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Abstract: Elderly patients are at risk of malnutrition and need an appropriate assessment of energy 

requirements. Predictive equations are widely used to estimate resting energy expenditure (REE). 

In the study, we conducted a systematic review of REE predictive equations in the elderly 

population and compared them in an experimental population. Studies involving subjects older 

than 65 years of age that evaluated the performance of a predictive equation vs. a gold standard 

were included. The retrieved equations were then tested on a sample of 88 elderly subjects enrolled 

in an Italian nursing home to evaluate the agreement among the estimated REEs. The agreement 

was assessed using the intraclass correlation coefficient (ICC). A web application, equationer, was 

developed to calculate all the estimated REEs according to the available variables. The review 

identified 68 studies (210 different equations). The agreement among the equations in our sample 

was higher for equations with fewer parameters, especially those that included body weight, ICC = 

0.75 (95% CI = 0.69–0.81). There is great heterogeneity among REE estimates. Such differences 

should be considered and evaluated when estimates are applied to particularly fragile populations 

since the results have the potential to impact the patient’s overall clinical outcome. 

Keywords: estimating equations; energy requirements; systematic review; elderly; predictive 

equation; web tool 

 

1. Introduction 

In the elderly population, malnutrition affects up to 60% of hospitalized patients [1]. 

Nutritional status, along with aging, is affected by social factors, chronic diseases, 

physiological changes in body weight, and body composition [2,3]. Malnutrition has 

multifactorial consequences in older adults. It can lead to a decline in health, with 

increased episodes of falls [4], vulnerability to infections, and poor wound healing [5]. It 

also affects functional status, with loss of energy and mobility in daily activities [6]. 

Moreover, malnutrition affects psychological health by reducing the cognitive state 

[7], increases morbidity and mortality [8], and has a substantial impact on health care costs 

[9,10], which is estimated at approximately $15.5 billion in the USA [11]. Quality of life 
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(QoL), the most appropriate endpoint for understanding functional impairments and 

disabilities, is also compromised in these patients [3,12]. Therefore, to avoid malnutrition 

and related metabolic stress in frail older adults, the determination of energy needs as 

part of their daily care is fundamental [13,14]. 

Daily energy expenditure can vary according to numerous factors, such as age, sex, 

body composition, clinical condition, and physical activity [15]. Total energy expenditure 

(TEE) may decrease with aging due to reductions in both the basal metabolic rate (BMR) 

and physical activity [14], or it can increase due to the rising metabolic turnover and the 

hypermetabolic effect of fever or medications [16]. Estimated energy requirement (EER), 

also called energy expenditure estimation (EEE), is an estimation of TEE. BMR, also called 

basal energy expenditure (BEE), is used to assess energy requirements and contributes to 

approximately 60–75% of TEE [17]. Since BMR is not easy to measure in daily clinical 

practice, the resting metabolic rate (RMR), also called resting energy expenditure (REE), 

is measured [18]. Despite these differences, the terms BMR and RMR are often used 

interchangeably in the literature [19], as shown in recent reviews [20–22]. For simplicity, 

and as done in previous works, such as ours, we will use the term “resting energy 

expenditure—REE” in this study and, when appropriate, we will distinguish between the 

terms. 

Indirect calorimetry (IC) [23] and the doubly labeled water method [24] are 

considered the gold standard methods for estimating energy needs. However, those 

methods are impractical in daily clinical practice because they are expensive, time-

consuming, and require specialized personnel and instrumentation [25]. As a result, 

several predictive equations have been proposed in the literature to estimate REE. 

Demographic data (age, sex, ethnicity), anthropometric measurements (height, weight), 

body composition parameters (fat-free mass, fat mass, organ tissue mass), and, in some 

cases, specific data (diabetic markers) [17] are the variables most often considered in the 

proposed equations. 

Although they are easy to use, not all the proposed equations may be suitable for 

each individual, and clinical judgment is still required [15]. Furthermore, the equations 

have often been validated in a specific population that may have different characteristics 

than the one being studied [26,27]. The accuracy of these predictive equations is lower in 

specific populations, such as the elderly population. Validation studies have rarely 

included older adults, and when included, they were not the main objective of the study 

[14]. Furthermore, these studies often used variables such as weight (unstandardized for 

age), which do not adequately explain the change in body composition due to aging. 

The purpose of this study is to conduct a systematic review of the REE predictive 

equations used in the elderly population. We selected only studies that validated their 

equations against a gold standard (i.e., indirect calorimetry or doubly labeled water). The 

agreement among the predictive equations retrieved was then evaluated in a sample of 

elderly patients living in a nursing home. Moreover, to enhance the clinical application of 

our results, we developed a web application to assist clinicians in choosing the equation 

that best fits a patient’s available data. 

2. Materials and Methods 

2.1. Data Sources 

The review followed the Preferred Reporting Items for Systematic Reviews and 

Meta-analyses (PRISMA) guidelines [28]. We conducted a literature review of MEDLINE 

(via PubMed), Scopus, and Embase. Table 1 presents a summary of the Population, 

Intervention or exposure, Comparison, Outcomes, and Study design (PICOS) parameters 

used to define the inclusion and exclusion criteria for this literature review. 
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Table 1. Summary of Population, Intervention or exposure, Comparison, Outcomes, and Study design (PICOS). 

Parameter Inclusion Criteria Exclusion Criteria 

Population Adult aged >18 years 

- Subjects aged <18 years, 

- critically ill patients, 

- people recovering from cancer treatment 

or in treatment for chronic kidney 

injury. 

Intervention or 

exposure 

REE, RMR, BMR, BEE assessed by a brand-new 

equation 
 

Comparison 
Indirect calorimetry, doubly-labeled-water method, 

or other already validated equations 
 

Outcomes Predicted caloric intake  

Study design Observational studies None 

The last update was made on 1 November 2019. The search terms included in the 

search string were as follows: “energy intake,” “energy intake/physiology,” “basal 

metabolism,” “nutritional requirements,” “resting metabolic rate,” “resting energy 

expenditure,” “metabolism,” “energy metabolism” and the additional terms “predictive 

equations” and “prediction equations.” For the detailed search strategy, see Table S1 in 

the Supplementary Material. 

2.2. Eligibility Criteria 

2.2.1. Types of Study 

Only original studies were included in the review. To be defined as original, the 

study had to (i) validate a new predictive equation compared to a gold standard method 

(indirect calorimetry or doubly labeled water method) or (ii) validate an existing equation 

in a population different than the original ones. 

2.2.2. Types of Predictive Equations 

To be included in the study, predictive equations (i) must have been based on 

parameters that are measurable in all possible contexts (i.e., body weight or height), that 

is to say, they should not require the use of specific equipment; (ii) must include mixed-

age patients, at least a portion of whom were over 65 years of age; and (iii) must include 

equations that are currently used in elderly patients, even if elderly patients were not 

included in the validation study. Equations based solely on children or adolescents, 

critically ill patients (burn patients, spinal cord injury patients, patients in a coma, patients 

who are mechanically ventilated), and people being treated for cancer or chronic kidney 

injury were excluded because they may have specific nutritional needs. 

2.3. Data Sources 

Figure 1 presents the PRISMA flowchart [28]. The studies were eligible if they had 

been published in the English, Spanish, or Italian languages, with no limits on the date of 

publication. Additional sources were sought in the references of all retrieved eligible 

papers, particularly from reviews. 
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Figure 1. Flowchart of literature search. This figure was based on the PRISMA example. 

2.4. Data Collection 

Two independent reviewers screened the title/abstract/full text of the selected 

records. Then, full texts were retrieved for further assessment. Each assessor 

independently extracted information from the eligible studies, such as the use of the 

equation and the characteristics of the sample in which it was applied. Discrepancies were 

solved through discussion between the two reviewers in each phase of the review; a third 

author was consulted when the consensus was not achieved. 

2.5. Data Extraction 

The following key information was extracted from eligible studies and collected in a 

standard Microsoft Excel sheet: study setting and design, the gold standard used for 

comparison, study population (number, gender, the presence of disease, body mass index 

(BMI), age, ethnicity) and predictive equation characteristics (variables in use, agreement 

with the gold standard). The final data extraction template was modified after reaching 

consensus in the group based on previous similar work. 

