, trust-region methods, black-
box functions

AMS subject classifications. 90C56, 90C30, 90C26

DOI. 10.1137/19M125772X

1. Introduction. We develop a trust-region methodology for the derivative-free
optimization of a possibly nonsmooth function without any knowledge about the
source or form of its nonsmoothness. The objective function to be minimized is thus
treated as a pure black box in the sense of only returning function values. Our goal
is to develop an algorithm that is both efficient (in terms of the number of function
evaluations taken to reach a meaningful stopping criterion) and rigorous (in terms of
offering reasonable convergence properties). The derivative-free trust-region approach
is a step towards efficiency, as we know that it works well for smooth problems or
even mildly nonsmooth ones, and we want to take advantage in our implementation
of what are some of the best existing numerical practices known for these methods,
since most nonsmooth problems, even the harder ones, exhibit large subdomains of
smoothness.

However, the theory and practice of derivative-free trust-region methods (TRMs)
have been developed for either smooth functions [10, 11] or for the sum or composition
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of a known nonsmooth function with a smooth, possibly vectorial black-box one [16,
18, 25, 30].1 The trust-region models typically used are smooth, based on quadratic
or radial basis functions. However, without any knowledge about the subdifferential
of the function or access to its members, as it is the case in a pure black-box regime,
the use of nonsmooth models based on a finite number of basis function elements or
nonsmooth operators may not suffice to explore increasingly narrow cones of descent
directions and render a trust-region algorithm convergent. Furthermore, in the theory
of directional methods for the derivative-free optimization of black-box functions [3,
14, 38], the nonnegativity is proved of generalized directional derivatives at certain
limit points of the sequences of iterates along certain limiting directions. Such limiting
directions cover the unit sphere if the algorithm directions are randomly generated in
such a way that their support is the unit sphere for any subsequence of the iterates.2

Hence, our trust-region models will have built in the random generation of their
linear terms. In a first, naive but simple approach this can be achieved by randomly
generating the vector defining the linear term of a quadratic. Such models will, how-
ever, render the TRM inefficient, as they are to some extent just adding a quadratic
term to a directional-inspired linear one, without any attempt to explore the non-
smoothness of the function. We thus go a step further and propose a nonsmooth
trust-region model by collecting a number of those randomly generated linear terms
in a max-linear type model, adding to it the quadratic term for steady progress in
the more smooth function subdomains. Our work is inspired by the bundle method-
ology [35] for nonsmooth optimization. By working with a sample set of points near
the current iterate and appropriately using their function values, one forms the max-
linear model in a way that the new vector randomly generated at each iteration (for
the purpose of adding a new linear term to the model) will attempt to approximate
in a certain way an element of the subdifferential at one of these sample points.
Our numerical experiments have shown that such a methodology can lead to an effi-
cient and particularly robust solver for the derivative-free optimization of nonsmooth
functions.

In a way similar to the application of direct-search methods to nonsmooth func-
tions, our convergence results state that the Clarke generalized derivative is nonneg-
ative at any limit point of a subsequence of unsuccessful iterates, along any direction
in the unit sphere, assuming some form of asymptotic density of the vectors randomly
generated for the linear terms of the models. The Hessian of the quadratic term added
to the max-linear model term does not have to be positive definite or semidefinite and,
interestingly, not even necessarily bounded (as long as it does not grow faster than a
certain negative power in (−1, 0) of the trust-region radius).

The paper is organized in the following sections: In section 2 we describe and an-
alyze the basic version of our trust-region derivative-free algorithmic approach, based
on a quadratic trust-region model with a randomly generated vector of linear coeffi-
cients. Then in section 3 we introduce our random nonsmooth max-linear trust-region
model and adapt the convergence analysis to this more advanced scenario. Section 4

1An anonymous referee has drawn our attention to the recent works [2, 22] (the latter one of
trust-region type). However, both require the calculation of subgradients of approximate or nearby
subdifferentials and are, therefore, only applicable when the nonsmoothness of the objective function
is known through some algebraic or composite form.

2Not all existing converging techniques for nonsmooth derivative-free optimization are based on
random directions, an example being the use of the convex hull of (possibly randomly) sampled
approximate gradients [4, 29, 21]. On the other hand, TRMs have also been developed based on
probabilistic random models [6, 19] but for smooth problems.
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3014 G. LIUZZI, S. LUCIDI, F. RINALDI, AND L. VICENTE

describes the implementation of our basic and advanced algorithms and reports the
numerical experiments conducted for a test of nonsmooth problems. Some conclusions
and prospects of future work are outlined in section 5. In terms of notation, all norms
are Euclidean.

In this paper we consider an unconstrained minimization problem

(1) min
x∈Rn

f(x),

where the objective function, although possibly nonsmooth, will be assumed locally
Lipschitz continuous whenever needed in the theory. Any type of first-order informa-
tion (gradients or elements of subdifferentials) is considered unavailable or impractical
to obtain.

Given a point x ∈ Rn, at which the function is Lipschitz continuous in a neigh-
borhood of, and a direction d ∈ Rn, the Clarke generalized derivative [8] of f at x
along d can be defined as

f◦(x; d) = lim sup
y→x,t↓0

f(y + td)− f(y)

t
= lim

ε→0
sup

(y,t):‖y−x‖≤ε,0<t≤ε

f(y + td)− f(y)

t
.

Later in the paper we will use the fact that f◦(·; ·) is Lipschitz continuous in its
second argument (with Lipschitz constant equal to the one of f). Suppose again that
f is Lipschitz near x. The Clarke generalized subdifferential of f at x can then be
defined by

∂f(x) = {s ∈ Rn : f◦(x; v) ≥ v>s ∀v ∈ Rn}.

Moreover, it can be proved that

f◦(x; d) = max{d>s : s ∈ ∂f(x)}.

A point x∗ ∈ Rn is (first-order) Clarke stationary for problem (1) when f◦(x∗; d) ≥ 0
for all d ∈ Rn.

