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Abstract: Axonal trajectories and neural circuit activities strongly rely on a complex system of molec-
ular cues that finely orchestrate the patterning of neural commissures. Several of these axon guidance
molecules undergo continuous recycling during brain development, according to incompletely un-
derstood intracellular mechanisms, that in part rely on endocytic and autophagic cascades. Based
on their pivotal role in both pathways, lysosomes are emerging as a key hub in the sophisticated
regulation of axonal guidance cue delivery, localization, and function. In this review, we will attempt
to collect some of the most relevant research on the tight connection between lysosomal function and
axon guidance regulation, providing some proof of concepts that may be helpful to understanding
the relation between lysosomal storage disorders and neurodegenerative diseases.

Keywords: axon guidance; lysosomal storage disorders; neuronal circuit

1. Introduction

The development of the central nervous system (CNS) occurs during embryonic stages
in a strictly temporally and spatially regulated manner, to allow for the organization of
a network of nervous fibers that progressively increase the range of functional neuronal
interactions. The high degree of complexity is achieved through a balanced and controlled
process of axonal remodeling, followed by the formation of specific synapses that cross-
connect target neuronal populations in order to establish a dynamic system of integrated
communication [1,2]. Axonal remodeling involves the elimination of “useless” connections
and the formation and growth of new dendritic spines and axonal trajectories that enable
brain plasticity and correct sensory responses to external stimuli. Impaired axonal remod-
eling and pathfinding lead to defective synaptic connectivity and aberrant neuronal circuit
function, which characterize both congenital disorders and neurodegenerative conditions.
While we know which extrinsic factors (that is, environmental stimuli, injury, and neuronal
activity) may govern the ability to increase the axonal branching and pruning [3], we do
not have a clear picture of which intrinsic factors (genetically encoded proteins, type of cell
population) finely modulate the overall setting of the neuronal network during early em-
bryogenesis. In addition, we still lack extensive knowledge of whether and how in certain
cases (for instance, brain injuries and traumatic insults) axonal regeneration takes place
and which molecules control this process. Understanding the cascade of molecular events
occurring during both embryonic brain development and after brain injury could allow
for the identification of druggable targets that may hamper neurodegenerative conditions
and prevent the onset of irreversible cognitive decline in certain inherited disorders. In
the past few years, lysosomes have attracted a remarkable interest for their key role in the
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autophagic process during axonal remodeling [4]. Besides, many lysosomal enzyme defects
have been detected in neurodegenerative conditions [5]. A few years ago, a pioneering
study revealed a tight association between lysosomal activity and axonal pruning [6]. More
recently, Farfel-Becker and colleagues demonstrated that lysosomes are actively delivered
to the distal termini, suggesting their pivotal function in axonal dynamics [7]. Therefore,
an emerging role of lysosomal activity in axon growth and guidance is gaining attention,
positing lysosomes as one of the top interests of neurobiologists. In this review, we will try
to briefly summarize the current knowledge of up-to-date discovered axonal guidance cues,
providing an inferential nexus between their impaired activity and the brain pathogenesis
of lysosomal storage disorders (LSDs).

2. Axonal Guidance Cues

The term “axon guidance” refers to all mechanisms that allow a developing axon to
elongate from the neuronal soma and reach its target tissues. A nascent axonal growth cone
can indeed integrate and transduce a multitude of different stimuli it receives from the
surrounding extracellular environment. This results in precise and predictable shaping of
axonal routes in the developing nervous system. The striking concept of axonal pathfinding
has traveled along centuries, from Ramón y Cajal and his studies of the embryonic chick
spinal cord (1890), to the identification and characterization of axon guidance cues’ major
families (i.e., netrins, slits, semaphorins, and ephrins), together with morphogens, growth
factors, glycoproteins, and cell adhesion molecules (CAMs) [8]. Axon guidance molecules
can be divided into attractive and repulsive cues that act either diffusively over long
distances or locally, in a contact-dependent manner. Cooperation between long-range and
short-range guidance cues is required for the navigation of growing axons to their target
cells (Figure 1).
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Figure 1. Axon guidance cues and endo-lysosomal pathway in the axonal growth cone. A schematic
picture depicts the modular structure of major axonal guidance cue-related receptors and their
respective ligands. Classical interactions are represented by black arrows, while red arrows indicate
crosstalk between different axon guidance families. In the bottom part of the figure, the endosomal–
lysosomal compartment is shown to mediate both receptor recycling and degradation. (created
with BioRender.com).
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2.1. Semaphorins