2.6. Data Synthesis 

The characteristics of each study were summarized in the results. Studies were 

divided according to the inclusion of elderly adults in the validation population. 
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2.7. Predictive Equation Testing 

Retrieved equations were tested on a convenience sample of 88 subjects older than 

65 years old enrolled prospectively in a nursing home in northern Italy. Data were 

routinely collected from nursing home medical personnel during routine visits. The 

administration and the medical personnel approved the study through a collaboration 

protocol with our department (University of Padova). All procedures were conducted in 

accordance with the Helsinki Declaration of 1975, as revised in 1983. 

Patients receiving enteral or parenteral nutrition and those with edema or ascites, 

neoplasia, or kidney failure were excluded. For each subject, after oral consent was 

obtained, a qualified dietitian and a nurse collected anthropometric information and other 

measurements according to the variables retrieved in the equations obtained from the 

literature review. All the measurements were taken in the morning between 7 and 10 after 

overnight fasting. Anthropometric characteristics were measured according to 

international guidelines using calibrated instruments and previously validated standard 

protocols [29]. BMI was calculated as weight in kilograms divided by height in meters 

squared and classified as described by NHLBI consensus [30]. The height in centimeters 

was measured to the nearest 0.50 cm by a stadiometer. For patients who were unable to 

stand or were bedridden, knee height was used to estimate height. Weight was measured 

with the patient in minimal clothing on a digital scale to the closest 0.05 kg after overnight 

fasting. Skinfold thickness was measured using standard calipers, and the median 

value of three measurements was considered in the analysis. Ambient temperature and 

humidity were measured with an electronic hygrometer. 

2.8. Statistical Methods 

Categorical data are reported as relative and absolute frequencies, while continuous 

data are reported as median and quartiles (I and III). The intraclass correlation coefficient 

(ICC) was used to evaluate the agreement among the estimated REEs on the convenience 

sample, with predictive equations as a fixed set of criteria [31]. Equations were grouped 

as follows for the agreement analysis: (a) equations that consider age; (b) equations that 

consider gender; (c) equations that consider height; (d) equations that consider weight; (e) 

equations that consider BMI; (f) equations that consider physical activity; (g) equations 

that consider more than three variables (three included); (h) equations that include at least 

one laboratory examination (albumin, glucose level, C reactive protein); (i) equations with 

at least one measure of the circumference (abdominal circumference, hip circumference, 

wrist circumference) or that include at least one skinfold measure (chest skinfold, 

subscapular skinfold); (j) equations including weight and gender; (k) equations with the 

combination of the variables weight-gender-age; (l) weight-gender-age-height; (m) 

equations with the combination of the variables weight-gender-age-BMI; and (n) 

equations with the combination of the variables weight-gender-age-height-BMI 

equations. For each group, the ICC was determined. The agreement was also determined 

for BEE-BMR, REE-RMR, and EEE-EER equations since they are representative of 

different levels of energy requirements. ICC was computed both for the overall sample 

and for specific subgroups of the sample defined by gender (male/female), obesity 

(obese/not obese), dysphagia (yes/no), diabetes (yes/no), and Charlson Comorbidity Index 

(CCI) (≤5, >5). Higher ICCs indicate a higher similarity between values from the same 

category. The results were reported in forest plots with 95% confidence intervals [CI]. 

Analyses were performed using R 4.0.2 [32] with the rms [33] and irr [34] packages. 
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3. Results 

3.1. Literature Review Results 

3.1.1. Study Selection 

In the initial search, 6353 studies were identified (flowchart in Figure 1). In the final 

review, 68 studies that developed a new regression equation were included. 

The retrieved articles were divided into two groups based on the inclusion of elderly 

adults in the validation population: in the first group, elderly adults were included (55 

equations); in the second group, elderly adults were not included in the original sample 

but the created equations were subsequently used in this population (Table 2). 

Table 2. Predictive equations retrieved by the systematic review. In the table, equations are shown as in the original article 

(RMR = Resting Metabolic rate, REE = Resting Energy Expenditure, BMR = Basal Metabolic Rate, BEE = Basal Energy 

Expenditure, 24EE = 24-h energy expenditure). For each equation is reported the formula and characteristics of the 

population in which is validated and the coefficient of determination (R2). Equations, when not indicated, are expressed 

in Kcal/day. Continuous variables are reported with mean and standard deviation. 

Author Equation 
Study 

Design 
Country 

Gold 

Standard 
BMI Age N° Patients 

Health 

Status 
R2 

Aleman [35] 

M: RMR (MJ/day) = 1.6447 + 

0.05714 W + 0.449 (1) 
CrS 

Cuba, Chile, 

Mexico 
DLW 24.3 ± 4.2 70.1 ± 5.4 19 healthy 0.75 

F: RMR (MJ/day) = 1.6447 + 

0.05714 W + 0.449 (0) 
        

Anjos [36] 

M: BMR (KJ/day) = 9.99 W + 

7.14 H (m) − 2.79 A − 450.5 
CrS Brazil IC 15.5–45.3 

42.6 SE: 

1.4 
190 healthy 0.87 

F: BMR (KJ/day) = 8.95 W + 

8.87 H (m) − 0.70 A − 814.3 
   25.4 SE: 

0.3 

44.9 SE: 

1.0 
339  0.83 

Arciero [37] 
F: RMR = 7.8 W + 4.7 H − 39.5 

(Menopausal status) + 143.5 
CrS USA IC 63.3 ± 7 61.8 ± 8 75 healthy 0.59 

Arciero [38] 
M: RMR = 9.7 W − 6.1 (CS) − 

1.8 A + 0.1 LTA + 1060 
CrS USA IC 77 ± 9 63 ± 8 61  0.76 

Bernstein [39] 

M: RMR = 11.02 W + 10.23 H − 

5.8 A − 1032 
CrS USA MC - 40.4 ± 12.6 48 healthy 0.66 

F: RMR = 7.48 W − 0.42 H − 3 A 

+ 844 
    39.4 ± 12.0 154  0.45 

M: RMR = 1372 BSA + 6.2 A − 

1079 
       0.65 

F: RMR = 758 BSA − 2.3 A − 53        0.42 

Camps [40] 

M: BMR (kJ/day) = 52.6 W + 

828 (1) + 1960 
CrS China IC 26.9 ± 4.9 21–67 121 healthy 0.81 

F: BMR (kJ/day) = 52.6 W + 828 

(0) + 1960 
CrS   25.8 ± 5.9 33.4 ± 11.2 111   

Carrasco [41] 

F: BMR ≥ 30 A = W 10.9 + 593 CrS Chile IC 18.5–69.7 18–74 816 healthy - 

M: BMR ≥30 A =W 11.2 + 753     18–71 441   

F, 18–74 A: BMR = W 10.9 − A 

2.85 + 716 
     816   

M, 18–74 A= W 11.1 − A 2.5 + 

864 
     441   

Cole & Henry 

[42] 

BMR (MJ/day) = exp (−0.1614 − 

0.00255 A + 0.4721 ln W + 0.2952 ln H) 
CrS Mixed - - 18–80 1207 healthy - 

M: BMR (MJ/day) = exp (−0.2630 − 

0.00277 A + 0.4877 * ln W + 0.3367 * ln H) 
     6425   

F: BMR (MJ/day) = e (−0.1934 − 

0.00199 A + 0.4764 ln W + 0.0194 ln H) 
     1030   

BMR (MJ/day) = exp e (−0.0713 − 

0.0209 A + 0.4075 ln W + 0.3540 ln H) 
     3224   

BMR (cal/day) = 500 + 22 LBM CrS USA IC 59.8 ± 11 29 ± 11 223 healthy - 
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Cunningham 

[43] 

BMR (cal/day) = 601.2 + 21 

LBM − 2.6 A 
        

European 

Communities 

[44] 

M: BMR (MJ/day), 60 − 74 A = 

0.0499 W + 2.93 
Re - - 

Schofield 

data 
- - healthy - 

F: BMR (MJ/day), 60 − 74 A = 

0.0386 W + 2.88 
        

M: BMR (MJ/day), >75 A = 

0.035 W + 3.43 
        

F: BMR (MJ/day), >75 A = 

0.0410 W + 2.61 
        

Frankenfield 

[45] 

M: O: RMR = W 10 + H 3 − A 5 

+ 244 + 440 
CrS USA IC 18.6 ± 1.5 18–85 337 healthy 0.84 

M: NW: RMR = W 10 + H 3 − A 

5 + 207 + 454 
      obese  

M: O: RMR = W 10 − A 5 + 274 

+ 865 
        

M: NW: RMR = W 11 − A 6 + 

230 + 838 
        

Frankenfield 

[46] 