2. A basic trust-region type algorithm based on a smooth random
model. We will see in this section that one way of endowing a TRM with the capac-
ity to deal with nonsmooth black-box functions is by randomly generating the linear
coefficients of the quadratic trust-region model. We suggest to generate the vector gk
of the linear coefficients of the quadratic model randomly in the unit sphere. Such a
normalization tries to mimic to some extent the effect of a step of directional meth-
ods [3, 38], in the sense that a trust-region step of the form ∆kgk, where ∆k is the
trust-region radius and ‖gk‖ = 1, plays a similar role as the step of such directional
methods. However, we consider also a quadratic term in the trust-region model to bet-
ter approximate the curvature in smooth subdomains, and this is actually one of the
theoretical challenges in this paper. So, at every iteration k of the Basic DFO-TRNS

algorithm, sk is the solution of the trust-region subproblem

(2)
min f(xk) + g>k s+

1

2
s>Bks

s.t. ‖s‖2 ≤ ∆2
k,

where Bk ∈ Rn×n is a symmetric matrix built out from interpolation or regression on
a sample set of points.

Algorithm Basic DFO-TRNS is quite simple. The step is accepted/rejected and
the trust-region radius is nondecreased/decreased based on a ratio of actual versus
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predicted reductions. The only nonstandard aspect is the choice of the predicted
reduction θ‖s‖1+p used in place of the reduction achieved in the quadratic model from
s = 0 to s = sk. The reason for our choice lies in a convergence requirement, as we
need the predicted reduction to behave like o(‖sk‖) in unsuccessful iterations to prove
the nonnegativity of the Clarke generalized derivative along appropriate directions.
Such an effect is similar to the use of a forcing function in directional methods [38].
Note that the use of a power of the norm of the step to replace the more traditional
predicted reduction has been used before in TRMs [12].

Algorithm Basic DFO-TRNS. (Basic derivative-free optimization (DFO) trust-

region algorithm for nonsmooth problems).

Initialization. Select x0 ∈ Rn, η1, θ > 0, 0 < γ1 < 1 ≤ γ2, ∆0 > 0, and p > 0.
For k = 0, 1 . . .

Generate gk randomly and densely on the unit sphere. Build a symmetric
matrix Bk.

Let
sk ∈ arg min

‖s‖2≤∆2
k

f(xk) + g>k s+
1

2
s>Bks,

ρk =
f(xk)− f(xk + sk)

θ‖s‖1+p
.

If ρk ≥ η1 Then set SUCCESS ← true, xk+1 ← xk + sk, ∆k+1 ← γ2∆k,
Else set SUCCESS ← false, xk+1 ← xk, ∆k+1 ← γ1∆k.
End If

End For

For convergence purposes, we require the model Hessian to satisfy the assumption
below. We point out that such an assumption is weaker than what is considered in
TRMs, where an upper bound on the norm of Bk is traditionally imposed. Our theory
allows Bk to be unbounded as long as it is bounded by a negative power of the trust-
region radius (which in turn will be proved to converge to zero). This negative power
must lie in (−1, 0) for the basic algorithm of this section and in (−1/2, 0) for the
advanced algorithm of the next section.

Assumption 2.1. There exist q ∈ (0, 1), m,M > 0, such that the maximal eigen-
value of Bk satisfies

λmax(Bk) ≤ M∆−qk .

When Bk has negative eigenvalues, its minimal eigenvalue satisfies

−λmin(Bk) ≤ m∆−qk .

We start by proving that the trust-region radius goes to zero. It is typical to
see the step size along directions or the trust-region radius converging to zero in
derivative-free optimization [11].

Lemma 2.1. Assume that f is bounded from below. Let Assumption 2.1 hold. Any
sequence {∆k} of trust-region radii produced by Algorithm Basic DFO-TRNS is such
that

lim
k→∞

∆k = 0.
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Proof. Suppose, by contradiction, that {∆k} does not converge to zero. Then,
there exists ε > 0 such that #{k : ∆k > ε} = ∞. Because of the way ∆k is updated
we must have

# {k : ∆k > ε, ∆k+1 ≥ ∆k} = ∞;

in other words, there must exist an infinite number of iterations for which ∆k+1 is
not decreased, and for these iterations we have ρk ≥ η1.

If λmin(Bk) ≤ 0, then we know from the well-known properties of trust-region
subproblems that ‖sk‖ = ∆k (see [9]). If not, then either ‖sk‖ = ∆k or sk = −B−1

k gk.
In the latter case, from Assumption 2.1, ‖B−1

k gk‖ ≥ λmin(B−1
k )‖gk‖ ≥ (1/M)∆q

k. As
a result we obtain

f(xk)− f(xk + sk) ≥ η1θ‖sk‖1+p

≥ η1θmin{‖B−1
k gk‖,∆k}1+p

≥ η1θmin

{
εq

M
, ε

}1+p

.

This means that at each iteration where ∆k is not decreased, f is reduced by a
constant. Since f is bounded from below, the number of such iterations cannot be
infinite, and hence we arrived at a contradiction.

It is known that the solution of a trust-region subproblem with fixed data and Bk
positive definite tends to a step along the negative gradient [13, Figure 6.4.2] when
the trust-region radius converges to zero. The property below may be seen as an
expression of this behavior.

Property 2.1. Any sequence {(xk, sk,∆k)} generated by Algorithm
Basic DFO-TRNS is such that

sk = −∆kDkgk

with Dk ∈ Rn×n satisfying
lim
k→∞

Dk = I.

We can show that our simple algorithm exhibits such a property even when subject
to unbounded model Hessians. The result is proved under exact optimality of the
solution of the trust-region subproblem (2) to avoid an even longer proof. However,
we could have assumed inexact optimality and deduced a similar result as long as the
norm of the residual of the first-order necessary conditions of this subproblem was
smaller than a certain power of the trust-region radius.

Proposition 2.1. Let Assumption 2.1 hold. Assume also that all trust-region
subproblems (2) are solved up to optimality. Then Algorithm Basic DFO-TRNS gen-
erates sequences {(xk, sk,∆k)} satisfying Property 2.1 (for k sufficiently large).

Proof. From the first-order necessary conditions for problem (2), we know that
there exists σk ≥ 0 such that

(3) Bksk + 2σksk = −gk, σk(‖sk‖2 −∆2
k) = 0, ‖sk‖2 ≤ ∆2

k.

One can assume that ‖sk‖2 = ∆2
k for k sufficiently large. In fact, as mentioned

before, only when Bk is positive definite and ‖−B−1
k gk‖ < ∆k there is no solu-

tion at the boundary. From (3), such cases do render sk = −∆k(∆kBk)−1gk (i.e.,
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Dk = (∆kBk)−1). However, they can only occur a finite number of times as, from
Assumption 2.1, we have ‖B−1

k gk‖ ≥ (∆q−1
k /M)∆k and ∆k → 0; thus ∆q−1

k /M
becomes eventually larger than 1. Hence, from the necessary conditions (3),

σk = − 1

2∆2
k

(
s>k Bksk + g>k sk

)
and

(4)

(
Bk −

1

∆2
k

(
s>k Bksk + g>k sk

)
I

)
sk = −gk.