Semaphorins (SEMAs), first described in 1992 as “Fasciclin IV” by Kolodkin and
colleagues, are a large family of proteins that can be either secreted, cell surface-attached,
or membrane-bound [9]. Initially classified as repellents during axonal wiring, now it
is known that some of them can also behave as attractants [10]. The growth-cone recep-
tor PLEXIN is the most important protein involved in semaphorin signaling [11]. The
interaction between semaphorin and PLEXIN can be direct or mediated by other membrane-
associated proteins; for example, the SEMA3 class of semaphorin (except SEMA3E) interac-
tion with PLEXIN is facilitated by neuropilins, type I transmembrane proteins located on
the growth cone [12]. Cell adhesion molecules, such as Neuronal Cell Adhesion Molecule
(Nr-CAM) and L1 cell adhesion molecule (L1-CAM) that associate with neuropilin recep-
tors can be also required to mediate semaphorins’ effects and transduce SEMA3-dependent
signaling [13]. Additional receptors that directly bind semaphorins include, for example,
integrins [14] and proteoglycans [15]. Besides their role in axon guidance modulation,
the SEMA3 family of proteins has been demonstrated to play an important function in
vascular homeostasis also. In particular, SEMA3F seems to be involved in endothelial
barrier homeostasis and monocyte migration [16]. Finally, semaphorins are known modu-
lators of cancer cell behavior, such as glioblastoma cell growth, survival, invasiveness, and
angiogenesis [17].

2.2. Ephrins

Ephrins were first discovered and described in the context of retinotopic mapping [18].
They are membrane-related guidance cues categorized into two classes: Ephrin-As (Ephrin-
A1–Ephrin-A5), which are glycophosphatidylinositol (GPI)-anchored to the membrane,
and Ephrin-Bs (Ephrin-B1–Ephrin-B3), which have a transmembrane domain followed
by a short cytoplasmic domain [19]. Ephrin ligands bind to erythropoietin-producing
hepatoma (Eph) receptors that represent the largest subfamily among receptor tyrosine
kinases (RTK). Although ephrin-dependent signaling was initially thought to mediate
chemorepulsive interactions, later evidence showed that both attractive and repulsive
responses can occur [20]. Since ephrins are anchored ligands, their interaction with Eph
receptors is allowed only at sites of cell–cell contact, so that ephrin signaling becomes
fundamental in axon choice points, where axons select between two alternative routes [21].
Here, the recognition between ligand and receptor triggers a peculiar cascade known as
“bidirectional signaling”; unlike the classical unidirectional model characterized by ligand-
mediated receptor activation and a downstream signaling cascade inside the receptor-
expressing cell, the Eph–ephrin interaction induces a response both in ligand and receptor-
harboring cells. Thus, traditionally what happens inside the Eph-expressing cell is called
the “forward signal” and depends on Eph kinase activity, while the term “reverse signal”
refers to the events inside the ligand-bearing cell mediated by Src family kinases [22]. Due to
the fact that ephrins are extracellular GPI-anchored proteins, they require a transmembrane
protein to mediate reverse signaling. Indeed, it has been shown that Ephrin-A interacts
with different co-receptors, such as the p75 neurotrophin receptor (NTR) [23], TrkB [24],
and Ret [25].

2.3. Repulsive Guidance Molecule (RGM)

The Repulsive Guidance Molecule (RGM) was identified by Monnier and colleagues
in 2002 while studying chick growth cones of retinal axons [26]. RGM is a GPI-anchored
glycoprotein that has been proven to interact with neogenin (NEO) and acts as a repulsive
guidance molecule [27]. Indeed, the NEO–RGM interaction is also pivotal for embryonic
neurodevelopment, as it is required for neural tube closure and neuroepithelial polar-
ization [28,29]. Interestingly, RGM has been shown to be involved in the invasion by
inflammatory cells of the CNS during autoimmune encephalomyelitis, thus establishing
a link between axonal guidance and neuroinflammation [30]. Another key aspect is that
RGMs have been shown to inhibit Bone Morphogenetic Protein (BMP) signaling through
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the interaction with Growth Differentiation Factor 5 (GDF5), providing direct proof of the
close connection between axonal pathfinding and morphogens activity [31].

