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Abstract: The response of very small glaciers to climate changes is highly scattered and little known
in comparison with larger ice bodies. In particular, small avalanche-fed and debris-covered glaciers
lack mass balance series of sufficient length. In this paper we present 13 years of high-resolution
observations over the Occidentale del Montasio Glacier, collected using Airborne Laser Scanning,
Terrestrial Laser Scanning, and Structure from Motion Multi-View Stereo techniques for monitoring
its geodetic mass balance and surface dynamics. The results have been analyzed jointly with
meteorological variables, and compared to a sample of “reference” glaciers for the European Alps.
From 2006 to 2019 the mass balance showed high interannual variability and an average rate much
closer to zero than the average of the Alpine reference glaciers (−0.09 vs. −1.42 m water equivalent
per year, respectively). This behavior can be explained by the high correlation between annual
balance and solid precipitation, which displayed recent peaks. The air temperature is not significantly
correlated with the mass balance, which is main controlled by avalanche activity, shadowing and
debris cover. However, its rapid increase is progressively reducing the fraction of solid precipitation,
and increasing the length of the ablation season.

Keywords: glacier mass balance; glacier dynamics; very small glaciers; debris-covered glaciers;
climate change; geodetic method; Structure from Motion (SfM); Terrestrial Laser Scanning (TLS)

1. Introduction

In mid- and low-latitude alpine ranges, very-small glaciers (<0.5 km2) account for 80–90% of the
total glacier number [1–3]. Their response to the current atmospheric warming is highly scattered in
comparison with larger glaciers [4–9], because the influence of local topo-climatic factors tends to be
greater during times of warmer climate [10,11] and with decreasing glacier size [12–14]. For the same
reason, and owing to the lack of long enough observation series, their current behavior and response
mechanisms are still little known and deserve investigation.
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Small perennial ice bodies located hundreds of meters below the regional Equilibrium Line
Altitude (ELA) are a common feature in mountain regions characterized by steep rock walls, such as
the Dolomites, in the Eastern Italian Alps. These ice bodies were generated by large amounts of snow
deposited at the base of rock walls by avalanches, leading to conspicuous net accumulation in the past
centuries and decades, and generating perennial ice bodies that still persist today. In addition to snow,
the rock walls release debris that are entrained in these ice bodies and tend to accumulate over their
surface when/where ablation prevails over accumulation [15,16]. The direct consequence of this is the
build-up of a debris cover that is generally thickest towards the front, and which tends to expand and
thicken in periods of negative mass balance.

The mass balance of these ice bodies is highly variable in space, due to the existence of strong
lateral gradients of accumulation and ablation, caused by an uneven deposition of avalanche snow,
thickness of debris cover, and terrain shadowing. There is also a considerable inter-annual variability
in mass balance, which is generally affected by winter precipitation, but is also controlled by the
widening or shrinking of the firn area and of the debris-covered area. For example, Carturan et al.
(2013) [17] highlighted how the mass balance sensitivity to temperature fluctuations of the Occidentale
del Montasio Glacier (Julian Alps, Eastern Italian Alps) is closely related to the extent of firn and
debris-covered areas, subject to rapid year-to-year modifications.

General assumptions concerning ELA or Accumulation Area Ratio (AAR) relationships with
mass balance are not valid in these environments. In particular, the balanced-budget AAR can be
considerably lower than 0.5–0.6, which is the range normally assumed to be valid for non-calving
and non-tropical glaciers [18–20]. In addition, the evolution of these ice bodies is also frequently
influenced by their interaction with paraglacial and periglacial processes. In particular, when the
local topo-climatic conditions are favorable, there is a tendency for glacier remnants to evolve under
permafrost conditions and generate rock glaciers [21] or glacial-permafrost composite landforms [22,23].

The overlap of different processes and feedbacks (e.g., the albedo and debris cover), combined
with the peculiar response to atmospheric changes and the impossibility of using “traditional” field
techniques (e.g., the glaciological method) make it difficult to study and outline the evolution of these
small glaciers, even in the near future. Overall, the existing literature suggests that they have a lower
sensitivity to air temperature fluctuations, and a higher sensitivity to precipitation variability, compared
to glaciers and glacierets unaffected by a large accumulation of avalanched snow and debris [17,24–26].
However, there is the need for improved process-oriented studies at key selected sites, which require
observation series of sufficient length and detail.

New opportunities have emerged in the last two decades enabling high-frequency and
high-resolution topographic surveys in areas that are otherwise inaccessible, or too dangerous
to be surveyed using traditional field techniques. These opportunities are represented by the
fast-evolving field of High-Resolution Topography (HRT) techniques. Among these techniques,
terrestrial and airborne laser scanning (TLS and ALS) and Structure from Motion Multi-View Stereo
(SfM-MVS, hereafter SfM) have proven to be effective and flexible, at various spatial and temporal
scales [27,28] revolutionizing digital elevation models (DEMs) resolution [29,30] and data acquisition
in mountain cryosphere investigations [23,31,32]. In particular, SfM has evolved into a valuable, safe,
and cost-efficient technique to derive annual geodetic mass changes of small glaciers of similar quality
compared to TLS or ALS techniques [32,33]. Moreover, terrestrial and aerial SfM surveys can be
combined to overcome the main limits of both techniques [34]. In fact, the terrestrial approach can
provide an accurate representation of complex surfaces [35] but its use is limited to small areas and it
may poorly represent a homogeneous terrain. On the contrary, aerial surveys (e.g., using Unmanned
Aerial Veicles—UAV) can cover wide areas quickly [36], but aerial-derived DEMs are not optimal in
cases of steep or vertical terrains [37].

In this work, we present the results of a 13-year time series of high-resolution observations carried
out on the Occidentale del Montasio Glacier, in the period from 2006 to 2019. The investigations
were aimed at studying the behavior and climatic response of small glaciers fed by avalanches and
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covered by debris in their ablation area, in the context of Alpine glacier mass balance observations.
The geodetic mass balance, surface dynamics and morphological adjustment have been determined by
comparing multi-temporal sub-meter resolution DEMs surveyed by means of ALS, TLS, and ground-
and UAV-based SfM techniques.