M: RMR = 66 + 13.75 W + 5.0 H 

− 6.76 A 
CrS USA IC 18.8–96.8 18–78 54 diabetic - 

F: RMR = 655 + 9.56 W + 1.85 H 

− 4.68 A 
     76   

Fredrix [47] 

M: REE = 1641 + 10.7 W − 9.0 A 

− 203 (1) 
CrS Netherlands IC 25.5 ± 2.6 51–82 18 healthy 0.92 

F: REE = 1641 + 10.7 W − 9.0 A 

− 203 (2) 
   26.4 ± 2.4 66 ± 7 22   

Freni [48] 

M: RMR = 635.8 + 12.98 W CrS USA IC - 25–74 76 healthy 0.61 

M: RMR = 1007.5 + 12.48 W − 

7.84A 
       0.7 

M: RMR = 1002.8 + 12.15 W − 

7.35 A + 154.56 smoke 
       0.71 

M: RMR = 687.2 + 11.08 W − 

6.84 A + 162.00 smoke + 7.48 

bpdif 

       0.76 

M: RMR = 1138.2 + 11.44 W − 

7.13 A + 228.62 smoke + 5.79 

bpdif + 137.93 race − 67.85 T + 

163.92 3 meal 

       0.81 

F: RMR = 681.5 + 9.16 W        0.58 

F: RMR = 785.2 + 9.36 W − 2.48 

A 
       0.6 

F: RMR = 771.1 + 9.95 W − 2.58 

A + 110.54 smoke 
       0.62 

F: RMR = 711.4 + 9.15 W − 3.88 

A + 112.56 smoke + 3.07 bpdif 
       0.64 

F: RMR = −1492.0 + 9.58 W − 

3.55 A + 81.00 smoke + 1.94 

bpdif + 78.31 race + 4.19 pulse 

+ 51.93 BT 

       0.71 

Gaillard [49] 

Eq1: BMI > 21, REE = 18.84 W CrS France IC 25.2 ± 5.5 80.7 ± 8.6 187 (60) diseased 0.005 

Eq1: BMI ≤ 21, REE = 22.29 W        0.006 

Eq2: REE = 82.6 + 9.5 W + 6.5 H 

− 6.1 A 
       0.164 

Eq3: REE = 497 + 11.6 W        0.232 

Ganpule [50] 
M: RMR = 0.0481 W + 0.0234 H 

− 0.0138 A − 0.5473 (0) + 0.1238 
CrS Japan IC 23.4 ± 3.1 36 ± 16 71 healthy 0.834 
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F: RMR = 0.0481 W + 0.0234 H 

− 0.0138 A − 0.5473 (1) + 0.1238 
   21.4 ± 3.3 37 ± 16 66   

Gougeon [51] 
REE (KJ/day) = 4044 + 79 W + 

78 FPG − 43 HC 
CrS  IC 37 ± 1 54 ± 2 25 healthy 0.813 

Harris & 

Benedict [52] 

F: RMR = 1.8496 H + 9.5634 W 

− 4.6756 A + 655.0955 
CrS USA IC - 29 ± 14 103 healthy 0.59 

M: RMR = 66.4730 + 13.7516 W 

+ 5.0033 H − 6.7550 A 
     136   

Hedayati & 

Dittmar [53] 

M: REE = 41.567 − 0.226 AC CrS Germany IC 26.0 ± 2.67 68.4 ± 4.48 51 healthy - 

F: REE = 46.155 − 0.273 HC    25.0 ± 3.29 68.1 ± 5.15 49   

F: REE = 69.865 – 0.229 HC – 

0.173 H (m) 
   25.0 ± 3.29 68.1 ± 5.15 49   

F: REE = 68.143 – 0.025 HC– 

0.210 H (m) – 0.519 BMI 
   25.0 ± 3.29 68.1 ± 5.15 49   

Henry [54] 

M > 60 A: BMR = 13.5 W +514 Re Mixed IC - - 534 healthy - 

F > 60 A: BMR = 10.1 W + 569      334   

M 60–70 A: 13.0 W + 567      270   

M > 70 A: BMR = 13.7 W + 481      264   

F 60–70 A: BMR = 10.2 W + 572      185   

F > 70 A: BMR = 10.0 + 577      155   

Huang [55] 

M, O, diabetic: RMR = 71.767 − 

2.337 A + 257.293 (1) + 9.996 W 

+ 4.132 H + 145.959 DM (1) 

- Australia IC 48.0 ± 7.9 51.9 ± 11.7 61 healthy 0.75 

M, O, non-diabetic: RMR = 

71.767 − 2.337 A + 257.293 (1) + 

9.996 W + 4.132 H + 145.959 

DM (0) 

   47.1 ± 9.2 43.9 ± 12.9 218   

F, O, diabetic: RMR = 71.767 − 

2.337 A + 257.293 (0) + 9.996 W 

+ 4.132 H + 145.959 DM (1) 

   47.4 ± 8.8 51.6 ± 11.9 81   

F, O, non-diabetic: RMR = 

71.767 − 2.337 A + 257.293 (0) + 

9.996 W + 4.132 H + 145.959 

DM (0) 

   46.0 ± 8.2 43.7 ± 12.4 678   

Ikeda [56] 

M: BEE = 10 W − 3 A + 125 (1) + 

750 
P Japan IC 23.9 ± 5.3 58.3 ± 10.3 39 healthy 0.81 

F: BEE = 10 W − 3 A + 125 (0) + 

750 
   24.2 ± 3.8 61.8 ± 12.2 29   

Institute of 

Medicine 

(U.S.) [57] 

M: BEE (NW, OW, O) = 293 – 

3.8 A + 456.4 H (m) + 10.12 W 
- - DLW - - - - 0.64 

F: BEE (NW, OW, O) = 247 − 

2.67 A + 401.5 H (m) + 8.6 W 
       0.62 

M: BEE (NW) = 204 − 4 A + 

450.5 H (m) + 11.69 W 
       0.46 

F: BEE (NW) = 255 − 2.35 A + 

361.6 H (m) + 9.39 W 
       0.39 

M, 18.5 ≤ BMI ≤ 25, EER = 661.8 

− 9.53 A + PAL 15.91 W + 539.6 

H (m) 

        

F, 18.5 ≤ BMI ≤ 25, EER = 354.1 

− 6.91 A + PAL 9.36 W + 726 H 

(m) 

        

M, BMI > 25, EER = 1085.6 − 

10.08 A + PAL 13.7 W + 416 H 

(m) 

        

F, BMI > 25, EER = 447.6 − 7.95 

A + PAL 11.4 W + 619 H (m) 
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Kashiwazaki 

[58] 

RMR = 22.7 W − 13.6 SSF + 

350.6 
P Japan IC 23.6 ± 3.1 36.5 ± 10.4 134 (66) healthy - 

Korth [59] 

REE (kJ/day) = 65.6 W + 2284 CrS Germany IC - - - healthy 0.46 

M: REE (kJ/day) = 41.5 W − 

19.1 A + 35.0 H + 1107.4 (1) − 

1731.2 

   25.9 ± 7.4 37.1 15.1 50  0.71 

F: REE (kJ/day) = 41.5 W − 19.1 

A + 35.0 H + 1107.4 (0) − 1731.2 
   25.5 ± 4.4 35.3 ± 15.4 54   

Kruizenga [60] 

M: BMI < 25: REE = 11.355 W + 

7.224 H − 4.649 A + 135.265 (1) 

− 137.475 

P Netherlands IC 23.4 ± 7.2 53 ± 15.6 260 diseased - 

F: BMI < 25: REE = 11.355 W + 

7.224 H − 4.649 A + 135.265 (0) 

− 137.475 

     253   

Lam [61] 

M, AA: 24EE = 11.6 W + 8.03 H 

− 3.45 A + 217 (1) − 52 (1) − 235 
Re USA IC 29.3 ± 7.0 34.5 ± 11.9 211 healthy 0.797 

M, wh: 24EE = 11.6 W + 8.03 H 

− 3.45 A + 217 (1) − 52 (0) − 235 
     211   

F, AA: 24EE = 11.6 W + 8.03 H 

− 3.45 A + 217 (0) − 52 (1) − 235 
     270   

F, wh. 24EE = 11.6 W + 8.03 H 

− 3.45 A + 217 (0) − 52 (0) − 235 
     270   

Lazzer [62] 