The rest of the proof is now divided in two main parts.
(A) First we provide a lower and an upper bound for ηk = −s>k Bksk − g>k sk.

Since sk solves problem (2), it yields a better model value than the step −∆kgk,
which means

1

2
s>k Bksk + g>k sk ≤

1

2
∆2
kg
>
k Bkgk −∆kg

>
k gk,

and, recalling that ‖gk‖ = 1, we obtain

(5)
1

2
s>k Bksk + g>k sk ≤

1

2
∆2
kλmax(Bk)−∆k.

Then, taking into account the fact that ηk = −2( 1
2s
>
k Bksk + g>k sk) + g>k sk and using

inequality (5), we can derive a lower bound on ηk from Assumption 2.1:

ηk ≥ −∆2
kλmax(Bk) + 2∆k + g>k sk

≥ −M∆2−q
k + 2∆k −∆k

≥ −M∆2−q
k + ∆k.(6)

The lower bound (6) guarantees that −ηk = s>k Bksk + g>k sk 6= 0 for k sufficiently
large, a fact that will later be used.

On the other hand, an upper bound on ηk can be derived also from Assumption 2.1
as follows (recall that ‖gk‖ = 1):

ηk = −s>k Bksk − g>k sk
≤ max{0,−λmin(Bk)}‖sk‖2 + ‖sk‖
≤ m∆−qk ∆2

k + ∆k.(7)

(B) Knowing that ηk = −s>k Bksk − g>k sk is nonzero for k sufficiently large and
using the generalized Sherman–Morrison–Woodbury formula, we obtain(

Bk +
ηk
∆2
k

I

)−1

=
∆2
k

ηk
I − ∆2

k

ηk
Bk

(
I +

∆2
k

ηk
Bk

)−1
∆2
k

ηk
I.(8)

From (4) and (8), we can write

sk = −∆kDkgk

with

(9) Dk =
∆k

ηk
I − ∆2

k

ηk
Bk

(
I +

∆2
k

ηk
Bk

)−1
∆k

ηk
I.
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It remains to prove that Dk → I as k → ∞, and for that we will use the lower
and upper bounds derived in part (A) of the proof. In fact, using (6) and (7) and
dividing by ∆k lead us to

−M∆1−q
k + 1 ≤ ηk

∆k
≤ 1 +m∆1−q

k

and from Lemma 2.1
ηk
∆k

→ 1.

Observe also that from this and Assumption 2.1,
∆2

k

ηk
Bk = ∆k

ηk
(∆kBk) → 0. Finally,

taking into account the formula (9), it results that Dk → I as k →∞, and the proof
is complete.

The next step in the analysis is to show that the Clarke generalized derivative
is nonnegative along some limiting normalized trust-region step. Such a result corre-
sponds to what has been obtained for directional methods along the so-called refining
directions; see [3].

Lemma 2.2. Assume that f is bounded from below. Let Assumption 2.1 hold. Let
{(xk, sk,∆k)} be a sequence generated by Algorithm Basic DFO-TRNS. Let L ⊆ K =
{k : ∆k+1 < ∆k} be an index set such that

lim
k∈L,k→∞

xk = x∗ and

lim
k∈L,k→∞

sk
‖sk‖

= s∗.

Then f◦(x∗; s∗) ≥ 0.

Proof. For each k ∈ L we have from ρk < η1 (unsuccess in the algorithm) that

f(xk + sk)− f(xk) > −η1θ‖sk‖1+p

from which we obtain

(10)
f(xk + ‖sk‖[sk/‖sk‖])− f(xk)

‖sk‖
> −η1θ‖sk‖p.

One can introduce s∗ in the quotient of (10) as

(11)
f(xk + ‖sk‖s∗)− f(xk)

‖sk‖
− f(xk + ‖sk‖s∗)− f(xk + ‖sk‖[sk/‖sk‖])

‖sk‖

and see that the second term in (11) is bounded by

(12)
f(xk + ‖sk‖s∗)− f(xk + ‖sk‖[sk/‖sk‖])

‖sk‖
≤ L∗f‖[sk/‖sk‖]− s∗‖,

where L∗f is the Lipschitz constant of f near x∗. From (10)–(12) we then have

(13)
f(xk + ‖sk‖s∗)− f(xk)

‖sk‖
> −η1θ‖sk‖p − L∗f‖[sk/‖sk‖]− s∗‖.

Then, using (13) and recalling Lemma 2.1 and the fact that ‖sk‖ → 0 when ∆k → 0,
we obtain

f◦(x∗; s∗) ≥ lim sup
k∈L,k→∞

f(xk + ‖sk‖s∗)− f(xk)

‖sk‖
≥ 0,

which completes the proof.
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We can now assemble a final convergence result, which can be classified as global
in the sense of not asking the starting point to be close to a solution. Essentially
we know that the Clarke generalized derivative is nonnegative along a limiting trust-
region step, but we also know from Property 2.1 that trust-region steps tend to a step
along the negative of gk, which in turn can be asked to cover densely the unit sphere
in some asymptotic sense.

Theorem 2.3. Assume that f is bounded from below. Let Assumption 2.1 hold.
Let Algorithm Basic DFO-TRNS satisfy Property 2.1. Let x∗ be any limit point of {xk}
and K ⊆ {k : ∆k+1 < ∆k} be a subset of indices such that

lim
k∈K,k→∞

xk = x∗.

If the subsequence {gk}K is dense in the unit sphere, then x∗ is stationary for
problem (1).

Proof. We proceed by contradiction and assume that x∗ is not stationary for
problem (1). Then we know that a direction ḡ exists such that ‖ḡ‖ = 1 and

(14) f◦(x∗;−ḡ) < 0.

Since {gk}K is dense in the unit sphere, we can extract a subset of iteration indices,
which we call again K, such that

lim
k∈K,k→∞

xk = x∗,(15)

lim
k∈K,k→∞

gk = ḡ,(16)

lim
k∈K,k→∞

∆k = 0.(17)

Property 2.1 assures that sk = −∆kDkgk with Dk → I. Hence, it results that

lim
k∈K,k→∞

sk
‖sk‖

= −ḡ.