2. The Occidentale del Montasio Glacier

The Occidentale del Montasio Glacier (called the “Montasio Glacier” hereinafter) is inventoried as
IT4L00003005 in the World Glacier Inventory-WGI [38,39]. It is located in the Eastern European Alps
(Italian Julian Alps), close to the border with Austria and Slovenia (Figure 1), where it lies at the base of
the vertical northern walls of the Mount Jôf di Montasio (2754 m a.s.l.). It covers an area of 0.066 km2

(length 350 m; maximum width 280 m) and it is the lowermost Italian glacier (elevation ranging from
1860 to 2050 m a.s.l., median elevation at 1900 m a.s.l. and mean elevation at 1910 m a.s.l.).Water 2020, 12, x FOR PEER REVIEW 4 of 23 

 

 
Figure 1. (a) Geographic setting of the Montasio Glacier and of the weather stations in the study area; 
(b) glacier topography over the shaded relief map of the high-resolution 2019 SfM survey; (c) monthly 
temperature and precipitation climatology in the period from 1960 to 2009 at the Pontebba weather 
station; (d) photo of the glacier and northern walls of the Mount Jôf di Montasio (Photo F. Cazorzi, 16 
August 2012). 

Figure 1. (a) Geographic setting of the Montasio Glacier and of the weather stations in the study area;
(b) glacier topography over the shaded relief map of the high-resolution 2019 SfM survey; (c) monthly
temperature and precipitation climatology in the period from 1960 to 2009 at the Pontebba weather
station; (d) photo of the glacier and northern walls of the Mount Jôf di Montasio (Photo F. Cazorzi,
16 August 2012).

The glacier is characterized by a steep cone-shaped accumulation area, which is mainly nourished
by winter avalanches, whereas the ablation area consists of a more gently sloped surface, entirely
covered by a debris layer (Figure 2). The terminus is delimited by a moraine complex composed
of juxtaposed ridges, built in different periods. The oldest ridge is dated to the Little Ice Age (LIA)
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maximum glacier expansion, whereas its inner ridges have been attributed to the beginning of the 20th
century [17].Water 2020, 12, x FOR PEER REVIEW 5 of 23 

 

 
Figure 2. Photos of the Montasio Glacier taken from 2006 to 2019 at the end of the ablation season. 
Colored dots indicate reference points visible on the rock walls; the black line indicates the upper 
edge of the glacier. 
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half of September or in October (Table 1). Topographic data were acquired using TLS from 2010 to 
2013, and SfM from 2014 to 2019. The two techniques were applied jointly in 2012 and 2013 for 
evaluating and confirming their interchangeability [32]. 

The TLS surveys were performed using a Riegl LMS-Z620 from two scan positions located over 
the LIA terminal moraine as reported in Carturan et al. (2013) and in Piermattei et al. (2015) [17,32]. 
A GNSS (Global Navigation Satellite System) network has been set up with dual-frequency 
GPS/GLONASS receivers (Topcon HiPer PRO—Topcon Positioning Italy Srl, Ancona, Italy) to geo-
reference the TLS surveys in the WGS84/UTM zone 33N (EPSG: 32633) reference system. 

Photogrammetric survey methods evolved over the years, as well as cameras and GNSS used in 
surveys, in order to increase both the survey’s quality and efficiency. The ground-based SfM surveys 
have been integrated with UAV aerial surveys since 2017 (Table 1). The georeferentiation and scaling 
of SfM models were based exclusively on natural targets identified from a TLS point cloud [32], and 
located over stable areas outside the glacier. In addition to these, artificial Ground Control Points 
(GCPs) were positioned on the glacier surface and surveyed using GNSS (Leica Zeno20) since 2017. 

In order to extend the observation period before 2010, we included the ALS regional survey 
performed in September 2006 and made available by the Civil Protection Department of the Friuli 
Venezia Giulia Region. 

Figure 2. Photos of the Montasio Glacier taken from 2006 to 2019 at the end of the ablation season.
Colored dots indicate reference points visible on the rock walls; the black line indicates the upper edge
of the glacier.

A geophysical survey conducted in September 2010 pointed out that the average ice thickness
along a longitudinal and a lower-transverse profile were 15 m and 8.5 m, respectively, with maximum
values of 22–24 m in the middle area [17]. The survey showed a heterogeneous layer composed by
glacier ice, clasts, till, and flowing melt water at the glacier bed, and an average thickness of ~2.5 m of
the debris layer in the lower half of the glacier.

The 1960–2009 climatology at the Pontebba weather station (561 m a.s.l., 12 km north-east of the
glacier) is characterized by a mean annual temperature of 9.9 ◦C. The coldest month is January with
a mean temperature of −0.5 ◦C, and the warmest month is July with a mean temperature of 19.1 ◦C.
At the glacier’s mean elevation, the annual temperature is 1.6 ◦C. The mean annual precipitation is
1814 mm, with a monthly regime that shows a distinct winter minimum in February (75 mm) and a
maximum in November (213 mm, Figure 1).

3. Methods

The mass balance and dynamics of the Montasio Glacier were investigated by means of
high-resolution topographic surveys, performed on the glacier and its surroundings over a period
from 2006 to 2019. The results have been successively analyzed in comparison with time series of
meteorological variables related to glacier mass balance.

3.1. Topographic Surveys

3.1.1. Data Acquisition

Topographic surveys were performed at annual intervals from 2010 to 2019, during the second
half of September or in October (Table 1). Topographic data were acquired using TLS from 2010 to 2013,
and SfM from 2014 to 2019. The two techniques were applied jointly in 2012 and 2013 for evaluating
and confirming their interchangeability [32].
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Table 1. Main characteristics of topographic surveys used in this study. Survey technology: ALS
= Aerial Laser Scanning, TLS = Terrestrial Laser Scanning, SfM = Structure from Motion. Platform:
T = terrestrial, A = aerial. Camera type: C = Canon EOS 5D Mark III, N = NIKON D5100, S = Sony
Alpha 5000.