M: BMR (kJ/day) = 46 W − 14 A 

+ 1140 (1) + 3252 
P Italy IC 41.6 ± 6.8 46.3 ± 13.8 2000 healthy 0.6 

F: BMR (kj/day) = 46 W − 14 A 

+ 1140 (0) + 3252 
   41.9 ± 6.5 47.8 ± 13.9 5368   

Leung [63] 
REE (KJ/day): 57.562 W − 

26.795 A + 3340.2 
P China IC 

23.6 ± 3.8, 

23.1 ± 4.1 

45 ± 17, 72 

± -10 
70 healthy 0.619 

Liu [64] 

M: BMR = 13.88 W + 4.16 H − 

3.43 A − 112.40 (0) + 54.34 
CrS China IC 22.6 ± 2.4 44 ± 15.0 102 healthy 0.81 

F: BMR = 13.88 W + 4.16 H − 

3.43 A − 112.40 (1) + 54.34 
   21.5 ± 2.2 43.6 ± 13.7 121  0.81 

BMR = 20.29 W + 29.34        0.65 

BMR = 13.51 W + 11.93 H − 

1506.60 
       0.75 

M: BMR = 14.73 W − 3.87 A − 

150.90 (0) + 755.30 
       0.8 

F: BMR = 14.73 W − 3.87 A − 

150.90 (1) + 755.30 
       0.8 

Livingston & 

Kohlstadt [65] 

F: RMR = 248 W0.4356 − 5.09 A R USA IC - - - healthy 0.67 

M: RMR = 293 W 0.4330 − 5.92 A        0.73 

F: RMR = 196 W 0.4613        0.67 

M: RMR = 246 W 0.4473        0.73 

RMR = 202 W 0.4722        0.64 

RMR = 261 W 0.4456 − 6.52 A        0.68 

Lührmann [66] 

M: RMR (kJ/day) = 3169 + 50.0 

W − 15.3 A + 746 (1) 
Lo Germany IC 26.3 ± 3.1 66.9 ± 5.2 107 healthy 0.74 

F: RMR (kJ/day) = 3169 + 50.0 

W − 15.3 A + 746 (0) 
   26.4 ± 3.7 67.8 ± 5.7 179   

RMR (kJ/day) =1238 + 66.4 W        0.62 

F: RMR (kJ/day) = 2078 + 50.8 

W + 751 (0) 
       0.73 

M: RMR (kJ/day) = 2078 + 50.8 

W + 751 (1) 
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Lv [67] 

M: EER (MJ/day) = −0.030 A + 

0.287 (1) + 0.131 H − 0.104 W − 

0.031 WC + 0.263 PL − 5.172 

CT China IC 
27.16 ± 

3.45 
54 ± 7 135 healthy - 

F: EER (MJ/day) = −0.030 A + 

0.287 (0) + 0.131 H − 0.104 W − 

0.031 WC + 0.263 PL − 5.172 

     81   

Metsios [68] 
REE = 598.8 W 0.47 A −0.29 

CRP0.066 
R 

United 

Kingdom 
IC 26.2 ± 5.6 62.0 ± 10.2 82 

Rheumato

id 

arthritis 

0.62 

Mifflin [69] 

M: RMR = 9.99 W + 6.25 H − 

4.92 A + 166 (1) − 161 
Obs 

Mixed 

americans 
IC 27.5 ± 4.1 44.4 ± 14.3 251 healthy 0.71 

F: RMR = 9.99 W + 6.25 H − 

4.92 A + 166 (0) − 161 
   26.2 ± 4.9 44.6 ± 12.7 247   

REE = 15.1 W + 371        0.56 

M: REE = 12.3 W + 704        0.36 

F: REE = 10.9 W + 586        0.5 

F: REE (kJ) = 282.630 + (−15.124 

A) + 24.481 H + 31.870 W + 

243.226 (1) 

        

Moore & 

Angelillo [70] 

M: REE = 11.5 W + 952 P USA IC - - 93 COPD - 

F: REE = 14.1 W + 515      31   

Müller [71] 

M: REE (MJ/day) = 0.047 W + 

1.009 (1) − 0.01452 A + 3.21 
Re Germany IC 27.1 ± 7.7 44.2 ± 17.3 388 - 0.73 

F: REE (MJ/day) = 0.047 W + 

1.009 (0) − 0.01452 A + 3.21 
     658   

M, BMI ≤ 18.5: REE (MJ/day) = 

0.07122 W − 0.02149 A + 0.82 

(1) + 0.731 

        

F: BMI ≤ 18.5: REE (MJ/day) = 

0.07122 W − 0.02149 A + 0.82 

(0) + 0.731 

        

M, BMI > 18.5–25: REE 

(MJ/day) = 0.02219 W + 0.02118 

H + 0.884 (1) − 0.01191 A + 

1.233 

        

F, BMI > 18.5–25: REE 

(MJ/day) = 0.02219 W + 0.02118 

H + 0.884 (0) − 0.01191 A + 

1.233 

        

M, 25 < BMI < 30: REE 

(MJ/day) = 0.04507 W + 1.006 

(1) − 0.01553 A + 3.407 

        

F, 25 < BMI < 30: REE (MJ/day) 

= 0.04507 W + 1.006 (0) − 

0.01553 A + 3.407 

        

M, BMI ≥30: REE (MJ/day) = 

0.05 W + 1.103 (1) − 0.01586 A + 

2.924 

        

F, BMI ≥ 30: REE (MJ/day) = 

0.05 W + 1.103 (0) − 0.01586 A + 

2.924 

        

F: REE (MJ/day) = 0.047 W + 

1.009 (0) − 0.01452 H + 3.21 
       0.73 

Obisesan [72] 

RMR = 12.2 W + 1.6 FPG 

(gm/dL) + 103 (NYHA; III, IV) 

− 144 (albumin mg/dL) + 755 

P Mixed IC 25.4 ± 5.5 70 ± 7 - - 0.83 
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Owen [73] 

F, 18–65 A, athletic: RMR = 

50.4 + 21.1 W 
P Mixed - - 18–56 - 

heart 

failure 
- 

M, non-athletic: RMR = 879 + 

10.2 W 
 Mixed  28.2 ± 7.5 38 ± 15.6 60   

F: nonathletic: RMR = 795 + 

7.18 W 
   20–59 18–65 44   

Pavlidou [74] 

M: RMR = 25.41 BMI (−0.2115) CT Greece fitmate 32.0 ± 6.9 10–77 105 - - 

F: RMR = 21.09 BMI (−0.1786)    29.8 ± 7.6 12–76 278   

RMR = 21.53 BMI−0.152         

Quenouille 

[75] 

BMR = 2.975 H + 8.90 W + 11.7 

BSA + 3.0 h − 4.0 AT + 293.8 
S 

Northern 

Europe 
- - - - - - 

Quiroz-Alguin 

[76] 

M: REE = 12.204 W − 244.892 

(0) + 83.954 WrC − 402.204 
P Mexico IC 34.7 ± 5.7 18–70 38 obese 0.52 

F: REE = 12.204 W − 244.892 (1) 

+ 83.954 WrC − 402.204 
     39   

Sabounchi [21] 
BMR = 301 + 10.2W + 3.09 H − 

3.09 A 
Me Mixed IC - - - obese - 

Schofield [77] 

M, ≥60 A: REE = 11.711 W + 

587.7 
        

F, ≥ 60 A: REE= 9.082 W + 658.5         

Segura-Badilla 

[78] 

Eq1, F: REE = 11.701 W + 5.75 

H − 7.824 A − 35.95 
CrS Chile IC 28.0 ± 4.9 67.6 ± 4.5 50 - 0.673 

Eq1, M: 346.867 + 4.317 W + 

7.967 H − 10.16 A 
   28.1 ± 3.1 68.2 ± 4.0 13   

Eq2, F: REE = 11.774 W + 7.37 

H − 817.918 
       0.649 

Eq2, M: REE = 4.255 W +7.819 

H − 316.398 
        

Eq3, F: REE = 9427.775 + 84.689 

W − 55.063 H − 174.811 BMI − 

8.798 A 

       0.711 

Eq3, M: REE = 41.687 H + 

95.416 BMI − 13.978 A − 30.019 

W − 5008.038 

        