Then, by Lemma 2.2, we have that

f◦(x∗;−ḡ) ≥ 0,

which contradicts (14), thus concluding the proof.

Remark 2.1. The above result is also true when a step of the form sk = −∆kgk
is taken, totally ignoring the quadratic term of the model.

3. A trust-region algorithm based on a nonsmooth random model.

3.1. A nonsmooth random model. Now we would like to modify the basic
trust-region algorithm of section 2 in such a way that the nonsmoothness of the
objective function is better handled. Taking inspiration from bundle methods,3 we
will define a new nonsmooth random model to replace the smooth random one.

3Bundle methods were developed to solve nonsmooth convex problems. The idea behind those
methods is to approximate the objective function by means of a suitable underestimator. The
use of a piecewise linear function (called cutting plane model) to handle the minimization of the
original nonsmooth function was first proposed in [7, 24]. The main drawbacks of the cutting plane
approach are the possible unboundedness of the approximating models and the slow convergence of
the method. In order to overcome those issues, a stabilizing quadratic term is usually included in the
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3020 G. LIUZZI, S. LUCIDI, F. RINALDI, AND L. VICENTE

In a smooth setting, it is well-known that the trust-region model is given by the
sum of a linear term and a quadratic one, namely,

m̄k(s) +
1

2
s>Bks = f(xk) +∇f(xk)>s+

1

2
s>Bks.

A reasonable choice when considering nonsmoothness would be to replace the linear
term m̄k(s) by the following nonsmooth term:

m̄k(s) = f(xk) + f◦(xk; s),

that is,

m̄k(s) = max
ξ∈∂f(xk)

{
f(xk) + ξ>s

}
.(18)

Obviously, since the set ∂f(xk) is unknown, the above model cannot be used in
practice.

Bundle methods overcome this difficulty by exploiting the information obtained
on a set of points {yj : j ∈ Jk} approaching xk, where Jk is an index set. In the
case of convex optimization (f convex), these methods make approximations of the
model (18) given by

m̄k(s) = max
j∈Jk

{
f(yj) + (ξj)>(xk + s− yj)

}
,(19)

where ξj ∈ ∂f(yj), j ∈ Jk. The model (19) is usually rewritten as

m̄k(s) = max
j∈Jk

{
f(xk) + (ξj)>s− βjk

}
,

where

βjk = f(xk) + (ξj)>(yj − xk)− f(yj)

represents the displacement related to the point yj . This approach can be adapted to
the nonconvex case by suitably modifying the expression of βjk in the following way:

βjk = max
{

0, f(xk)− f(yj) + (ξj)>(yj − xk) + δ, ‖yj − xk‖2
}
,

where δ > 0 is a parameter to be selected in the algorithm.
In a derivative-free context, we cannot even compute an element ξ ∈ ∂f(y) for

any sample point y. Hence, we need to somehow adapt the bundle approach to our
derivative-free setting. The choice we made in this paper is to replace the information
given by the subgradients ξj with the one obtained for a set of randomly generated
normalized directions

Gk = {gi : ‖gi‖ = 1, i ∈ Ik},

approximation; see, e.g., [17, 26, 28] and references therein. Bundle methods have been combined
with trust-region ones [37]. Other interesting approaches are tilted bundle methods [27], level bundle
methods [32], bundle Newton methods [33], and generalized bundle methods [15]. When dealing with
nonconvex problems, the model is not an underestimator anymore. Hence bundle methods need to
be suitably modified in order to handle nonconvexity. Strategies like subgradient deletion rules and
subgradient locality measures are usually implemented in order to avoid the difficulties caused by
nonconvex functions (see, e.g., [35] for further details).

D
ow

nl
oa

de
d 

02
/2

4/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRMs FOR THE DFO OF NONSMOOTH BLACK-BOX FUNCTIONS 3021

where Ik is another index set. We first compute for each (i, j) ∈ Ik×Jk, the displace-
ments

βijk = max
{

0, f(xk)− f(yjk) + (gi)
>(yjk − xk) + δ‖yjk − xk‖

2
}
.(20)

Then it is possible to introduce the following model:

m̄k(s) = max
i∈Ik

{
f(xk) + (gi)

>s− β̄ik
}
,(21)

where

β̄ik = max
j∈Jk
{βijk }.(22)

Hence, while in bundle methods one selects a set of auxiliary points yj and vectors
ξj ∈ ∂f(yj), j ∈ Jk, to linearize the function and to somehow build an approximation
of the subdifferential at xk, in our derivative-free framework, since the elements of
the subdifferential cannot be calculated, we randomly generate vectors gi (say, one
per iteration) and build a linear term using a suitably chosen point yli in our sample
set (see (23) below). The rationale behind this strategy is that a direction gi can be
seen as an approximation of an element in ∂f(yli), with yli the point corresponding
to the index giving the maximum displacement β̄ik:

li ∈ argmax
j∈Jk

{βijk }.(23)

An example can be seen in Figure 1. (For simplicity, in the figures, the scalar β̄ik
is computed by setting δ = 0. Also, in order to depict easily understandable examples
in these figures, we used gi’s with absolute values different from 1.) Of course, when
β̄ik = 0 we might have that the direction gi is a good approximation of an element of
∂f(xk) (like, e.g., the case of the line corresponding to g3 in Figure 1). Summarizing,
for each direction gi, i ∈ Ik, we consider a linear term passing through a point yli with
∂f(yli) hopefully containing a subgradient close to the direction gi. Then, according
to (21), the model m̄k(s) is the maximum of those linear functions over gi, i ∈ Ik; see
Figure 2. An example for the nonconvex case is shown in Figures 3–4 (and here we
set δ > 0 when calculating the displacements).

In order to give some priority to the role of the new direction (generated at
iteration k) in the proposed local model of the objective function, we perturb the
parameters β̄ik in the following way:

β̃ik = β̄ik + ∆
1/2
k , i ∈ Ik, i 6= k,(24)

β̃kk = β̄kk .(25)

The modified displacements β̃ik, i ∈ Ik, are used to somehow penalize the linear
terms corresponding to the directions {gi : i ∈ Ik, i 6= k} in the max function of the
model (21).