Year 2006 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Date 13/09 23/09 29/09 05/10 26/09 26/10 20/10 04/10 10/10 03/10 01/10
Technology ALS TLS TLS TLS TLS SfM SfM SfM SfM SfM SfM

Platform A T T T T T T T T-A T-A T-A
Camera - - - - - C N N S S S

DEM resolution (m) 1.00 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

The TLS surveys were performed using a Riegl LMS-Z620 from two scan positions located over the
LIA terminal moraine as reported in Carturan et al. (2013) and in Piermattei et al. (2015) [17,32]. A GNSS
(Global Navigation Satellite System) network has been set up with dual-frequency GPS/GLONASS
receivers (Topcon HiPer PRO—Topcon Positioning Italy Srl, Ancona, Italy) to geo-reference the TLS
surveys in the WGS84/UTM zone 33N (EPSG: 32633) reference system.

Photogrammetric survey methods evolved over the years, as well as cameras and GNSS used
in surveys, in order to increase both the survey’s quality and efficiency. The ground-based SfM
surveys have been integrated with UAV aerial surveys since 2017 (Table 1). The georeferentiation and
scaling of SfM models were based exclusively on natural targets identified from a TLS point cloud [32],
and located over stable areas outside the glacier. In addition to these, artificial Ground Control Points
(GCPs) were positioned on the glacier surface and surveyed using GNSS (Leica Zeno20) since 2017.

In order to extend the observation period before 2010, we included the ALS regional survey
performed in September 2006 and made available by the Civil Protection Department of the Friuli
Venezia Giulia Region.

3.1.2. Data Processing and DEM Generation

The raw point clouds collected with TLS were processed using the RiSCAN PRO (Riegl) and
ArcGIS (ESRI) software in order to obtain georeferenced point clouds, which had a point density
ranging between 50 and 60 pts m−2.

The 2006 ALS point cloud had a significantly lower point density (1.63 pts m−2 on average)
because it was acquired from an aerial platform located at a high distance above the glacier. We
co-registered the ALS point cloud to the 2013 TLS point cloud, to optimize accuracy in glacier-change
detection. We selected the 2013 TLS survey as a reference, among the four acquired using TLS, because
of its highest quality. Stable areas outside the glacier were used as benchmarks for co-registration,
which was carried out using the GRD-CoReg free software [40].

The SfM surveys were processed using the computer vision-based software PhotoScan
(v. 1.4.3.6488 [41]–Agisoft LLC, St. Petersburg, Russia). The workflow for the generation of the
dense point clouds is described in detail in [32,33,36]. The generated point clouds had a mean density
of 100 pts m−2 and were co-registered to stable areas outside the glacier in the 2013 TLS survey, using
the Iterative Closest Point (ICP) algorithm implemented in the OPALS software [42]. Co-registration
was required to minimize the residual misalignment between point clouds generated in PhotoScan.

Each ALS, TLS, and SfM point cloud was then converted to a Triangular Irregular Network (TIN)
in ArcGIS, and finally transformed into DEMs with 0.2 m spatial resolution. Due to the lower point
density, the 2006 ALS point cloud was transformed into a DEM with 1 m spatial resolution.

3.2. Mass Balance Measurements and Calculations

The geodetic mass balance was calculated annually differencing DEMs, and accounting for areal
variations in glacier extent and different substrata (residual snow, firn, debris-covered ice). Owing
to the ample interannual variations in the spatial coverage of these substrata, we could not assume
an unchanged density structure of the glacier among consecutive surveys (i.e., Sorge’s law [43]) as
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previously done by Carturan et al. (2013) [17] for the 2010–2011 balance year. Instead, we calculated
an area-weighted mean density based on the spatial extent of different substrata, which was used for
converting elevation changes obtained from DEMs into depths of water equivalent. In weighted mean
density calculations, we used 0.650 kg m−3 for residual snow and 0.700 kg m−3 for firn, as obtained
from direct snow pit measurements. We assigned a density of 0.900 kg m−3 to the debris-covered ice.

The annual extent of the substrata was mapped manually using oblique terrestrial and UAV
photos, hill-shaded DEMs and DoDs (DEM of Differences). In the upper, debris-free area, the glacier
perimeter was updated annually in a similar manner, whereas it was assumed to be unchanged in the
lower part, due to the thick layer of debris that prevents the recognition of short-term fluctuations in
glacier margins.

The AAR has been estimated as the ratio between the area covered by residual snow at the end
of the ablation season and the total glacier area. It was not possible to calculate the ELA because the
geodetic method does not provide the mass balance variation as a function of altitude, and therefore it
was not possible to assess the mean elevation corresponding with zero mass balance.

3.3. Glacier Dynamics

Vertical and horizontal displacement rates were estimated using hill-shaded DEMs collected in
2010, 2013, 2017, and 2019, which were selected due to their highest quality among all the available
surveys. The horizontal displacement was assessed by visual recognition of selected features in the
debris-covered area of the glacier.

Horizontal displacement rates in meters per year were calculated using the formula reported in
Ai et al. (2019) [44]:

Hh = 365.25

√
(xe − xi)

2 + (ye − yi)
2

∆t
(1)

where xi and yi are the coordinates of the first observation, xe and ye are the coordinates of the second
observation, and ∆t is the time span in days intercurred.

Vertical displacement rates in meters per year were calculated as:

Vh = 365.25
dZ− dZexp

∆t
(2)

where dZ is the total elevation change between the two surveys (ze−zi) and dZexp is the expected vertical
movements calculated based on mean slope angle (for a schematic representation of the displacement
components see Bosson and Lambiel (2016) [22]). The mean slope angle was calculated for each
investigated point using the initial DEM and averaging the slope within a radius of 5 m. Similarly,
the initial mean elevation (zi) and ending mean elevation (ze) were estimated averaging the DEM
elevation with a radius of 5 m.