Eq4, F, NW: REE = 896.249 + 

14.361 W − 0.055 H − 10.389 A 
       0.733 

Eq4, F, OW: REE = 17.211 W + 

4.437 H − 7.499 A − 314.07 
        

Eq4, M, NW: REE = 151.717 H 

+ 24.108 A − 137.022 W − 

15817.35 

        

Eq4, F, OW: REE = 19.995 + 

3.252 W + 9.488 H − 7.61 A 
        

Silver [79] REE = 21–23 W Re USA IC 23.0 ± 4.0 86.1 ± 7.3 10 

cognitive 

impairme

nt 

- 

Sridhar [80] 

REE (MJ/day) = 0.295 MAMC + 

0.0483 AS − 0.0324 A − 6.25 
- - IC - 59.6 ± 8.8 20 (5) 

musculos

keletal 

deformiti

es 

0.861 

REE (MJ/day) = 2.38 + 0.0553 

W 
       0.702 

REE (MJ/day) = 0.0554 W + 4.1 

− 0.029 A 
       0.745 

REE (MJ/day) = 0.0436 W + 

0.0304 AS − 0.0275 A − 0.26 
       0.804 
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REE (MJ/day) = 0.0102 W + 

0.0427 AS + 0241 MAMC − 

0.0318 A − 4.88 

       0.856 

REE (MJ/day) = 0.399 MAMC − 

2.27 
       0.694 

REE (MJ/day) = 0.393 MAMC − 

0.0247 A − 170 
       0.714 

Staats [81] 

M: BCR (Kcal/h) = (43.66 − 

0.1329 A) BSA 
Re Germany - - 20–74 639 diabete - 

F: BCR (Kcal/h) = (38.65 − 

0.0909 A) BSA 
     828   

Tabata [82] 

M, 50–69 A, BMR = 21.5 (65.0) Re Japan DLW 22.7 ± 2.9 39 ± 10 - healthy - 

F, 50–69 A, BMR = 20.7 (53.6)         

M, ≥70 A: BMR = 21.5 (59.7)         

F, ≥70 A: BMR = 20.7 (49.0)         

Tabata [83] 

BMR = 797 + 15.7 W − 8.30A - Japan - 25.7 ± 4.1 60 ± 12 69 diabetes 0.67 

M: BMR = 957 − 11.6 A + 38.5 

BMI + 200 (1) 
   25.7 ± 4.1 57 ± 12 37  0.67 

F: BMR = 957 − 11.6 A + 38.5 

BMI + 200 (0) 
   26.1 ± 3.4 64 ± 11 32   

Weijs [84] 

M: BMI > 25: REE = 14.038 W + 

4.498 H − 0.977 A + 137.566 (1) 

− 221.631 

P 
Belgium, 

Germany 
IC 35.2 ± 7.7 18–71 95 obese 0.69 

F: BMI > 25: REE = 14.038 W + 

4.498 H − 0.977 A + 137.566 (0) 

− 221.631 

     41  0.69 

WHO [85] 

M > 60 A: BMR = 8.8 W + 1128 

H − 1071 
        

F > 60 A: RMR = 9.2 W + 637 H 

− 302 
        

Wilms [86] 
F: REE = 816.714 + 11.035 W − 

3.435 A 
P Germany IC 42.8 ± 7.0 41.7 ± 13.2 273 obese 0.57 

Xue [87] 

M: RMR = 13.9 W + 247 (1) − 

5.39 A +855 
CrS China IC 16.7–38.2 18–67 315 healthy 0.607 

F: RMR = 13.9 W + 247 (0) − 

5.39 A +855 
        

Equations validated in a population aged lower than 65 

De la Cruz 

Marcos [88] 

M: REE = 1 376.4 − 308 (0) + 

11.1 W − 8 A 
CrS Spain IC 22.2 ± 1.9 19–65 45 healthy 0.68 

F: REE = 1 376.4 − 308 (1) + 11.1 

W − 8 A 
CrS     50   

De Lorenzo 

[89] 

M: RMR (kJ/day) = 53.284 W + 

20.957 H − 23.859 A + 487 
CrS Italy IC 26.7 ± 4.3 28.7 ± 11.4 127 healthy 0.597 

F: RMR (kJ/day) = 46.322 W + 

15.744 H − 16.66 A + 944 
CrS   27.8 ± 5.1 41 ± 11.5 193  0.597 

de Luis [90] 

M: REE = 58.6 + 6.1 W + 1023.7 

H (m) − 9.5 A 
CrS Spain IC 35.6 ± 5.7 43.7 ± 15.3 60 obese - 

F: REE = 1272.5 + 9.8 W − 61.6 

H (m) − 8.2 A 
CrS   34.9 ± 5.2 46.6 ± 17.5 140   

Lazzer [91] 
M: REE (MJ/day) = 0.048 W + 

4.655 H − 0.020 A − 3.605 
P Italy IC 45.4 20–65 164 obese 0.68 

Lazzer [92] 
F: REE (MJ/day) = 0.042 W + 

3.619 H − 2.678 
P Italy IC 45.6 19–60 182 obese 0.66 

Orozco-Ruiz 

[93] 

F: REE = 12.114 W − 6.541 A + 

835.952 
CrS Mexico IC 31.4 ± 4.34 39.1 ± 10.9 303 obese 0.51 
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M: REE = 12.114 W − 6.541 A + 

1094.991 
     107   

Roza & 

Shizgal [94] 

M: RMR = 88.362 + 4.799 H + 

13.397 W − 5.677 A 
Re USA IC - 30 ± 14 168 healthy - 

F: RMR = 447.593 + 3.098 H + 

9.247 W − 4.330 A 
    31 ± 14 169   

M: RMR = 77.607 + 4.923H + 

13.702 W − 6.673 A 
        

F: RMR = 667.051 + 1.729 H + 

9.74 W − 4.737 A 
        

M: RMR = 75.9 + 1.3 A + 

53.7BMI 
        

F: RMR = 490.8 − 1.5A + 45.8 

BMI 
        

Siervo [95] F: REE = 542.2 + 11.5 W P Italy IC 
31.81 ± 

4.97 

23.78 ± 

3.79 
157 obese 0.59 

Soares [96] 
BMR (kj/day) = 48.7 W − 14.1 A 

+ 3599 
P Indian IC   121 healthy  

Valencia, & 

Haggarty [97] 

F: BMR = 10.98 W + 520 P Mexico IC  18–40  healthy  

M: BMR = 14.21 W + 42      32   

Vander Weg 

[98] 

F: AA: REE = 147.45 − 3.56 A + 

8.39 W + 4.74 H − 64.98 (1) 
CrS USA IC 25.2 18–39 239 healthy 0.51 

F: wh: REE = 147.45 − 3.56 A + 

8.39 W + 4.74 H − 64.98 (0) 
    18–37    

Wright [99] 

M: RMR = 9.27 W + 4.58 H − 

6.53 A + 451.44 
R Australia IC 32.0 ± 5.6 46.4 ± 10.4 154 obese - 

F: RMR = 9.02 W + 5.88 H − 

7.47 A + 110.76 
   32.9 ± 5.8 47.4 ± 11.0 124   

M, OW: RMR = 2.91 W − 1.83 

H − 11.12 A + 2372.11 
        

F, OW: RMR = − 4.28 W + 20.17 

H − 7.50 A − 1295.89 
        

M, O: RMR = 9.19 W + 12.96 H 

− 2.34 A − 1233.82 
        

F, O: RMR = 7.23 W + 6.83 H − 

6.78 A + 113.90 
        

Yang [100] 

M: BEE (kJ/day) = 277 + 89 W + 

600 (1) 
P China IC 

21.03 ± 

0.17 

30.66 ± 

0.94 
79 healthy 0.48 

F: BEE (kJ/day) = 277 + 89 W + 

600 (0) 
   20.81 ± 

0.18 

31.01 ± 

0.87 
86   

BEE (kJ/day) = 6285 BSA − 

4611 
       0.5 

BEE (kJ/day) = 103 H − 11189        0.45 

BEE (kJ/day) = 114 W − 801        0.44 

M: BEE (kJ/day) = 105 W − 58        0.27 

F: BEE (kJ/day) = 69 W + 1355        0.24 

Yangmei [101] 

M: ER (MJ/day) = 13.5 − 0.025 

A + 0.215 AI − 0.006 WC + 

0.342 AT − 0.268 BMI + 0.623 

(1) 