2.4. Netrins

Netrins are a family of laminin-related proteins that act in the extracellular compart-
ment as chemotropic guidance cues during neuronal development. In mammals, both
secreted Netrin-1, 3, and 4) and membrane-tethered GPI-linked Netrins (Netrin-G1 and
G2) have been discovered [32]. Unlike classical netrins, Netrin-G1 does not bind to known
netrin receptors, but instead interacts specifically with the Netrin-G ligand (NGL1, also
known as LRRC4c) to modulate neurite elongation and the laminar organization of den-
drites and induce the accumulation of microglial cells around axons [33–35]. The history
of netrins began in the early 1990s, starting with the description of Caenorhabditis elegans
(C. elegans) genes unc-5 (UNC5 in mammals), unc-6 (NTN1 in mammals), and unc-40 (DCC
and NEO in mammals, frazzled in Drosophila melanogaster) [36]. The UNC5 protein is impli-
cated in the repulsive netrin-mediated axon guidance through heterodimerization with
Deleted in Colorectal Cancer (DCC) for long-range repulsion, and with Down syndrome
cell adhesion molecule (DSCAM) for short-range repulsion [37]. Given the homology with
the UNC family, mammalian DCC, originally identified as a tumor suppressor, was first
proposed as a mediator of netrin pathways in 1996 [38]. DCC is a transmembrane receptor
of the immunoglobulin superfamily highly expressed in spinal commissural neurons [38],
retina [39], and many projection neurons of the forebrain and midbrain during embryonic
development [40]. The netrin–DCC interaction can mediate both growth cone attraction
and repulsion [37,38,41–44]. Moreover, Keino-Masu and colleagues discovered that NEO,
a transmembrane protein strictly related to DCC, acts as a passive netrin receptor, serving
as a stabilizer of the ligand gradient [38].

2.5. Slits

Slit is a secreted protein containing leucine-rich and Epidermal Growth Factor (EGF)-
like repeats. First discovered in Drosophila melanogaster (D. melanogaster) by the end of the
1980s, slit is expressed in midline cells and required for normal development of midline
structures [45]. Slit proteins are a class of single peptides of approximately 1500 amino
acids. Invertebrates have only one slit, while vertebrates harbor three different variants,
specifically SLIT1, SLIT2, and SLIT3 [46]. Slit proteins are cleaved by proteolytic enzymes
between the fifth and sixth EGF-like domains to generate the long N-terminal Slit segment
(SlitN) and the short C-terminal Slit segment (SlitC). These two domains have very different
mediators; while SlitN can combine with the main slit interactors, Roundabout (ROBO) and
DSCAM, to mediate axon guidance and branching extension, SlitC cannot bind ROBOs [47],
but instead regulates axon guidance through its binding to PLEXIN, the main semaphorin
receptor [48]. The first ROBO gene, ROBO1, was identified in D. melanogaster during an
extensive screening focused on genes controlling the CNS midline crossing. [49]. The mam-
malian ROBO family is composed of four major components (ROBO1–4). While ROBO1
and ROBO2 mediate canonical slit signaling, ROBO3 and ROBO4 exhibit divergent fea-
tures. ROBO3 cannot bind slits, but instead interacts with the Netrin-1–DCC complex [50].
Moreover, it antagonizes the SLIT2–ROBO1/2-induced repulsion by binding the diffusible
factor NELL2. Recently, Pak and colleagues demonstrated the structural interplay between
ROBO3 and NELL2, testing in vitro NELL preference towards ROBO3.1 binding [51]. On
the other hand, ROBO4 cannot bind to slits directly, but interacts with the complex of SLIT2
and ROBO1 [52]. In addition, it can bind UNC5B, acting as a ligand to inhibit vascular
endothelial growth factor (VEGF)-induced angiogenesis and vascular permeability [53].
It has been also proposed that ROBO4 transduces the downstream signaling through the
interaction of a co-receptor and other molecules, such as ROBO1, with heparan sulfate
proteoglycans (HSPGs) [54].
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3. Axonal Guidance Cue Integration and Crosstalk