3.4. Meteorological Data Series

The meteorological conditions in the analyzed period were compared to longer time series of
meteorological variables related to glacier mass balance, for calculating anomalies and highlighting
possible long-term trends. We analyzed air temperature, precipitation, and fraction of solid precipitation
(i.e., the nivometric coefficient) in the ablation (May to October) and the accumulation (November to
April) seasons, comparing the period from 2010 to 2019 with the 1960–2009 climatology.

Series of air temperature and precipitation data at the weather station of Pontebba (Figure 1) were
used in the analyses. We used this station because of its proximity to the Montasio Glacier, and for the
high-quality and length of meteorological records. Calculations of monthly and seasonal data started
mainly from daily measurements; hourly measurements have been used when available (Table 2).
Quality check, homogenization, and gap-filling required the use of data from several other stations,
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listed in Table 2. The procedures used are in line with the guidelines from the World Meteorological
Organization [45] and are detailed in Baldassi (2010) [46].

The obtained daily temperatures have been extrapolated at the mean elevation of the Montasio
Glacier (1910 m a.s.l.), using monthly variable vertical gradients calculated over the period from 1999
to 2010 between the Pontebba and Lussari weather stations. The extrapolated temperature served for
discriminating between liquid and solid precipitation (daily threshold temperature = 2 ◦C), required
for the estimation of the nivometric coefficient at the glacier’s mean elevation. We decided to avoid
extrapolating precipitation in a way similar to air temperature, because the study area is affected
by large horizontal and vertical gradients [47], which would require high-quality measurements of
(gauge-corrected) precipitation at high elevation for their estimation. Because these measurements are
not available, we assumed that quality-checked precipitation data at low altitude are more suitable for
our analyses than extrapolations subject to a high uncertainty.

Table 2. Characteristics of the weather stations and meteorological data used in this study.

Station Name Provider
Institution 1

Measured
Variable 2

Frequency 3

(Technique 4)
Working Period Elevationm (a.s.l.)

Saletto (Chiusaforte) RMR T, P H(A) 2003– 506
Saletto SIMN Tx, Tn D(M) 1919–2013 507
Saletto SIMN P D(M) 1938–2013 507

Pontebba SIMN Tx, Tn D(M) 1915–2013 561
Pontebba SIMN P D(M) 1926–2013 561
Pontebba RMR T, P H(A) 2003– 568
Innsbruck ZAMG T, P D 1877–2004 577

Malborghetto SIMN Tx, Tn D(M) 1986–2013 720
Malborghetto SIMN P D(M) 1921–2013 720
Malborghetto RMR T, P H(A) 2004– 733

Tarvisio RMR T, P H(A) 1999– 794
Ratece Planica ECA&D T, P D 1961–2013 864
Cave del Predil RMR T, P H(A) 2006– 900
Cave del Predil SIMN Tx, Tn D(M) 1948–2013 904
Cave del Predil SIMN P D(M) 1923–2013 904

Lussari RMR T, P H(A) 1999–2017 1760
1 Provider institutions: SIMN = Servizio Idrografico e Mareografico Nazionale; RMR = Rete Meteorologica
Regionale Friuli Venezia Giulia; ZAMG = Zentralanstalt für Meteorologie und Geodynamik; ECA&D = European
Climate Assessment and Dataset) [48,49]. 2 Measured variables: T = air temperature, Tx = maximum temperature,
Tn = minimum temperature, P = rainfall. 3 Frequency: D = daily, H = hourly. 4 Technique: M = manual,
A = automatic.

4. Results

4.1. Elevation Change and Mass Balance

The Montasio Glacier experienced significant interannual variability in surface elevation and mass
balance in the period from 2006 to 2019. The middle and upper parts of the glacier showed the largest
variability whereas the lower part, covered by thick debris, underwent smaller changes (Figure 3).
Conditions favoring thickening prevailed from 2006 to 2014 (Table 3, Figure 4), with a cumulated
average elevation change of +4.38 m, which corresponds to a mass balance rate of +0.42 m w.e. year−1.
Thinning became dominant after 2014, with a mass balance rate averaging −0.92 m w.e. year−1 from
2015 to 2019 and a cumulated average elevation change of −5.84 m. If the entire period from 2006 to
2019 is considered, the average mass balance rate of the Montasio Glacier was −0.07 m w.e. year−1.
The Montasio Glacier was much closer to balanced-budget conditions than the nine “reference glaciers”
of the European Alps (Sarennes, Saint Sorlin, Gries, Silvretta, Hintereis, Kesselwand, Vernagt, Careser
and Sonnblick, WGMS [50,51]), whose mass balance rate averaged −1.42 m w.e. year−1 in the same
period (Table 3).
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Table 3. Comparison of annual balances and Accumulation Area Ratios (AARs) measured on the
Montasio Glacier with the geodetic method, and on nine alpine reference glaciers (Sarennes, Saint Sorlin,
Gries, Silvretta, Hintereis, Kesselwand, Vernagt, Careser, and Sonnblick) with the glaciological method.
The mass balance data for the reference glaciers have been retrieved from Zemp et al. (2020) [50], unless
otherwise specified.

Montasio Occidentale Glacier (Geodetic Balance) Alpine Reference Glaciers (Glaciological Balance)

Period 1 Annual Balance
(m w.e. Year−1)

Error
(m w.e. Year−1)

AAR Annual Balance
(m w.e. Year−1)

Standard Deviation
(m w.e. Year−1)

AAR
(Observations)

2006–2010 0.52 0.05 / −1.32 0.65
2010–2011 −0.25 0.09 0.22 −2.01 1.08 0.11 (7)
2011–2012 −2.18 0.10 0.00 −1.76 0.68 0.08 (7)
2012–2013 0.50 0.05 0.41 −0.55 0.50 0.44 (7)
2013–2014 3.18 0.08 0.74 −0.50 0.78 0.52 (7)
2014–2015 −3.96 0.34 0.00 −2.12 0.80 0.07 (7)
2015–2016 0.40 0.38 0.19 −1.06 0.42 0.20 (7)
2016–2017 −0.64 0.13 0.02 −2.04 0.69 0.04 (7) 2