P China IC 
27.40 ± 

2.34 
53 ± 21(F) 1292 

Metabolic 

syndrome 
- 

F: ER (MJ/day) = 13.5 − 0.025 A 

+ 0.215 AI − 0.006 WC + 0.342 

AT − 0.268 BMI + 0.623 (0) 

        

General abbreviations: A = age (years), BMI = body mass index, BMR = basal metabolic rate, BEE = Basal energy 

expenditure, DLW = Doubly Labelled Water, CrS = Cross-sectional, CT = clinical trial, F = female, H = height (cm), EEE = 

energy expenditure estimation, EER = estimated energy requirement, IC = Indirect Calorimetry, Lo = Longitudinal, M = 

male, MC = Metabolic chart, Me = Metaregression, NW = normal weight, O = Obese, Obs = Observational, P = Prospective, 
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OW = overweight, R = retrospective, Re = Reanalysis, REE = resting energy expenditure, RMR = resting metabolic rate, S = 

survey, W = weight (kg). Abbreviations among equations: AA = African American, AC = Abdomen Circumference (cm), 

AS = arm span (cm), AT = ambient temperature, CRP =C Reactive Protein (mg/L), CS = Chest skinfold (mm), BT = body 

temperature (°C), DM = diabetes mellitus (1 = yes, 0 = no), FPG = Fasting plasma glucose (mmol), h = humidity, HC = Hip 

circumference (cm), MAC = midarm circumference (cm), MAMC = midarm muscle circumference (cm) MAMC = MAC − 

3.14 TSF (Triceps skinfold thickness mm), SSF = subscapular skinfold (mm), T = hour (decimalized hour of day that RMR 

was measured (range 7.8–12.1)), WC = waist circumference, wh = white, wrc= wrist circumference (cm). Levels of variables: 

AI = activity Intensity Index (0, low physical job; 1, medium physical job) (Yangmei); AT = ambient temperature in 

Yangmei (0, 10–308 °C; 1, <10 °C or >30 °C); Bpdif: blood pressure gradient (systolic-diastolic) (mmhg); Meal: 0 = fasting, 

1 = for having had breakfast prior to calorimetry; smoke: 0 = current non-smokers, 1 = current smokers; race: 0 = black, 1 = 

white; BSA = Body Surface Area (BSA = Body Surface Area (0.007184 H 0.725 * W0.425, Dubois& Du Bois 1916); LBM = 

Lean Body Mass (M: LBM = (79.5 − 0.24 W − 0.15 A) W/73.2; F: LBM = (69.8 − 0.26 W − 0.12 A) W/73.2 (Moore et al., 1963)); 

LTA = Leisure Time Activity (see the Minnesota Leisure Time Physical Activity questionnaire, Taylor et al., 1978) (Arciero), 

PAL = Physical Activity Level: PA = 1.00 if PAL is estimated to be ≥1.0 <1.4 (sedentary), PA = 1.13 if PAL is estimated to be 

≥1.4 <1.6 (low active), PA = 1.26 if PAL is estimated to be ≥1.6 <1.9 (active), PA = 1.42 if PAL is estimated to be ≥1.9 <2.5 

(very active) (IOM); Menopausal Status: 1 = perimenopausal women, 2 = perimenopausal women (vasomotor instability, 

“hot flashes”, absence of regular menstruation for 2 to 12 months), 3 = post-menopausal women (absence of menstruation 

for greater than 12 months); NYHA = New York Heart Association (I, No limitation of physical activity. Ordinary physical 

activity does not cause undue fatigue, palpitation, dyspnoea (shortness of breath); II, Slight limitation of physical activity. 

Comfortable at rest. Ordinary physical activity results in fatigue, palpitation, dyspnoea (shortness of breath). III, Marked 

limitation of physical activity. Comfortable at rest. Less than ordinary activity causes fatigue, palpitation, or dyspnoea. IV, 

Unable to carry on any physical activity without discomfort. Symptoms of heart failure at rest. If any physical activity is 

undertaken, discomfort increases. 

The included studies were predominantly cross-sectional in design (27, 39.7%), and 

17 were retrospective (25%). The studies were mainly conducted in healthy patients (N = 

36, 53%) in an outpatient setting; only 3 studies were carried out in clinical settings 

[52,60,69]. Only 19 (28%) studies focused on obese patients 

[39,41,45,46,55,57,58,60,62,65,76,84,86,90–93,95,99], and 11 (19.6%) studies focused on a 

diseased population [49,60,79], such as patients with diabetes [51,56,60,82], oncological 

diseases [60], rheumatoid arthritis [68], chronic obstructive pulmonary disease (COPD) 

[70], and heart failure [63]. 

The studies were carried out in Europe, the USA, South America, and Asia. The 

participants were prevalently Caucasian [37–39,43,45,46,48,49,52,53,59,61,62,66,68,71–

75,81,84–86,88–90,94,95,98]; other groups considered were Chinese [40,63,64,67,100], 

South American [36,41,78,102], Japanese [50,56,58,82,83], Mexican [65,76,93,97,102], 

African [21,54,69,73], Indian [96] and Australian [99]. Only ten studies were designed 

exclusively for elderly patients [37,38,47,49,53,66,72,78,79,102]. 

3.1.2. Energy Expenditure Assessment 

In the retrieved studies, indirect calorimetry was the gold standard most frequently 

used to measure energy expenditure (55 studies, 62.6%). The most common IC 

instruments applied were respiratory gas analyzer, metabolic cart and open circuit 

calorimeter; only one study used a wearable device to assess energy expenditure [74]. 

Some studies compared their results with other previously validated equations as well as 

with a gold standard. Twenty-six different predictive equations were used as comparisons 

with the new equations in the articles retrieved: the most frequently used equations were 

those of Harris Benedict [21,36–38,40,41,45,46,48,49,51,56,60,65,68,70–74,76,78–

80,84,86,89–92,94,95,98,100], WHO/FAO/UNU, Schofield [36–

38,57,60,65,74,80,84,89,98,100,102], Owen 

[37,38,40,45,46,51,62,65,66,68,74,76,78,79,84,86,89–93,95,98,99], Mifflin 

[37,38,40,45,46,48,51,62,65,68,72,76,78,79,84,86,89,91–93,95,98,99], Fredrix [37,38,49,72], 

Henry [40,60,82,84], Bernstein [51,60,65,84,85,90–93,95], and Cunningham 

[65,68,73,89,91,92]. 
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3.1.3. Equation Characteristics 

From the literature review, 210 equations were identified. Of these, 13 were validated 

in a group of patients that did not include elderly adults, and 174 were validated in the 

elderly population (Figure 1). The variables considered across the equations can be 

divided as follows (Table S2): demographic characteristics (age, gender, ethnicity 

[48,61,98]; menopausal status [37]; smoking [37]; meal status (whether patients had eaten 

a meal prior to the measurement) [37]); anthropometric measurements (height, weight, 

BMI [21,49,53,60,71,74,78,82–84,94,101]; abdomen [37], hip [51], or wrist circumference 

[76,101]; arm span [37]; chest skinfold [38] or subscapular skinfold [58]); clinical condition 

(NYHA [93]; diabetes [55]); physical activity (physical activity [101], leisure time activity 

[38], athletics [73]); measures of fat percentage (lean body mass [43], surface area 

[39,81,100]); laboratory tests (glycemia [51,93], albumin [93], C reactive protein [68]); 

environmental measures (temperature [75,101], humidity [101], time [48]); and vital 

parameters (body temperature, heart rate and blood pressure [48]). The most commonly 

used variables were age (147, 70%), gender (166, 79%), weight (183, 87%), and height (86, 

41%). BMI was considered in 5 studies (28, 13%). 

3.1.4. Precision and Agreement among Equations 

Since our review did not evaluate an intervention or a diagnostic tool but instead 

examined predictive equations, as in Madden’s previous review [22], we did not use the 

standard Cochrane tools for bias assessment. Stepwise multiple regression was the 

algorithm most commonly used to select the included variables in the development of 

predictive equations. Goodness-of-fit was generally assessed in the articles, mainly with 

the coefficient of determination R2, which varied from 0.390 [82] to 0.92 [48]. Only 18 of 

the 210 equations retrieved were cross-validated or validated in a different sample in the 

validation study [38,40,41,48,55,56,64,68,70,71,76,86,88,91–93,98,100]. 