The high degree of complexity in studying axonal wiring is not due to the number
of guidance cues, which are rather limited, but is likely derived from the combinatorial
effect these cues induce at the growth cone. In fact, the axon guidance cue crosstalk, both
in time and space, is fundamental for the proper shaping of axon-related molecular path-
ways. There are multiple mechanisms implicated in the mediation and regulation of axon
guidance-induced responses, from alternative splicing, protein synthesis, and degradation
to receptor trafficking and receptor–receptor interactions [55]. Moreover, during their
“journey”, axons are often guided by the epistatic influence of intermediate targets, which
can switch from a repulsive to an attractive activity. This occurs, for instance, during the
triggering of the SLIT/ROBO pathway, which inactivates the netrin-dependent attraction
and drives the differential axonal preference in embryonic Xenopus laevis commissural
spinal neurons [56]. Alternatively, another recent clear-cut example is the extracellular
environment-mediated tuning of PLEXIN1a and ROBO1 receptors trafficking on the cell
surface during the midline crossing of spinal cord commissural axons in chick embryos [57].
Synergistic crosstalk has also been reported for ephrin and netrin pathways in in vitro
explants of chick spinal lateral motor column (LMC) neurons. It has been shown that
Ephrin-A5, acting through its receptor EPHA4, induces sensitization to the Netrin-1 signal
by increasing NEO abundance in motor neurons, probably acting on the receptor traffick-
ing [58]. Therefore, through a selective combinatorial integration between different classes
of axonal cues, a deep fine-tuning of neuronal modular patterning is achieved, allowing
for the formation of the complex dynamic network of responses to environmental stimuli
that shape the early brain embryonic development. The modular structure of major axonal
guidance cue-related receptors and their respective ligands is depicted in Figure 1.

4. Lysosomal Function in Axonal Development

To correctly integrate signals coming from extracellular guidance cues, growing axons
need to dynamically regulate the presence of receptor proteins available on the growth
cone surface. Without considering the transcriptional aspect of this regulation, receptor
presence and availability on the cell surface can be post-transcriptionally regulated by the
endosomal–lysosomal pathway [59]. Endosomes participate in the dynamics of axonal
growth, regulating the trafficking of endocytosed receptors [60]. Once inside the endo-
somes, receptors can be directed back to the cell membrane if they enter the recycling
pathway, or they can be destined to degradation following the late endosomal–lysosomal
pathway [61]. Indeed, endosomes can take part in the axonal guidance-related signaling
cascades, being the host compartment for sorting signals [59]. For instance, the endo-
lysosomal compartment is involved in guidance cue regulation of the EphA2 signaling
cascade. In fact, it has been reported that an activated EphA2 receptor can be internalized
by trans-endocytosis into endosomes and be recycled back to the plasma membrane or
degraded into lysosomes. Moreover, in early endosomes, EphA2 can retain its active state
and signal by recruiting and activating the Rac1-specific guanine nucleotide exchange fac-
tor (GEF) Tiam1, which seems to be implicated in neurite outgrowth [62,63]. Additionally,
in commissural axons, ROBO levels are regulated by lysosomal degradation, thanks to
the action of Commissureless (Comm), a late endosomal protein that targets ROBO to late
endosomes/lysosomes, allowing the growing axon to cross the midline and reduce its
sensibility towards slit-mediated repulsion [64]. The paramount importance of lysosomal
function in axonal growth is also highlighted by the fact that inhibiting lysosome transport
to the distal axon causes severe changes in size and dynamics of the growth cone [65]. As
previously suggested, the impairment of lysosomal trafficking along the axon can affect
growth cone homeostasis due to the lack of lysosomal degradative activity or a missing
lysosomal-mediated delivery of signaling and adhesion molecules [65]. Moreover, it has
been recently shown that RNA granules can also hitchhike on lysosomes to travel long
distances in neurons, suggesting that the impairment of lysosomal movement could also
imbalance local protein synthesis at the distal axon tip [66]. As a matter of fact, Corradi
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and colleagues reported that pre-miRNA can travel to the axon terminal, tagging late endo-
somes/lysosomes, and that SEMA3A signaling induces their maturation with consequent
impact on growth cone dynamics [67]. Continuous anterograde transport of degradative
active lysosomes and disrupted axon homeostasis due to lysosomal stalling have also been
recently described by Farfel-Becker and colleagues, demonstrating that interference with
lysosomal transport induces autophagic stress and accumulation of autophagosomes in
the axons [7]. Local mitophagy has also been reported to occur in axons after induction of
mitochondrial damage [68], further pointing out the relevance of lysosomal regulation and
function in axons.