2017–2018 0.46 0.10 0.36 −1.77 0.28 2,3 0.08 (5) 2,4,5,6

2018–2019 −0.83 0.11 0.02 −1.37 1.00 2,3 0.25 (5) 2,4,5,6

2006–2019 −0.07 0.01 / −1.42 0.62 /

1 Annual average values are reported on multi-year periods. 2 Sonnblickkees data were kindly provided by
B. Zagel [52]. 3 Saint Sorlin Glacier data have been downloaded from the GLACIOCLIM website [53]. 4 Vernagtferner
data have been downloaded from the Bayerische Akademie der Wissenschaften website [54]. 5 Hintereis ferner and
Kesselwandferner data from Rotach M. and Prinz R. (2019) [55]. 6 Careser Glacier data from Baroni et al. (2019) [56].
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The large interannual variability in elevation change and mass balance was mostly related to
the amount and extent of the snow cover at the end of the ablation season. In favorable years,
the middle and upper parts of the glacier developed a snow and firn cover that was several meters thick
(Figures 2 and 3); on the contrary, in unfavorable years, the winter snow vanished almost completely,
and the firn of previous years was rapidly melted or buried by debris. The AAR was strongly related
to mass balance (r = 0.94 considering years with AAR > 0.05). From the linear regression between
AAR and mass balance, we can estimate a balanced-budget AAR0 close to 0.30. Coherent with mass
balance behavior, the firn-covered area expanded between 2006 and 2014, and considerably shrunk
afterwards (Figures 3 and 5). The year-to-year variability in mass balance was directly proportional to
the extent of the firn area.Water 2020, 12, x FOR PEER REVIEW 11 of 23 

 

 
Figure 5. Spatial extent of substrata covering the Montasio Glacier at the end of the ablation season in 
three different years: (a) 2006, (b) 2010, and (c) 2019. 

 
Figure 6. Elevation change cumulated in the period from 2006 to 2019 on the Montasio Glacier. The 
letters represent areas described in Section 4.1. 

Figure 5. Spatial extent of substrata covering the Montasio Glacier at the end of the ablation season in
three different years: (a) 2006, (b) 2010, and (c) 2019.

Compared to annual changes (Figure 3), the spatial pattern of the cumulated elevation changes
from 2006 to 2019 (Figure 6) looks less dependent on snow and firn cover, and more related to the
deposition and spatial reworking of the debris cover. In particular, there are small thickening areas
(“a” in Figure 6) that correspond to debris flow deposits in the middle and lower parts of the glacier,
and a larger thickening area (b) in the middle-upper part, which is the deposit of a landslide fallen on
the glacier in 2016. The areas where surface lowering is homogeneous indicate snow and firn melt
(c) or ice melt below a thick debris cover (d) in the lower zone; areas showing inhomogeneous lowering
represent gully erosion (e), and small sinkholes (f).
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4.2. Glacier Dynamics

The horizontal surface displacement mapped in the period from 2010 to 2019 shows a divergent
pattern (Figure 7) that confirms the findings of Carturan et al. (2013) [17]. The movement indicates
internal deformation and flow, rather than a mass movement, which, together with mass transfer
from the upper accumulation area to the lower ablation area, differentiates the Montasio Glacier from
glacierets or ice patches [57].

Horizontal velocities are lowest in the central part of the glacier front, were subsidence is highest
(Figure 7). The frontal moraine clearly represents an obstacle to glacier flow, which diverges and tends
to be conveyed laterally, towards breaches opened by water erosion at the eastern and western edges
of the moraine. Surface and bedrock slope are highest in the eastern part of the glacier front [17],
and therefore surface velocities are maximal in this part of the glacier, which is also characterized by
vertical displacements closer to zero.

Analyses focused in three different sub-periods indicate a tendency to deceleration, with decreasing
horizontal displacement (Figure 8). The slowdown was remarkable after 2017 in the western part,
which decelerated from 0.13 to 0.05 m year−1, whereas it was less significant in the eastern part. Vertical
velocities tended towards less negative values, particularly between 2013 and 2017 and in the eastern
part. In the last sub-period this tendency looks exhausting or even reversing.
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similar (those sharing a common letter) and statistically different (those not sharing a common letter)
according to the Wilcoxon test (p-values < 0.05).
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4.3. Meteorological Conditions

The long-term trend of the air temperature extrapolated with monthly gradients at the mean
elevation of the Montasio Glacier is clearly positive, both in the accumulation and ablation season
(Figure 9a). According to the Mann–Kendall test, the trend is highly significant (p < 0.001) and can be
quantified in 0.57 ◦C/decade for the ablation season, and 0.53 ◦C/decade for the accumulation season.
In the last decade the mean temperature in the ablation and accumulation season was 1.63 ◦C and
1.79 ◦C warmer than the 50-year mean, respectively (Table 4). We also point out that the ablation season
is currently about 3 ◦C warmer than it was in the period from 1960 to 1980, when glacier advance
occurred in the European Alps [58]. The warming trend began in the 1980s and looks to continue.
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Figure 9. Time series of: (a) mean temperature of accumulation and ablation seasons extrapolated at
the glacier’s mean elevation; (b) seasonal nivometric coefficient (NC) at the glacier’s mean elevation;
total precipitation amount of (c) accumulation season, and (d) ablation season, fractioned into solid
and liquid portions at the glacier’s mean elevation.

Table 4. Accumulation and ablation season temperature and precipitation in the 2010–2019 decade,
compared to the 50-year means. Rain and snow fractions of total precipitation are also compared.
Temperature is extrapolated at the mean elevation of the Montasio Glacier applying monthly-variable
gradients to the Pontebba weather station data. Precipitation data from the same station are not
extrapolated at the glacier’s elevation, but are partitioned into liquid and solid fractions using
extrapolated temperature.