Finally, the complete nonsmooth approximating model that we propose is the
following:

mk(s) = max
i∈Ik

{
f(xk) + (gi)

>s− β̃ik
}

+
1

2
s>Bks,(26)

where β̃ik, i ∈ Ik, are defined according to (24) and (25), and Bk is a symmetric matrix
built out from interpolation or regression on a sample set of points.
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y1 xk y2

f(xk) + (g1)
>(x− xk)

f(xk) + (g1)
>(x− xk)− β̄1

k

β̄1
k

y1 xk y2

f(xk) + (g1)
>(x− xk)− β̄1

k

y1 xk y2

f(xk) + (g2)
>(x− xk)

f(xk) + (g2)
>(x− xk)− β̄2

k

f(xk) + (g1)
>(x− xk)− β̄1

k

β̄2
k

y1 xk y2

f(xk) + (g2)
>(x− xk)− β̄2

k

f(xk) + (g1)
>(x− xk)− β̄1

k

y1 xk y2

f(xk) + (g2)
>(x− xk)− β̄2

k

f(xk) + (g1)
>(x− xk)− β̄1

k

f(xk) + (g3)
>(x− xk)

y1 xk y2

f(xk) + (g2)
>(x− xk)− β̄2

k

f(xk) + (g1)
>(x− xk)− β̄1

k

f(xk) + (g3)
>(x− xk)

Fig. 1. Construction of the nonsmooth model (convex case).

3.2. A trust-region method. The new trust-region subproblem we propose to
solve at each iteration is then

(27)
min mk(s)

s.t. ‖s‖2 ≤ ∆2
k,

where mk(s) is given by (26), which can then be equivalently stated as

(28)

min
s,α

1
2s
>Bks+ α

s.t. (f(xk)− β̃ik) + (gi)
>s ≤ α ∀ i ∈ Ik,

‖s‖2 ≤ ∆2
k.
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y1 xk y2

f(xk) + (g2)
>(x− xk)− β̄2

k

f(xk) + (g1)
>(x− xk)− β̄1

k

f(xk) + (g3)
>(x− xk)

Fig. 2. Nonsmooth model m̄k(s) for the convex case (in green).

y1 xk y2

f(xk) + (g1)
>(x− xk)

f(xk) + (g1)
>(x− xk)− β̄1

kβ̄1
k

γ‖xk − y2‖2

y1 xk y2

f(xk) + (g1)
>(x− xk)− β̄1

k

y1 xk y2

f(xk) + (g2)
>(x− xk)

f(xk) + (g2)
>(x− xk)− β̄2

k

f(xk) + (g1)
>(x− xk)− β̄1

k

β̄2
k

γ‖xk − y1‖2

y1 xk y2

f(xk) + (g2)
>(x− xk)− β̄2

k

f(xk) + (g1)
>(x− xk)− β̄1

k

Fig. 3. Construction of the nonsmooth model (nonconvex case).

The first-order necessary conditions for problem (28) require the existence of
nonnegative Lagrange multipliers λ and σ such that

0 = Bks+
∑
i∈Ik

λigi + 2σs,(29a)

0 = 1−
∑
i∈Ik

λi,(29b)
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y1 xk y2

f(xk) + (g2)
>(x− xk)− β̄2

k

f(xk) + (g1)
>(x− xk)− β̄1

k

Fig. 4. Nonsmooth model m̄k(s) for the nonconvex case (in green).

0 = λi

(
(β̃ik − f(xk))− (gi)

>s+ α
)
∀ i ∈ Ik,(29c)

0 ≤ (β̃ik − f(xk))− (gi)
>s+ α ∀ i ∈ Ik,(29d)

0 = σ(‖s‖2 −∆2
k), ‖s‖2 ≤ ∆2

k.(29e)

Given a solution sk of problem (28), along with its associated multipliers λ, we
further consider the following auxiliary subproblem:

(30)
min m̃k(s) = f(xk) + g̃>k s+

1

2
s>Bks

s.t. ‖s‖2 ≤ ∆2
k,

where

(31) g̃k =
∑
i∈Ik

λigi with
∑
i∈Ik

λi = 1 and λi ≥ 0 ∀i ∈ Ik

is a convex linear span of the randomly generated vectors. The first-order necessary
conditions (29) show that a solution sk of problem (28) satisfies the first-order nec-
essary conditions (3) with gk replaced by g̃k, thus satisfying the first-order necessary
conditions for (30). In addition, if sk solves problem (28), then from the second-order
necessary conditions, we know that[

ds
dσ

]> [
Bk + 2σ 0

0> 0

] [
ds
dσ

]
≥ 0

for all (ds, dσ) in the cone of these conditions. Furthermore, if we look at the inequali-
ties or equalities that define this cone and are associated with the constraints indexed
by Ik, they are either of the form (gi)

>ds − dα ≤ 0 or (gi)
>ds − dα = 0 which do not

constrain ds. Hence, we have that d>s (Bk + 2σI)ds ≥ 0 for all ds in the cone of the
second-order necessary conditions associated only with the constraint ‖s‖2 ≤ ∆2

k. The
conclusion is that sk also satisfies the second-order necessary conditions for (30) with
gk replaced by g̃k. Since the first- and second-order necessary conditions are sufficient
for any trust-region subproblem with a spherical trust-region constraint (regardless of
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the sign of eigenvalues of Bk), we conclude that a solution of (28) is a solution of (30).
This fact has repercussions in our algorithmic design and convergence analysis.

We now can define a modified version of the Basic DFO-TRNS algorithm using
this more sophisticated model that will enable us to better handle nonsmoothness
in the objective function. The detailed scheme is reported as Algorithm Advanced

DFO-TRNS. We need to consider that the points in the sample set {yjk : j ∈ Jk} used
to build the linear terms of the model verify

(32) ‖yjk − xk‖ ≤ γ∆k ∀j ∈ Jk

for all iterations k of our algorithm and for some suitably chosen γ > 0. Furthermore,
the advanced algorithm reverts to the basic (in the sense of using a quadratic model)
when the norm of the convex linear span vector g̃k in (31) becomes too small (relative

to the trust-region radius). For simplicity the condition we test is ‖g̃k‖ < ε̄∆
1/2
k , but

one could use any power of ∆k with exponent in (0, 1) (see the comment below made
before Assumption 3.1).

Algorithm Advanced DFO-TRNS. (Advanced DFO trust-region algorithm for

nonsmooth problems).

Initialization. Select x0 ∈ Rn, η1, θ, γ > 0, 0 < γ1 < 1 ≤ γ2, ε̄ > 0, ∆0 > 0, and

p > 0. Set G0 = ∅.
For k = 0, 1 . . .