However, local degradation of cargos in axons is not the only mechanism by which
lysosomes regulate waste removal and maintain homeostasis. As a matter of fact, retrograde
transport of autophagosomes, together with their maturation and fusion with lysosomes,
may suggest that the contribution of both local degradation and retrograde transport are
mechanisms necessary to obtain efficient axonal clearance [69].

5. Brain Disorders with Axonal Guidance Defects

The correct assembly of neural circuits is crucial for cognitive development and
interference of axonal growth, and pathfinding has been associated with the onset of
neurodevelopmental disorders, such as autism, schizophrenia, and other, more rare condi-
tions. Nonetheless, it has been progressively recognized that also in neurodegenerative
disorders (for example, Parkinson’s, Alzheimer’s, and Huntington’s disease), neural cir-
cuit impairments precede and carry over the progressive cognitive decline in affected
patients [70–75]. In some inherited conditions (Table 1), a common pathological feature
related to axon trajectories defects is the partial or complete agenesis of the corpus callosum
(ACC), a peculiar placental mammalian-specific structure consisting of a large fiber tract
that connects the two brain hemispheres [76]. Defects in corpus callosum formation and
interhemispheric communication have been demonstrated in autism, schizophrenia, atten-
tion deficit hyperactivity disorders, and developmental language disorders [76]. In most
cases, failure of contralateral callosal targeting, that is, the impairment of midline crossing
and the contralateral positioning of the cortical callosal neurons projections, predispose
subtle to gross behavioral abnormalities that severely affect diseased conditions, such
as psychiatric disorders. Among identified molecular causes leading to aberrant axonal
misrouting and corpus callosum agenesis or dysgenesis, mutations in the chemoattractant
ligand netrin have been demonstrated to be detrimental and the leading cause of the
congenital mirror movement (CMM) syndrome [77,78]. In these patients, the characteristic
feature is synkinesis, that is, an involuntary movement occurring in one side of the body
that mirrors intentional movements on the opposite side. This defect can also be diagnosed
in patients harboring mutations in the DCC coding gene; in this latter case, partial or total
ACC has been described [79,80]. While CMM abnormalities are not generally characterized
by intellectual disabilities, the partial or complete ACC may be associated with mild to
severe forms of developmental disabilities and cognitive impairment. Perturbed Netrin-1
signaling due to loss-of-function DCC mutations has been also described in the so-called
“developmental split-brain syndrome” (DSBS), a severe neurological disease characterized
by horizontal gaze palsy, scoliosis, ACC, and midline brain stem cleft [81]. In affected pa-
tients, biallelic homozygous mutations have been detected and associated with a complete
absence of anterior and hippocampal commissures. Severe neurological abnormalities
and intellectual disability have been also ascribed to mutations of the ROBO3 gene in
the horizontal gaze palsy and progressive scoliosis (HGPPS) syndrome. In these patients,
the cognitive impairment is associated with congenital absence of conjugate horizontal
eye movements, preservation of vertical gaze and convergence, and progressive scoliosis
developing in childhood and adolescence [82–85]. X-linked neurodevelopmental forms
of intellectual disability have been also described in association with mutations of the
L1CAM gene, coding for a neuronal cell adhesion molecule L1, which is involved in axon
outgrowth and pathfinding, through interactions with various extracellular ligands and