Accumulation Season (November–April) Ablation Season (May–October)

1960–2009 2010–2019 2010–2019 Anomaly 1960–2009 2010–2019 2010–2019 Anomaly

Temperature (◦C) −3.89 −2.10 +1.79 6.60 8.23 +1.63
Precipitation (mm) 750 743 −1% 1072 1028 −4%

Rain (mm) 59 (8%) 146 (20%) +147% 808 (75%) 836 (81%) +3%
Snow (mm) 692 (92%) 597 (80%) −14% 263 (25%) 192 (19%) −27%

The total precipitation in the accumulation and ablation season does not display long-term trends.
This lack of trend can be appreciated visually from Figure 9c,d, and is confirmed by the Mann–Kendall
test, which indicates that trends are not significant (p > 0.05). Total precipitation during the warm
semester is 1072 mm on average, which is 42% larger than the average total precipitation amount
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during cold semesters. In the period analyzed in this work, winters with abundant snowfall (e.g., 2009,
2014, and 2018) alternated with winters with scarce precipitation (e.g., 2012, 2015, and 2016).

Remarkable consequences in the glacier’s mass balance are expected from increasing temperature,
not only for the augmented melt but also for the decreased fraction of solid precipitation (the so-called
nivometric coefficient, NC). As expected from temperature trends, both the accumulation and ablation
seasons show decreasing NCs, with statistically significant trends (p < 0.05). After a period of stability,
the NCs started to decrease in the early 1980s for the ablation season, and in the mid-1990s for
the accumulation season. The annual NC decreased from 52% to 45% comparing the two periods
1960–2009 and 2010–2019. The largest variations are observed in spring and autumn, with the months
of May, October, and November that have NCs already decreased, or just above, the 50% level
(Figure 10). This transition of solid towards liquid precipitation is causing a decrease in the length of the
accumulation season and a corresponding increase in the length of the ablation season. This transition
is even more remarkable if one considers that the most affected months correspond with the annual
maxima in precipitation.
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Figure 10. Comparison of the 2010–2019 average monthly Nivometric Coefficient (NC) calculated at
the glacier’s mean elevation with the 50-year average between 1960 and 2009.

5. Uncertainty Assessment

The accuracy of DEMs used in this work was assessed over stable areas in proximity to the
glacier, calculating elevation differences between individual DEMs and the reference 2013 TLS DEM
(Section 3.1.2). The mean of elevation differences ranges from −0.24 to +0.08 m, and averages −0.01
m. The standard deviation of elevation differences ranges from 0.04 to 0.38 m, with a mean value of
0.17 m (Table 5).

Table 5. Statistics of elevation differences calculated among individual DEMs and the reference 2013
TLS DEM over stable area in proximity to the glacier.

DEM (Year) Mean St Dev

2006 −0.01 0.31
2010 −0.24 0.04
2011 0.08 0.11
2012 0.04 0.06
2013 - -
2014 −0.09 0.10
2015 0.00 0.38
2016 0.02 0.18
2017 0.04 0.16
2018 0.06 0.15
2019 0.04 0.16

Mean −0.01 0.17

The accuracy in geodetic mass balance calculations was evaluated comparing pairs of consecutives
surveys, and was assessed over stable areas in proximity to the glacier, using the same procedure
described above for individual DEMs. The standard deviation of elevation differences ranges from 0.06
to 0.47 m, (mean value of 0.20 m), which, multiplied by the density used in mass balance calculations,
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yields a range between 0.05 and 0.38 m w.e. year−1 in geodetic mass balance calculations for single
years (mean value of 0.15 m w.e. year−1). The mean elevation difference in stable areas ranged between
−0.49 and +0.32 m (mean value of −0.01 m), and was removed from the raw elevation change calculated
in the glacier area, prior to mass balance calculations. The residual error is generally smaller than
0.10 m w.e. year−1 (Table 3), with the exception of the 2015 and 2016 mass balance years. The larger
error in these two years is due to the 2015 SfM DEM, which is affected by a higher uncertainty and
a lower spatial coverage caused by the presence of recent snow at the time of the SfM survey (Figure 2).

In this work we have compared mass balance results obtained using the geodetic and the
glaciological methods (Table 3, Figure 4). Even if the two methods can give rather different results
at the local scale [59], the geodetic method is widely used in glacier-wide reanalyses and validation
of mass balance series obtained with the glaciological method [60], and for assessments of glacier
mass balance at the regional or mountain-range scale [7,8,61,62]. Our comparison serves to highlight
possible macro differences between the response of the Montasio Glacier and the average response of
glaciers in the European Alps, which far outweigh discrepancies due to the measurement methods.

The uncertainty in surface velocities was estimated evaluating the residual displacement of test
points located on stable terrain outside the glacier. The residual errors in horizontal displacements
are 0.03, 0.04, and 0.07 m year−1 for the periods 2010–2013, 2013–2017, and 2017–2019, respectively.
Corresponding errors for the vertical component of displacements are −0.04, −0.04, and 0.05 m year−1.

The directional error looks random and not systematic (Figure 7), with the possible exception
of a small area of the frontal moraine, in contact with the glacier and possibly in active deformation
due to the melt out of its ice core. The surface displacement could not be assessed in the upper part
of the glacier, due to the presence of snow and firn and due to the absence of detectable features
(e.g., crevasses, seracs, and moulins).

The exact position of the lower margins of the glacier is hard to establish, because of the thick
debris mantle that covers the ablation area. For this reason, it is not possible to map the front
variations, even at the decadal time scale, and we decided to keep fixed the lower margin of the glacier
because there were no clear indications of advance or retreat. Moreover, the local morphology and the
latest DoDs (Figure 3) suggest that the glacier front is stationary. For the same reasons we avoided
analyzing changes in glacier area, which have been of minor importance and limited to the upper
accumulation area.

The homogeneity tests revealed that the temperature data series of Pontebba is of good quality,
with only two short inhomogeneous periods: The first between 1 June 1984 and 31 January 1987
(correction applied −0.70 ◦C), and the second between 1 January 2017 and 31 December 2019 (correction
applied +0.42 ◦C). The detected inhomogeneities in the precipitation series were smaller than
5%, and therefore we considered them negligible and assumed homogeneous the entire 60-year
period analyzed.