Generate gk randomly and densely on the unit sphere. Consider a sample set of

points satisfying (32). Build a symmetric matrix Bk.

Set Gk = Gk−1 ∪ {gk}.
Let s be a solution for subproblem (28) for this Gk, and λ the associate multi-

pliers.

Let g̃k =
∑
i∈Ik λigi, where Ik is the index set corresponding to Gk.

If ‖g̃k‖ < ε̄∆
1
2

k Then

Reset Gk = {gk}.
Let s be a solution for subproblem (28) for this reset Gk.

End If

Set sk = s and

ρk =
f(xk)− f(xk + sk)

θ‖sk‖p+1
.

If ρk ≥ η1 Then set SUCCESS ← true, xk+1 ← xk + sk, ∆k+1 ← γ2∆k,

Else set SUCCESS ← false, xk+1 ← xk, ∆k+1 ← γ1∆k.

End If

End For

3.3. Convergence analysis. The convergence analysis of the advanced algo-
rithm follows the same lines as the basic version. The main difference is the use of
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the convex linear span vector g̃k (see (31)) instead of the normalized gk. However,
note that from the logic of the algorithm, g̃k can be bounded below as follows:

(33) ‖g̃k‖ ≥ min
{

1, ε̄∆
1
2

k

}
.

A similar assumption as in the basic algorithm is imposed in the model Hessians.
In this case the exponent q is restricted to (0, 1/2). This has to do with the test

‖g̃k‖ < ε̄∆
1/2
k in the advanced algorithm. If we had considered a parameter r ∈ (0, 1)

and asked instead for ‖g̃k‖ < ε̄∆r
k, then the exponent q in the assumption below would

had been restricted to (0, 1− r).
Assumption 3.1. There exist q ∈ (0, 1/2), m,M > 0, such that the maximal

eigenvalue of Bk satisfies
λmax(Bk) ≤ M∆−qk .

When Bk has negative eigenvalues, its minimal eigenvalue satisfies

−λmin(Bk) ≤ m∆−qk .

Again, one first proves that the trust-region radius converges to zero.

Lemma 3.1. Assume that f is bounded from below. Let Assumption 3.1 hold.
Any sequence {∆k} of trust-region radii produced by Algorithm Advanced DFO-TRNS

is such that

lim
k→∞

∆k = 0.

Proof. The proof is similar to the one of Lemma 2.1, and the only difference is
the use of g̃k instead of gk. We thus only need to redo the algebraic part of the proof:

f(xk)− f(xk + sk) ≥ η1θ‖sk‖1+p

≥ η1θmin{‖B−1
k g̃k‖,∆k}1+p

≥ η1θmin

{
εq

M
‖g̃k‖, ε

}1+p

≥ η1θmin

{
εq

M
min{1, ε̄ε 1

2 }, ε
}1+p

,

where the last inequality follows from (33).

Then we show that the algorithm generates steps that tend to a step that is now
along the convex linear span vector g̃k.

Property 3.1. Any sequence {(xk, sk,∆k)} generated by Algorithm Advanced

DFO-TRNS is such that

sk = −∆kDk
g̃k
‖g̃k‖

with Dk ∈ Rn×n satisfying
lim
k→∞

Dk = I.

As in Proposition 2.1, the following result is proved under exact optimality of
the solution of the trust-region subproblem (27), but we could have assumed inexact
optimality and deduce a similar result as long as the norm of the residual of the first-
order necessary conditions of this subproblem is smaller than a certain power of the
trust-region radius.
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TRMs FOR THE DFO OF NONSMOOTH BLACK-BOX FUNCTIONS 3027

Proposition 3.1. Assume that f is bounded from below. Let Assumption 3.1
hold. Assume also that all trust-region subproblems (27) are solved up to optimal-
ity. Then Algorithm Advanced DFO-TRNS generates sequences {(xk, sk,∆k)} satisfy-
ing Property 3.1 (for k sufficiently large).

Proof. The proof follows the line of thought of Proposition 2.1. The main differ-
ence is that the step sk solves now the modified trust-region subproblem (30), where
g̃k takes the place of gk. The same calculations take us to

(34)

(
Bk +

ηk
∆2
k

I

)
sk = −g̃k,

where now ηk = −s>k Bksk − g̃>k sk. As in Proposition 2.1, the rest of the proof is
divided in two main parts.

(A) When deriving the lower and upper bounds on ηk we can no longer use the
fact that g̃k is normalized but rather that it satisfies the bound (33).

Since sk solves problem (30), it yields a better model value than the step −∆kg̃k/
‖g̃k‖, which means

1

2
s>k Bksk + g̃>k sk ≤

1

2
∆2
kg̃
>
k Bkg̃k/‖g̃k‖2 −∆kg̃

>
k g̃k/‖g̃k‖,

and we obtain

(35)
1

2
s>k Bksk + g̃>k sk ≤

1

2
∆2
kλmax(Bk)−∆k‖g̃k‖.

Then, taking into account the fact that ηk = −2( 1
2s
>
k Bksk + g̃>k sk) + g̃>k sk and using

inequality (35), we can derive a lower bound on ηk from Assumption 3.1:

ηk ≥ −∆2
kλmax(Bk) + 2∆k‖g̃k‖+ g̃>k sk

≥ −M∆2−q
k + 2∆k‖g̃k‖ −∆k‖g̃k‖

≥ −M∆2−q
k + ∆k‖g̃k‖.(36)

The bound (36) ensures that ηk is nonzero for k sufficiently large.
On the other hand, an upper bound on ηk can be derived also from Assumption 3.1

as follows:

ηk = −s>k Bksk − g̃>k sk
≤ max{0,−λmin(Bk)}‖sk‖2 + ∆k‖g̃k‖
≤ m∆−qk ∆2

k + ∆k‖g̃k‖.(37)

(B) The application of the generalized Sherman–Morrison–Woodbury formula,(
Bk +

ηk
∆2
k

I

)−1

=
∆2
k

ηk
I − ∆2

k

ηk
Bk

(
I +

∆2
k

ηk
Bk

)−1
∆2
k

ηk
I,

and (34) allow us to write

sk = −∆kDk
g̃k
‖g̃k‖

with

(38) Dk =
‖g̃k‖∆k

ηk
I − ‖g̃k‖∆k

ηk
Bk

(
I +

∆2
k

ηk
Bk

)−1
∆2
k

ηk
I.
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It remains to prove that Dk → I as k → ∞. Using the bounds (36) and (37)
derived in part (A) of the proof and dividing by ∆k‖g̃k‖ we arrive at

−
M∆1−q

k

‖g̃k‖
+ 1 ≤ ηk

∆k‖g̃k‖
≤ 1 +

m∆1−q
k

‖g̃k‖
.