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intracellular second messengers [86,87]. Although initially recognized as distinct clinical
entities, several congenital forms characterized by L1CAM mutations are now classified as
CRASH syndrome (Corpus callosum agenesis, Retardation, Adducted thumbs, Shuffling
gait, and Hydrocephalus), a quite heterogeneous group of diseased conditions [88,89].
Aberrant corticospinal tract (CST) development, associated with mirror movement and
hypogonadism, is due to defects in the ANOS1 gene in Kallmann syndrome. ANOS1
encodes anosmin, an extracellular glycoprotein important for the axonal guidance and
migration of olfactory and Gonadotropin-Releasing Hormone (GnRH) neurons during
brain development [90]. The activity of this protein has been largely investigated and
has been recently shown to rely on the activation of the fibroblast growth factor (FGF)
signaling pathway through a heparan sulfate-dependent mechanism [91]. A characteristic
phenotypic feature related to impaired axonal guidance is also the aberrant decussation
of nerve fibers. In Joubert syndrome and related disorders (JSRD), a reduced decussation
of the superior cerebellar peduncles has been tied to the onset of social disabilities and
synkinetic mirror movements [92,93]. The syndrome is associated with defects in several
genes (at least 30), most of which play a role in the function of the primary cilium [93].
Among them, the gene ADP-ribosylation factor-like protein 13B (ARL13B) codes a small
GTPase, which regulates Sonic Hedgehog (Shh) signaling, and its inactivation results in
defective commissural axon guidance in vivo [94]. Another featured example of disorders
of misguided axonal branching is the Duane retraction syndrome (DRS), a congenital form
of strabismus caused by mutations of the α2-Chimerin [95]. This gene codes for a Rac1
GTPase-activating protein, a cytoskeletal-related protein involved in Ephrin-A-mediated
spine morphogenesis [96] and required for oculomotor axon guidance targeting [97,98].
Dysgenesis of the corpus callosum and anterior commissure have been identified in pa-
tients harboring mutations in the TUBB3 gene, which cause two distinct clinical entities,
named Cortical Dysplasia, Complex, with other Brain Malformations 1 (CDCBM1) and
Congenital Fibrosis of the Extraocular Muscles 3 (CFEOM3) [98,99]. In both cases, the loss
of function occurring in the third (III) member of the beta-tubulin protein family (TUBB3)
leads to microtubule instability and axonal guidance defects in commissural axons and
cranial nerves that result in intellectual and behavioral impairments and aberrant eye move-
ment [100]. Additional corpus callosum defects, although with minimal or undetectable
intellectual disability, have been described in the Craniofrontonasal syndrome (CFNS), in
which loss-of-function Ephrin-B mutations primarily affect the boundaries of the coronal
cranial suture, leading to pathological craniosinostosis [101]. While no direct evidence of
abnormal decussation or impaired commissures formation has been detected in patients
affected by lysosomal storage disorders, recent investigations have suggested the potential
implication of axonal guidance defects in the onset of neurological abnormalities in Mu-
copolysaccharidosis (MPS) type II (Hunter syndrome), type IIIb (Sanfilippo syndrome),
and type VII (Sly syndrome) [102–104]. In MPSII and MPSIIIb, the aberrant heparan sulfate
catabolism associated with the onset of progressive severe neurological abnormalities have
been tied to neuronal dysfunction and misexpression of axonal guidance cues [102,103].
Future studies will enable us to verify whether the cognitive decline observed in these and
other LSD diseases is tightly related to axonal guidance-related abnormalities.
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Table 1. Brain disorders in which axon guidance alterations have been described or inferred.