3.2. Results for the Sample Population 

3.2.1. Characteristics of the Sample 

The 101 equations were applied to a sample of older adults (27 males and 60 females) 

living in a nursing home in the Veneto region of Italy. All the equations, except for those 

that had information that are not available in our sample, were used to compute the REE 

in our population. For example, the equation of Arciero et al. [38] was not used in our 

sample since we do not have information regarding leisure time activity. Table 3 presents 

the descriptive statistics of the sample. The patients had a median age of 74 years, were 

mostly sedentary (39%, 34) or low activity (18%, 16), had diabetes (75%, 64), and had 

dysphagia (51%, 44). Table S3 provides the estimated REE for each equation by gender. 

Table 3. Descriptive characteristics of the sample. Categorical data are reported as relative and 

absolute frequencies; continuous data as median, I, and III quartiles. 

Variable Level N Statistics 

Anthropometric characteristics 

Age  87 74.0/83.0/90.0 

Gender Female 87 68% (60) 

Ethnicity Caucasian 87 100% (87) 

Menopausal Status pre 60 3% (2) 
 peri  13% (8) 
 post  83% (50) 

Measurements 

Mean Chest Skinfold  66 10.0/13.5/17.0 

Mean Subscapular Skinfold  60 13.0/16.1/19.1 

Waist Circumference  44 86.8/95.8/103.0 



Nutrients 2021, 13, 458 16 of 26 
 

 

Wrist Circumference  74 15.0/16.0/17.0 

Arm Circumference  73 23.0/26.0/28.4 

Weight (Kg)  86 51.6/62.0/69.7 

Height (cm)  74 144/151/157 

Clinical condition 

Diabetes yes 85 75% (64) 

Dysphagia yes 87 51% (44) 

Fall Risk yes 86 1% (1) 

Hospital Admission yes 59 76% (45) 

Charlson Comorbidity Index  87 4/5/6 

Parkinson/Alzheimer yes 13 46% (6) 

Blood examinations Glycemia 47 79.0/92.0/101.0 
 Urea (mmol/L) 41 5.00/7.00/9.90 
 Creatinine (umol/L) 55 69.5/83.0/133.0 
 C Reactive Protein 17 2.52/3.86/11.83 

Physical activity 

Physical Activity (IOM) Sedentary 87 39% (34) 
 Low Active - 18% (16) 
 Active - 39% (34) 
 Very Active - 3% (3) 

3.2.2. Equation Agreement Testing in the Sample Population 

Figure 2 reports the ICC of the overall sample, with a higher ICC indicating greater 

agreement between the estimated REEs. The equations that showed the greatest 

agreement in the overall population were those that considered laboratory examinations 

(ICC = 0.81 (95% CI = 0.72–0.87) and weight (ICC = 0.75 (95% CI = 0.70–0.81) in their 

structure. The equations with the poorest agreement were those that considered BMI and 

physical activity, with ICCs of 0.43 (95% CI = 0.36–0.52) and 0.23 (95% CI = 0.13–0.35), 

respectively (Figure 2). 

 

Figure 2. Forest plot reporting the Intraclass Correlation Coefficient (ICC) with 95% CI of 

estimated REE in the overall population for each specific group of predictive equations. The 

vertical grey line represents the ICC in the whole category without any grouping: ICC = 0.68 [0.62–

0.75] 95% CI. 
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Additionally, in males, equations that included laboratory examinations showed a 

good agreement level (0.94 [(95% CI = 0.87–0.97)]. In examinations of agreement according 

to gender, females had a higher overall agreement level of 0.67 (95% CI = 0.59–0.75), with 

a narrow CI (Figure 3). 

For the obese and normal-weight groups, the overall agreement was higher in the 

obese group, 0.82 (95% CI = 0.72–0.9), and remained high for all the variables considered 

except for physical activity, which had an ICC of 0.27 for both groups. Equations that 

included weight in their structure showed higher agreement in dysphagic and diabetic 

patients and those with a higher Charlson Comorbidity Index (Figure S1). In these groups, 

the measurement of circumferences agreed well; in contrast, laboratory examinations 

performed poorly, especially in nondysphagic patients, with an ICC of 0.04 (95% CI = 0.26–

0.33), and people with diabetes (0.02 (95% CI = 0.41–0.44)). In all the categories considered, 

the equations that included physical activity and BMI in their structure had the worst 

agreement. For the individual agreement (Figure 3), the groups with lower estimated REE 

had a reduced CI; for example, females had a 1145 Kcal/day estimated REE (95% CI = 

1098–1192). 

 

Figure 3. Forest plot reporting the Intraclass Correlation Coefficient (ICC) with 95% CI of estimated REE according to a 

specific category of patients for a specific group of predictive equations. The vertical grey line represents the ICC in each 

category without any grouping: Male ICC 0.64 [0.52–0.77] 95% CI, female 0.67 [0.59–0.75], obese 0.82 [0.72–0.90], normal 

weight 0.67 [0.59–0.74]. 

In the forest plots of the CCI, the agreement was lower in both high risk (CCI ≥ 5) and 

lower risk patients (CCI < 5); equations that considered weight or weight and gender 

showed greater agreement (Figure S1). Figure S2 reprts the agreement among predictive 

equations in terms of Kcal/die at individual level among the categories gender, BMI, 

Charlson Comorbidity Index, presence/absence of dysphagia and diabetes. In our sample, 

in the overall group, BMR and REE had a similar level of agreement, 0.80 to 0.76 
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respectively for BMR and REE, and EEE had an ICC of approximately 0.46 except when 

gender was considered (Figure S3). 

3.3. Web Tool for the Practical Implementation of Equations 

In clinical practice, sophisticated instruments such as indirect calorimetry are not 

always available since they are expensive and require trained personnel [25,103]. This 

limits their use in daily clinical practice [104]. Furthermore, our results showed that the 

estimated REE differs according to the equations used. Therefore, a tool is needed to help 

clinicians estimate REE based on the variables available for the patient. To address this 

need, we have developed an R Shiny web-based application called equationer, which is 

freely available at the following link https://r-ubesp.dctv.unipd.it/shiny/equationer/. The 

app is based on the results of this study. The clinicians, after inputting the patient’s 

available data, will visualize all the estimated REEs based on the equations that 

considered the variables imputed in their structure. The results will be displayed both 

graphically (boxplot and bar plot) and tabularly, thus allowing comparisons of the 

different results of each equation. In the box plot, the app also provides the minimum, 

maximum, and median values of the estimated REE. For example, the estimated median 

BMR for a woman with a weight of 65 kg and an age of 75 years is 1249 Kcal/day (min = 

1014 Kcal/day, max = 1449 Kcal/day) and 1352 Kcal/day (min = 1225 Kcal/day, max = 1580 

Kcal/day), respectively, depending on whether gender is considered in the predictive 

equations. The median RMR is 1237 Kcal/day (min = 896 Kcal/day and max = 2003 

Kcal/day) and 1325 Kcal/day (min = 1188 Kcal/day, max = 1565 Kcal/day), respectively, in 

equations that do and do not consider gender, and the overall median is 1271 (min 947 

Kcal/day and max = 1943 Kcal/day) in equations that consider gender. RMR and BMR 

have similar median values, and RMR is slightly lower, especially in terms of the 

minimum value provided, as expected. RMR has great variability, especially in equations 

that consider gender, and can vary by as much 1107 Kcal/day, whereas BMR ranges are 

434 and 355 in equations that do and do not consider gender, respectively. Adding 

information about physical activity does not increase the median REE value (1241 

Kcal/day) (Figure S4). The number of equations resulting from equationer depends on the 

selected variables. Selecting a choice for categorical variables like, e.g., gender or ethnicity, 

will result in a lower number of equations estimated. Conversely, setting a value for 

numerical variables, like, e.g., height or weight, instead will result in a higher number of 

equations estimated. Detailed instructions on the utilization of the tool are available in the 

Supplementary Materials (Text S1). 

4. Discussion 

Given their characteristics of frailty, elderly adults are at risk of malnutrition; hence, 

it is important to correctly estimate their caloric intake. 

This is the first study, to our knowledge, specifically targeting elderly adults, and 

predictive equations were chosen if (i) they were created for the elderly population, (ii) if 

elderly subjects were considered in their original sample, and (iii) if they were not 

included in the validation sample but were widely used in this population. It is worth 

noting that several reviews already exist on this topic, but none apply our comprehensive 

inclusion criteria. We have, in fact, extended the criteria to a broader population and 

considered variables available in clinical practice, such as weight and height. We excluded 

only variables derived from the use of technological instruments, such as indirect 

calorimetry. Gaillard [105] included equations with parameters derived from indirect 

calorimetry; other studies [14,106–108] instead consider the equations most frequently 

used in clinical contexts, do not include elderly adults as a target [21,26,109–111], or were 

addressed to a more specific population [112,113]. 