From this, Lemma 3.1, (33), and q ∈ (0, 1/2),

ηk
∆k‖g̃k‖

→ 1.

From this and Assumption 3.1, and again using (33) and q ∈ (0, 1/2),

∆2
k

ηk
Bk =

∆k‖g̃k‖
ηk

Bk∆k

‖g̃k‖
→ 0.

Finally taking into account (38), it results that Dk → I as k → ∞, and the proof
is complete.

The proof that the Clarke generalized derivative is nonnegative along limiting
trust-region steps is verbatim the one of Lemma 2.2.

Lemma 3.2. Assume that f is bounded from below. Let Assumption 3.1 hold. Let
{(xk, sk,∆k)} be a sequence generated by Algorithm Advanced DFO-TRNS. Let L ⊆
K = {k : ∆k+1 < ∆k} be an index set such that

lim
k∈L,k→∞

xk = x∗ and

lim
k∈L,k→∞

sk
‖sk‖

= s∗.

Then f◦(x∗; s∗) ≥ 0.

The final global convergence is given below. Its proof follows the main argument
of the proof of Theorem 2.3.

Theorem 3.3. Assume that f is bounded from below. Let Assumption 3.1 hold.
Let Algorithm Advanced DFO-TRNS satisfy Property 3.1. Let x∗ be any limit point of
{xk} and K ⊆ {k : ∆k+1 < ∆k} be a subset of indices such that

lim
k∈K,k→∞

xk = x∗.

If the subsequence {gk}K is dense in the unit sphere, then x∗ is stationary for
problem (1).

Proof. We proceed by contradiction and assume that x∗ is not stationary for prob-
lem (1). Then we know that a direction ḡ exists such that ‖ḡ‖ = 1 and f◦(x∗;−ḡ) < 0.
Since {gk}K is dense in the unit sphere, we can extract a subset of iteration in-
dices, which we call again K, such that (15)–(17) hold. Property 3.1 assures that
sk = −∆kDkg̃k/‖g̃k‖ with Dk → I.

Considering the definitions of β̃ik given in (24) and (25), we can write the expres-
sion of the constraints in model (28) as follows:

(gi)
>s− β̄ik −∆

1/2
k ≤ α− f(xk) for all i ∈ Ik, gi 6= gk,(39)

(gk)>s− β̄kk ≤ α− f(xk).(40)
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Now, taking into account (20) and (22), the Lipschitz continuity of function f , and
the inequalities given in (32), we conclude that there exists a constant c > 0 such that

β̄ik ≤ c∆k ∀i ∈ Ik.

This inequality, β̄ik ≥ 0, and the constraint ‖s‖ ≤ ∆k allow us to give, for k
sufficiently large, an upper bound to the left-hand side of constraints (39) and a lower
bound to the left-hand side of constraint (40). In particular, for k sufficiently large,
there exist 0 < θ1 < θ2 < 1 such that (recall that the g’s have norm 1)

(gi)
>s− β̄ik −∆

1/2
k ≤ ∆k −∆

1/2
k ≤ −θ2∆

1/2
k for all i ∈ Ik, gi 6= gk,

(gk)>s− β̄kk ≥ −(1 + c)∆k ≥ −θ1∆
1/2
k .

Thus, for k sufficiently large, we conclude that the constraints (39) are not active and
that the only active constraint is the one related to gk, namely, constraint (40). This
implies, by taking into account the necessary conditions in (29), that

λik = 0 for all i ∈ Ik, i 6= k,

λkk = 1.

We have thus g̃k = gk for k sufficiently large, and Property 3.1 ensures sk = −∆kDkgk
with Dk → I, and hence

lim
k∈K,k→∞

sk
‖sk‖

= −ḡ.

Then, by Proposition 3.1, we have that f◦(x∗;−ḡ) ≥ 0, which is a contradiction, and
the proof is concluded.

Remark 3.1. It becomes evident from the proof of Theorem 3.3 that Property 3.1
is not really needed after all, but rather Property 2.1 for k sufficiently large. However,
Property 3.1 is the foundational one for the advanced algorithm, and it allows us to
consider scenarios where the density of the directions can be guaranteed for g̃k instead
of for gk.

4. Implementation and numerical results. In this section we report numer-
ical results obtained by our Basic and Advanced DFO-TRNS algorithms and compare
them against the performance of NOMAD version 3.8.1 [1, 31], a state-of-the-art soft-
ware for nonsmooth derivative-free optimization. NOMAD has been run using its
default parameter settings. The performance of the different solvers was assessed
on 51 well-known nonsmooth unconstrained problems with dimensions between 10
and 30 variables. The complete problem list with the corresponding references is re-
ported in Table 1. We notice that our benchmark includes some composite nonsmooth
problems with specific structure (e.g., the outer function is the max operator or the
`1 norm) and more general nonsmooth problems constructed either by chaining and
extending existing nonsmooth problems or by including some nonsmoothness in
existing smooth problems (e.g., by replacing a variable xi with |xi|).

We ran all versions of the tested solvers giving a budget of 10000 function evalu-
ations. Such a number of function evaluations seems a reasonable choice in practice
given the nonsmoothness and the dimensions of the problems.

Performance of different derivative-free solvers on different problems can be ana-
lyzed using data and performance profiles [36]. Specifically, let S be a set of solvers
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Table 1
Problems used in the numerical experiments.