6. Discussion

The results of this study provide quantitative confirmation to our first observations on the current
peculiar behavior of the Montasio Glacier, and on the hypothesized relationship between atmospheric
changes and glacier response, based on preliminary investigations conducted between 2009 and
2011 [17]. The comparison with the sample of Alpine reference glaciers, in the period from 2006 to 2019,
clearly shows how the Montasio Glacier has been much less impacted by the present warm phase,
at least until now (Figure 4, Table 3). Even taking into consideration the possible underestimation of
alpine-wide mass balance using few reference glaciers [63], the mass loss rate of the Montasio Glacier
remains of an order of magnitude lower than the rate of −0.87 ± 0.07 m w.e. year−1 recently estimated
for all the glaciers in the Alps and Pyrenees, in the period from 2006 to 2016 [64].

In the highly scattered response of smaller glaciers to the climatic conditions of the last decades,
the Montasio Glacier likely stands among ice bodies that are closer to balanced-budget conditions,
taking advantage of a lower climatic sensitivity and/or negative feedbacks during deglaciation. Similar
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results showing an increasing control of local topography, and even a possible evolution towards
steady-state conditions, have been reported by Carrivick et al. (2015) [65] for the Eastern Alps, Colucci
(2016) [66] for the Julian Alps, and Scotti and Brardinoni (2018) [67] for the Val Viola in the Central Alps.
The possible survival of avalanche-fed glaciers at low elevation to substantial atmospheric warming
has been also suggested by Huss and Fischer (2016) [3], who modelled the climatic sensitivity of 1133
very small glaciers in the Swiss Alps. Outside the European Alps, similar results have been found,
for example, by Dahl and Nesje (1992) [68] in Western Norway, and Debeer and Sharp (2009) [13]
for the Canadian Rockies. Other studies have reported a contrasting behavior, with the smallest
glaciers showing the highest vulnerability e.g., [9,69–71]. However, these results are averaged over
a large number of small glaciers, with characteristics that are different from the Montasio Glacier.
Interesting results have been reported by Bhambri et al. (2011) [72], who documented low area loss
rates between 1968 and 2006 for glaciers having the lowest mean elevation in the Garhwal Himalaya,
India. This suggests that the same factors enabling glacier existence at low elevation (shadowing,
enhanced snow accumulation, debris cover, or their combinations) are possibly responsible of a smaller
imbalance in the analyzed period.

The presented series of annual balances, quite rare for this type of glaciers, is now sufficiently
long to investigate quantitatively the role of different climatic variables in the glacier’s mass balance.
The high variability of meteorological conditions in the investigated period (Figure 9) helped in this
regard. A Spearman’s correlation analysis between annual balance and annual/seasonal meteorological
variables (air temperature, total/liquid/solid precipitation, and NCs), suggests that the annual amount
of solid precipitation is a major control on mass balance (r = 0.88, p < 0.005), followed by the solid
precipitation amount in the accumulation season (r = 0.73, p < 0.05) and by the total amount of
precipitation in the accumulation season (r = 0.68, p < 0.05). The mean temperature in the ablation
season is not significantly correlated with mass balance (r = −0.52, p = 0.15). These results highlight the
importance of snow accumulation for this avalanche-fed and heavily debris-covered glacier, not only
in the accumulation season, but also in the months of May and October, which regulate the length of
the ablation period.

The high sensitivity to snow accumulation is remarkable, especially in periods of rapid deglaciation,
when mass balance generally correlates extremely well with summer temperature and shows no
correlation with winter accumulation [73]. This strong dependence on solid precipitation is related
to the high “avalanche ratio” (i.e., the ratio between the total area susceptible to avalanche, which is
defined as slopes >30◦ leading directly onto the glacier, and the total glacier area [74]), which is 2.9
for the Montasio Glacier. This high ratio leads to a considerable increase in snow accumulation on
the glacier surface, which can be estimated in about 300% compared to sites at the same elevation,
unaffected by avalanches [17]. Our observations indicate that the glacier is primarily fed by frequent
and small avalanches of loose snow, which accumulate mostly in the upper half of the glacier, thereby
potentially doubling the avalanche ratio. The concentration of large amounts of snow in a small area
has a twofold effect. The first is a reduction of the contact surface between snow and atmosphere,
where the largest part of ablation takes place. The second effect is a manifold multiplication of the snow
accumulation anomaly, compared to areas unaffected by avalanches. A solid precipitation anomaly
of +0.1 m w.e., for example, becomes +0.4 m w.e. (+0.7 m considering only the upper half of the
glacier), thus representing a relevant energy sink for ablation processes compared to areas without
snow redistribution.

These considerations are valid also for negative precipitation anomalies and provide a key to
the interpretation of the high sensitivity of this glacier to precipitation variability and accumulation
processes, and of the lower sensitivity to air temperature and ablation processes. Besides air temperature
variability, the summer ablation is largely dependent on the extent and thickness of the firn cover.
In case of warm summers, a thick and widespread firn cover exposes the glacier to large mass loss,
as occurred in 2015 after the highly positive 2014 mass balance year (Figures 3 and 4). Once the firn
is depleted, such as in the last four years, the 2–3 m thick debris mantle that covers the underlying
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ice strongly limits ablation, and significantly dampens the inter-annual variability of mass balance
and its sensitivity to air temperature. In the observed period, the best example for this behavior
came from 2018, when the mass balance was slightly positive in spite of a very warm ablation season
(the warmest since 1960). The thick avalanche deposits due to the above-average winter snowfalls
(Figure 9), concentrated in a small accumulation area (Figure 3), slightly exceeded the mass losses in
the ablation area, which were mitigated by: (i) the small extent of the 2017 firn area, exposed to ablation
for a short period, and (ii) the debris insulation over a large portion of the glacier (Figures 2 and 3).
This mass balance year highlights also why the glacier currently exhibits such a low balanced-budget
AAR (AAR0 ~ 0.30).