Disorder Human Gene Axon Guidance-Related
Defect Symptoms Reference

Congenital mirror movements
(CMM) and partial or complete
agenesis of the corpus callosum

NETRIN1 (NTN1) Corticospinal tract
(CST) abnormality

Involuntary movements of one
hand that mirror intentional
movements of the opposite

hand

[77,78]

Congenital mirror movements
(CMM) and/or isolated agenesis

of the corpus callosum
Deleted in colorectal cancer (DCC)

Decreased crossing of
descending corticospinal

tract projections

Variable range of intellectual
disabilities, cognitive

impairment, language delay,
and visual and spatial deficits

[79,80]

Developmental split-brain
syndrome (gaze palsy, familial

horizontal, with progressive
scoliosis 2, with impaired
intellectual development)

Deleted in colorectal cancer (DCC)

Agenesis of the corpus
callosum and absence of the

anterior and
hippocampal commissures

Neurological abnormalities,
horizontal gaze palsy,

intellectual disability, and
progressive scoliosis

[81]

Horizontal gaze palsy with
progressive scoliosis (HGPPS)

Roundabout guidance receptor 3
(ROBO3)

Abnormal flattening of the
basis pontis and hypoplasia
in the pontine tegmentum;
anomalous innervations of
the lateral rectus muscle of

the eye by the abducens
supranuclear nerve

Horizontal gaze palsy,
intellectual disability and

progressive scoliosis
[82–85]

CRASH syndrome (Corpus
callosum agenesis, Retardation,

Adducted thumbs, Shuffling gait,
and Hydrocephalus)

L1CAM
Agenesis of the corpus

callosum and
corticospinal tract

Microcephaly, mental
retardation, spastic paraparesis [86,87]

Kallman
syndrome (X-linked)

ANOS1
(KAL1)

Defective olfactory axon
guidance and migration

Congenital
anosmia, hypogonadotropic

hypogonadism, mirror
movements, and aberrant

corticospinal tract

[89,90]

Joubert syndrome and related
disorders (JSRD)

Multiple genes (AHI1, NPHP1,
CEP290, TMEM67,

RPGRIP1, ARL13B, CC2D2A)

Hypotonia, ataxia, mental
retardation, altered

respiratory patterns, social
disabilities, and synkinetic

mirror movements

Cerebellar vermian hypoplasia,
reduction in pontine neurons,

and reduced decussation of the
superior cerebellar peduncles.

[92,93]

Duane retraction syndrome (DRS) α2-CHIMERIN

Absence of abducens motor
neurons and nerves; aberrant

innervation of the lateral
rectus muscle by the

oculomotor nerve

Restricted horizontal gaze and
ocular synkinesis [95,96]

Cortical dysplasia, complex, with
other brain

malformations 1 (CDCBM1)

Beta tubulin protein family
member TUBB3

Thin corpus callosum,
hypoplastic brainstem, and
dysplastic cerebellar vermis

Severe mental retardation,
strabismus, axial hypotonia,

and spasticity
[99]

Congenital fibrosis of the
extraocular muscles 3 (CFEOM3)

Beta tubulin protein family
member TUBB3

Dysgenesis of the corpus
callosum and anterior

commissure (AC), and
internal capsule; generalized

loss of white matter; basal
ganglia dysmorphisms

Aberrant eye movements, facial
weakness, axonal peripheral

neuropathy, contractures of the
wrist and fingers, delayed

development, and
learning disabilities

[100]

Craniofrontonasal
syndrome (CFNS) Ephrin B1(EFNB1) Dysgenesis or agenesis of the

corpus callosum

Variable difficulties in speech
and language, limited or no

intellectual disabilities, facial
asymmetry, skeletal and

dermatological abnormalities

[101]

Mucopolysaccharidosis type II
(Hunter syndrome)

Iduronate sulfatase
(IDS)

Indirect experimental
observation

Mental retardation, language
delay, cognitive impairment [103]

Mucopolysaccharidosis type IIIb
(Sanfilippo Syndrome)

α-N-acetylglucosaminidase
(NAGLU)

Indirect experimental
observation

Mental retardation, cognitive
decline, dysphagia, sleep

problems, seizures
[102]

Mucopolysaccharidosis type VII
(Sly syndrome)

β-glucuronidase
(GUSB)

Indirect experimental
observation

developmental
Delay, speech delay, intellectual

disability of variable degree
[104]

6. Concluding Remarks

In light of the recent discoveries, the contribution of lysosomes to the process of axonal
guidance and remodeling has gained substantial interest. The utmost importance of correct
lysosomal hydrolases activity and, more in general, of lysosomal trafficking and function,
pinpoints and justifies increasing research efforts towards the study of these organelles in



Biomolecules 2021, 11, 191 9 of 13

the context of neurological disorders. Bearing in mind that lysosomal storage disorders
often exhibit severe neurological abnormalities, starting from early childhood, it appears to
be groundbreaking in the investigation of the functional relationship between axonal guid-
ance and lysosomal protein activity. A more detailed understanding of this hypothetical
epistatic interaction would encourage the development of more targeted therapies against
neurological defects in both lysosomal disorders and neurodegenerative conditions.
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