Our review shows that a considerable number of predictive energy equations are 

available in the literature and that they have high variability in the estimated REE when 

applied in a real sample (Table S3). This variability could be explained by the fact that the 
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equations were built on a specific population that can have different characteristics from 

the one in which the equations are used. 

Ethnicity has been shown in the literature to influence REE. Our review confirms the 

results of Compher [114] and shows that this parameter is not widely considered in all 

equations [115]. However, we were unable to show how differences in ethnicity could 

affect the estimated REE since our sample included only Caucasians. Equations created 

for a specific ethnicity, such as for Chinese populations, perform poorly in Caucasian 

populations, as shown in a recent external validation [20]. 

The literature reveals that the presence of a specific disease may influence caloric 

estimation, especially in the elderly. Chronic disease is estimated to affect over 75% of the 

elderly American population [116] and from 38% to 64% of the Italian population aged 

from 65 to 69 years, with increased percentages in those over 80 years old [117]. Despite 

this, in our review, we retrieved only two equations that considered a disease in their 

structure (diabetes in one case and NYHA classification in the other), even though 11 

studies focused on populations with a specific disease. 

In the aging population, the physical activity level has a high impact on REE, given 

the physiological impairments due to aging. Exercise limitations are estimated to increase 

from 7.7% to 46% in the aging population [117]. In our review, only three equations 

considered daily living activities. However, adding information about physical activity in 

our sample worsened the agreement among the equations in the overall sample (ICC = 

0.23 (95% CI 0.12–0.35)) (Figure 2) and in all the subgroups considered except patients 

with diabetes (ICC = 0.48 (95% CI = 0.26–0.70)) (Figure S2). The great variability in physical 

activity can explain this poor agreement in this population, as can the use of different 

scores to quantify it. 

In our sample, equations that included at least weight or weight and gender yielded 

a high ICC. In contrast, equations that included variables such as BMI and physical 

activity had a low agreement in our population for all the considered subgroups. 

At the individual level, the agreement was higher in categories that had a lower 

estimated REE, such as female gender (REE = 1145 Kcal/day (95% CI = 1098–1192)), 

patients with dysphagia (1173 (95% CI = 115–1231)), normal-weight patients (1179 (95% 

CI = 1137–1253)) and patients with a Charlson Comorbidity Index higher than 5 (1179 (95% 

CI = 1115–1231)) (Figure S2). Obese patients have shown high variability in their REE (1364 

(95% CI = 1255–1473)), a result in line with those of Bedogni [20], in which equations 

perform worse with increasing BMI. 

Equations that considered the variable age in their structure agreed quite well, from 

a minimum of 0.57 (95% CI = 0.44–0.7) in male patients and a maximum of 0.79 (95% CI = 

0.68–0.90) in obese patients. 

BEE-BMR estimation equations agreed better in all the subgroups except for 

dysphagic patients, where REE-RMR estimation equations were in higher agreement. This 

could be explained by the fact that the conditions for evaluating BMR were stricter than 

those for measuring REE in the validation study. Moreover, the EEE-EER equations, 

which included information on physical activity, showed low agreement in all the 

subgroups, perhaps because they used different classifications of physical activity. 

The female subgroup had a higher level of agreement than the male subgroup. In the 

example given above for females, the median value changed little (by approximately 100 

kcal). At the same time, the minimum and maximum varied up to 1107 when the gender 

information was included in the structure of the equation. When the same parameter was 

used for a male person, instead, the median value changed less, and the differences 

between minimum and maximum for both RMR and BMR were lower, with the highest 

value produced by equations that included gender (651 Kcal in BMR and 608 in RMR). 

The web-based tool derived from this study provides information about the 

variability of the estimated REEs, which can be viewed easily in the table, the boxplot, and 

the bar plot. With this information, the clinician can choose the ones most suitable for a 

patient according to his or her characteristics. The app also provides the minimum, 
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maximum, and median values of REE. At this point, the clinician can choose whether to 

use the value from a single equation after consulting the original study or to use the 

median estimated REE, since this seems to be the value that reduces the error best, as 

shown in previous studies [20,118]. 

Limitations 

This study does not permit a direct comparison of the retrieved studies due to their 

substantial differences in the statistical measures used and the different populations 

considered. 

The decision to exclude equations based on body composition parameters could bias 

the results since fat-free mass is considered a good predictor of REE, especially in elderly 

people. 

The inclusion of equations that had only a minority of older adults in the original 

sample could reduce the validity of their applicability in older adults, although these 

equations are used for these populations, and some are even widely used in clinical 

settings. 

The agreement among the equations was evaluated in a small sample with specific 

characteristics, namely, the prevalence of females and diabetic patients. Therefore, our 

results are not generalizable to the whole Italian population. It would be useful to repeat 

the agreement analysis in a large sample and to use a gold standard measure. 

Finally, our study considered only Caucasian subjects, although some of the 

equations were validated in patients of different ethnicities. 

5. Conclusions 

This study provides (i) a relevant examination of the use of predictive equations for 

elderly adults, (ii) apply the retrieved equations in a convenience sample, and (iii) provide 

a web application to help the clinician in the choice of the equations to use. 

Equations retrieved by this literature review are numerous, consider different 

variables in their structure, and provide different estimates from one another. Because of 

the different estimated REEs, that result, choosing one equation over another remains 

challenging. 

The most interesting findings in our work were that in our population, (i) the 

equations with the highest agreement were those with fewer variables, and (ii) adding 

information about physical activity and BMI did not increase the agreement among the 

equations. Since equations with more information reduced the agreement among the 

equations in our sample, we could suggest avoiding the use of equations that include 

many variables in their structure, especially for potentially fragile patients, such as those 

in our sample, for whom all measurements are not usually available. Equations retrieved 

were usually derived from a specific population; adding variables imply adding 

coefficient explains the variability of that specific population. This could be the reason 

why equations with fewer variables showed a higher level of agreement in our 

population. However, these results must be confirmed by further studies with a broader 

and more comprehensive sample. 

This study was the basis for the development of an easy-to-use tool to guide clinicians 

in identifying the most appropriate equation for estimating REE based on the subject’s 

characteristics. The tool allows clinicians to view all the available equations given the 

characteristics that were entered and to choose the most appropriate equation for the 

patient. If in doubt, the clinician can use the median value, which is also provided by our 

tool. 

The determination of the exact energy requirements in this population is only the 

first step in avoiding nutritional problems such as malnutrition and obesity. This 

vulnerable population requires an overall assessment of nutritional conditions based on 

the quantification of biomarkers, which is the most objective and unbiased way to assess 
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the intake of particular diet components [119] in addition to appetite evaluation [120] and 

the use of screening protocols [121]. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-

6643/13/2/458/s1, Table S1: Search strategy in Medline, Scopus, and Embase, Table S2: Variables 

reported in retrieved equations grouped in homogeneous categories. For each variable is reported 

the frequency of utilization in the equations both in equations validated in elderly and young 

population, Table S3: Estimated BMR, RMR, and EEE for each equation according to gender in the 

patients of the nursing home. Variables considered in the structure of the equations and I, II, and III 

quartiles are showed for each equation, Figure S1: Forest plots reporting the Intraclass Correlation 

Coefficient (ICC) with 95% CI of estimated REE according to the category of patients that were not 

considered in predictive equations for specific groups of predictive equations. The vertical grey line 

represents the ICC in each category without any grouping, Figure S2: Agreement among predictive 

equations in terms of Kcal/day at the individual level among the categories gender, BMI, Charlson 

Comorbidity Index, presence/absence of dysphagia, and diabetes. For each category is reported the 

median estimated REE at 95% CI considering all the predictive equations, Figure S3: ICC among 

BMR, RMR, and EEE with 95% CI for all predictive equations, Figure S4: Example of plots 

visualized in the shiny app Equationer in a female of 65 kg and 75 years at first as BMR, in the 

second plot as RMR and in the third with information on physical activity. The graphics in red 

included the information on gender; in grey are equations that do not distinguish between males 

and females, Text S1: Instructions for the use of the web-application. 
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