The glacier entered a phase of prevailing negative mass balance after 2014, when there was
a gradual expansion of the area covered by debris (Figures 2 and 5), caused by the shrinking of
the accumulation area and by the surface accumulation of debris contained in firn, following melt.
In addition, we observed the formation of new deposits of fine-grained debris in the upper half of
the glacier, caused by rockfalls. In 2016 one of these events occurred at the beginning of the melt
season, covering a considerable portion of the glacier (see the positive elevation changes in the upper
half of the glacier in Figure 3) and leading to the incorporation of firn lenses in the glacier body.
The alternating layers of snow, firn, and debris retrieved in the upper zone of the glacier by the
geophysical investigations carried out in 2010 [17] likely originate from events similar to this one
observed in 2016.

Overall, the sediment budget of the glacierized area looks positive. Debris supply is ensured
by the continuous action of cryo-clastism and rock falls, and is abundant in comparison to glacier
transportation efficiency, due to the high ratio between the area of debris-providing rock walls and
the glacier area [15,75]. Debris evacuation by glacier transport outside the LIA and 1920s moraines
has become negligible since the first decades of the 20th Century, and at present these moraines
have a damming effect on debris transported by glacifluvial processes. In the investigated time span,
there were only low-magnitude debris flows, which locally redistributed small amounts of debris
within the glacier area. High-magnitude events, comparable to those reported in 1993 and 1999
by Chiarle et al. (2007) [76], and responsible of large sediment erosion, where completely absent.
The resulting increase in area and thickness of the debris mantle is an important negative feedback that
is contributing to the preservation of the Montasio Glacier.

Even if a short reaction/response time is expected for this small and steep ice body, subject to high
mass balance gradients [77], the phase with a positive cumulated mass balance between 2006 and 2014
was likely too short or discontinuous to lead sizeable variations in the front area. The variations in
surface displacement rates described in Section 4.2, between 2010 and 2019, show that the lower half of
the glacier tends towards stagnation and stationary thinning. This tendency is more evident in the
central-western part of the glacier. The higher residual activity of the eastern portion is documented
by its smaller deceleration, and by vertical displacement rates that became closer to zero, possibly
related to the phase of temporary mass gain mentioned above. Nevertheless, the number of sinkholes
has clearly increased also in this part of the front, suggesting low residual ice thickness beneath the
debris layer.

Even if the measured surface displacement rates are typical of rock glaciers, the Montasio Glacier
does not show the progressive transition from glacial to periglacial processes described for other small,
avalanche-fed, and debris-covered glaciers in the Eastern Italian Alps [21,23,78,79]. These sites are
originating rock glaciers or glacial-permafrost composite landforms, where the former accumulation
area is downwasting, and the lower ablation area is evolving under permafrost conditions and
generating active rock glaciers. We tend to exclude that such a transition is taking place on the Montasio
Glacier, which completely lacks morphological features typical of active rock glaciers, such as transverse
ridges and furrows, or a steep and advancing front. The limiting factors for a similar evolution of the
Montasio Glacier are still poorly know, but are probably related to the lack of permafrost conditions
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(due to the low elevation, high snow accumulation, and absence of open-work deposits [80]), and to
the residual activity of the glacier.

Outlining the possible future evolution of the Montasio Glacier, and of other ice bodies with
similar characteristics, is not straightforward. Even if the presented observation series is rare for
its length, further investigations are required to better understand how the climatic sensitivity of
this glacier changes in the long term. As highlighted in this work, there is an important role played
by the debris cover, which is a key negative feedback that acts to preserve the glacier remnants.
Our results confirm a complex relationship between the glacier mass balance and the extent of the
debris-covered area, which can change dramatically in the short term due to the wide fluctuations of
the firn cover. However, additional investigations are required to highlight how the debris thickness
and areal extent evolve in the long term, together with other important feedbacks associated with
snow accumulation (e.g., the avalanche ratio), and ablation (e.g., the terrain shadowing). Effects from
permafrost degradation in debris cover dynamics should be also taken into account in these studies,
because the permafrost index map published by Boeckli et al. (2012) [80] indicates the possible presence
of permafrost in the rock walls above the glacier.

7. Concluding Remarks

The results of our investigations on the Montasio Glacier, spanning the period from 2006 to
2019, highlight how this glacier is currently subject to a low degree of imbalance, which is about one
order of magnitude lower compared to the reference mass balance glaciers of the European Alps.
The cumulative mass balance has been even positive until 2014, thanks to snow-rich accumulation
seasons, which occurred in particular in 2009 and 2014.

This work provides statistically significant evidence of the dominant role played by solid
precipitation in regulating the annual mass balance of this type of glacier, which benefits from thick
and spatially concentrated snow accumulation by avalanches. These deposits are effectively shadowed
by the same rock walls that contributes avalanches, and which also release debris (mainly cryo clasts)
that accumulate over the glacier.

The progressive shrinking and thinning of the glacier, in association with the ongoing debris
deposition and the low effectiveness of glacifluvial erosion, has led to the formation of a widespread
and thick debris cover, in particular over the lower half of the glacier. This is the main negative
feedback affecting the mass balance evolution of the Montasio Glacier, which is currently characterized
by a low sensitivity to regional temperature fluctuations. Together with the thick avalanche deposits,
the debris cover is also responsible for the very low balanced-budget AAR, around 0.30, which is
among the lowest reported in the literature [18,20,81,82].

The progressive accumulation, thickening, and reworking of the debris cover, and the reduction
in the climatic sensitivity of the glacier, are long-term processes that could not be fully investigated in
the time span of our recent investigations. For this reason, a detailed reconstruction of the geometric
variations and surface evolution of the Montasio Glacier before 2006 is in progress, and will be extended
to the first direct observations at the beginning of the 20th Century. This additional study will enable
an even better understanding of how the geometry and climatic sensitivity of this type of glaciers
respond to sustained atmospheric changes, in order to outline their possible evolution in the next
decades. Moreover, they will serve to clarify why some glacierized alpine environments shift towards
periglacial/paraglacial conditioning, whereas others (such as the Montasio) preserve a dominant
glacial conditioning.
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