Name Dimension Reference
wong2 10 [34]
polak2 10 [34]
maxquad 10 [34]
gill 10 [34]
maxq {10,20,30} [23]
l1hilb {10,20,30} [23]
lq {10,20,30} [23]
cb3 {10,20,30} [23]
cb32 {10,20,30} [23]
af {10,20,30} [23]
brown {10,20,30} [23]
mifflin2 {10,20,30} [23]
crescent {10,20,30} [23]
crescent2 {10,20,30} [23]
polak3 11 [34]
osborne2 11 [34]
steiner2 12 [34]
shelldual 15 [34]
wong3 20 [34]
maxl 20 [34]
maxql 20 [34]
watson 20 [34]
wild1 20 [36]
wild2 20 [36]
wild3 20 [36]
wild19 20 [36]
wild11 20 [36]
wild16 20 [36]
wild20 20 [36]
wild15 20 [36]
wild21 20 [36]

and P a set of problems. For each s ∈ S and p ∈ P , let tp,s be the number of function
evaluations required by solver s on problem p to satisfy the condition

f(xk) ≤ fL + τ(f(x0)− fL),

where 0 < τ < 1 and fL is the best objective function value achieved by any solver
in S on problem p. Then, performance and data profiles of solver s are the following
functions:

ρs(α) =
1

|P |

∣∣∣∣{p ∈ P :
tp,s

min{tp,s′ : s′ ∈ S}
≤ α

}∣∣∣∣ ,
ds(κ) =

1

|P |
|{p ∈ P : tp,s ≤ κ(np + 1)}| ,

where np is the dimension of problem p. Comparisons were carried out for values of
the tolerance parameter τ in {10−3, 10−5, 10−6}.

The practical implementation of DFO-TRNS makes use of a quadratic term 1
2s
>Bks.

In turn, building Bk requires maintaining a sample set, say, Yk. Here we followed the
smooth derivative-free trust-region approach of [5, section 5], where Bk is built out
of minimum Frobenius norm models using a sample set that starts by 2n + 1 points
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x0, x0 + ∆0ei, x0−∆0ei, where ei is the ith column of the identity matrix of order n.
At each iteration, the trial point xk + sk is added to the sample set until it reaches a
cardinality of (n + 1)(n + 2)/2, after which the sample point farthest away from the
new iterate is discarded to give room to the new one.

It is this very same sample set that is normally used to build the max-linear
terms of our nonsmooth trust-region models in Advanced DFO-TRNS, except for the
following modification. If the points in the sample set Yk are too close to the current
best point, more specifically, if the cardinality of the set{

y ∈ Yk : ‖y − xk‖ ≤ ∆̃k, ‖y − xk‖ > 10−7
}

with ∆̃k = min{∆k, 10} is less than 2, we then define a completely new set

Yk = {yi = xk + di, i = 1, . . . , p} ∪ {xk},

where p = max{3, n/3} and di ∈ Rn are vectors with ‖di‖ = ∆̃k/2 generated by
suitably scaling the vectors of the pseudorandom Halton sequence [20].

Moreover, in the practical implementation of our algorithms, we have included a
weight 0 ≤ ω ≤ 1 in the quadratic term of the models; that is, we replaced 1

2s
>Bks

with ω
2 s
>Bks in problems (2) and (27). In such a way, the users of our solver can

tune it to the degree of nonsmoothness of their problems. The other parameters of our
method were set to the following values: η1 = 10−8, γ1 = 1/10, γ2 = 10/9, ∆0 = 1,
p = 0.1, and θ = 10−3. Furthermore, in the displacements βijk reported in (20), we
used a value of δ = 10−5.

As a preliminary test, we ran Basic DFO-TRNS using models without the quadratic
term (i.e., ω = 0) and we naturally compared it against NOMAD with the option
disable models. In this way we are comparing a trust-region approach that uses a
linear model with random first-order term against a directional-type direct-search
method with random directions in the poll step (and no search step included). In
Figure 5, we report performance and data profiles related to the comparison between
Basic DFO-TRNS with ω = 0.0 and NOMAD without models. As we can easily see,
our Basic DFO-TRNS solver yields good results when compared to NOMAD without
models, especially when the required tolerance is small enough.

In Figure 6, we report the profiles for Advanced DFO-TRNS when varying the
value of the ω parameter in ω

2 s
>Bks. It can be observed that reducing the value of

the parameter does not always improve the performance of the algorithm. The results
are comparable, but still the best result seems to be obtained when ω = 1, indicating
that the inclusion of a good level of smoothness in the models could lead to some
improvement in performance.

Another experiment is reported to highlight the importance of incorporating a
max-linear term in the trust-region models, i.e., the potential improvement obtained
when passing from the Basic to the Advanced DFO-TRNS algorithm. We report in
Figure 7 a comparison of these two versions for ω = 1 from where this improvement
is clearly visible.

Finally, we hence compare, in Figure 8, Advanced DFO-TRNS with ω = 1 and
NOMAD when this includes a search step consisting of the minimization of quadratic
models. The results seem to indicate that our trust-region approach is again compet-
itive with NOMAD, especially when the required tolerance is small enough.
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Fig. 5. Comparison between Basic DFO-TRNS with ω = 0.0 in ω
2
s>Bks and NOMAD without

models.
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Fig. 6. Comparison of Advanced DFO-TRNS versions with different ω in ω
2
s>Bks.

5. Conclusions. This paper developed for the first time a convergent trust-
region methodology for nonsmooth derivative-free optimization, when no information
whatsoever is available about the origin of the nonsmoothness of the objective func-
tion. The trust-region models considered are nonsmooth, of the max-linear type,
where each linear term in the max-linear model attempts to approximate an element
of the subdifferential in a nearby sampling point. A quadratic term can also be con-
sidered in the trust-region model for the purpose of improving numerical performance.
Interestingly, we have shown that the Hessian matrix of this quadratic term can be
unbounded as long as it does not go to infinity faster than the inverse of a negative
power of the trust-region radius.
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Fig. 7. Comparison between Basic and Advanced DFO-TRNS with ω = 1 in ω
2
s>Bks.
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Fig. 8. Comparison between Advanced DFO-TRNS with ω = 1 in ω
2
s>Bks and NOMAD with

models.

A number of open future questions deserve attention. The most pressing issue is
the development of a derivative-free trust-region solver capable of dealing well with
large problems. In fact, quadratic interpolation/regression models or similar require
significant storage and linear algebra effort, as the model Hessians are typically dense.
Other generalizations include the extension to the constrained case, in particular to
linear constraints, and to stochastic objective functions. But there are also some
interesting open questions related to the analysis presented in this paper. It would
be pertinent to study what can be said when the objective function is itself of the
max-linear type. Another question is related to the development of a convergence
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rate, which does not seem likely to be observed when the directions are densely gen-
erated in the unit sphere, but still it would be interesting to derive some quantitative
probabilistic argument on the rate of progress.
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[35] M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optim. Methods Softw.,
17 (2002), pp. 1–29.
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