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Herpes simplex virus type 1 (HSV-1) is a widespread neurotropic pathogen responsible
for a range of clinical manifestations. Inflammatory cell infiltrate is a common feature
of HSV-1 infections and has been implicated in neurodegeneration. Therefore, viral
recognition by innate immune receptors (i.e., TLR2) and the subsequent inflammatory
response are now deemed key players in HSV-1 pathogenesis. In this study we
infected with HSV-1 the enteric nervous system (ENS) of wild-type (WT) and TLR2
knock-out (TLR2ko) mice to investigate whether and how TLR2 participates in HSV-1
induced neuromuscular dysfunction. Our findings demonstrated viral specific transcripts
suggestive of abortive replication in the ENS of both WT and TLR2ko mice. Moreover,
HSV-1 triggered TLR2-MyD88 depend signaling in myenteric neurons and induced
structural and functional alterations of the ENS. Gastrointestinal dysmotility was,
however, less pronounced in TLR2ko as compared with WT mice. Interesting, HSV-1
caused up-regulation of monocyte chemoattractant protein-1 (CCL2) and recruitment
of CD11b+ macrophages in the myenteric ganglia of WT but not TLR2ko mice.
At the opposite, the myenteric plexuses of TLR2ko mice were surrounded by a
dense infiltration of HSV-1 reactive CD3+CD8+INFγ+ lymphocytes. Indeed, depletion
CD3+CD8+ cells by means of administration of anti-CD8 monoclonal antibody reduced
neuromuscular dysfunction in TLR2ko mice infected with HSV-1. During HSV-1 infection,
the engagement of TLR2 mediates production of CCL2 in infected neurons and
coordinates macrophage recruitment. Bearing in mind these observations, blockage
of TLR2 signaling could provide novel therapeutic strategies to support protective
and specific T-cell responses and to improve neuromuscular dysfunction in pathogen-
mediated alterations of the ENS.
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INTRODUCTION

Herpes simplex virus type 1 (HSV-1) infections are endemic
worldwide and seropositivity is deemed to exceed two thirds of
the world’s population (Looker et al., 2015). In humans, HSV-1 is
usually acquired during childhood by contact with contaminated
mucosal secretions or skin lesions (Pellett and Roizman, 2013).
After initial replication in epithelial cells, HSV-1 moves to cell
body of sensory neurons by intra-axonal transport and establishes
a lifelong latent infection primarily in trigeminal ganglia (Pellett
and Roizman, 2013). However, studies demonstrated HSV-1
DNA in different neuronal structures innervating the gut (Rand
et al., 1984; Gesser and Koo, 1997), suggesting more widespread
HSV-1 dissemination than it is generally assumed. Latent HSV-1
infection is characterized by low level expression of viral antigens
in infected neurons and by possible periodic reactivation leading
to shedding of viral particles. Persistent HSV-1 infection is now
supposed to drive chronic inflammatory responses that could
cause the development of neuronal damage (Valyi-Nagy et al.,
2000; Menendez et al., 2016). Although it is well accepted that
innate and acquired immunity co-operate to restrain primary
HSV-1 infection, to contain virus during latency, and to resolve
spontaneous reactivation, the exact mechanism driving the
development of inflammatory infiltrate and its consequence for
the host are not completely clear.

Upon recognition of both viral nucleic acid and proteins,
pattern recognition receptors of the innate immunity such
as Toll-like receptors (TLRs) activate secretion of interferons,
cytokines, and chemokines to shape inflammatory reactions and
specific adaptive immune responses (Takeuchi and Akira, 2010;
Iwasaki and Medzhitov, 2010; Thompson et al., 2011). The
precise function of TLRs in the immune response to HSV-1
in vivo is still not fully understood since they appear to have
a double-edged role in mediating both immune protection
and immune pathology. Indeed, TLRs seem to either diminish
or worsen virus-mediated disease depending on the pathogen,
the cells involved, and the site of the infection. For instance,
absence of TLR responses for deficiency in the TLR adaptor
proteins MyD88 (myeloid differentiation primary response 88)
or TRIF (TIR-domain-containing adapter-inducing interferon-β)
results in encephalitis and host death following HSV-1 infection
(Mansur et al., 2005; Sancho-Shimizu et al., 2011). TLR2
absence, however, reduces pathology and mortality generated
by intraperitoneal or intranasal HSV-1 challenge (Kurt-Jones
et al., 2004; Lima et al., 2010) whereas activation of TLR2
elicits protective responses in microglia cells (Aravalli et al.,
2008). Moreover, TLR2 cooperates with TLR9 in controlling
cytokine production both in vitro and in a mouse model of
vaginal and intraperitoneal HSV-1 infection (Sørensen et al.,
2008). Indeed, in the central nervous system TLR2 is essential
for expression of inflammatory cytokines (i.e., TNF-α and IL-6)
and chemokines by monocytes (i.e., CCL2), lymphocytes (i.e.,
CCL22 and CCL27) and neutrophils (i.e., RANTES) during viral
infection (Aravalli et al., 2005; Zhou et al., 2008). Recruitment
of macrophages and lymphocytes nearby infected neurons or
glial cells represents a key step to limit replication and spread
of neurotropic viruses. However, the inflammatory infiltrate

potentially damages the neuronal tissue through direct or indirect
mechanisms (Kodukula et al., 1999; White et al., 2016).

We recently reported that HSV-1 persistently infects the
enteric nervous system (ENS) and engages a local immune
response causing gut neuromuscular abnormalities (Brun et al.,
2010; Brun et al., 2018). In this study, we tested the hypothesis
that TLR2-dependent signals in enteric neurons orchestrate
immune cells recruitment and mediate HSV-1 induced neuronal
damage. Indeed, TLR2ko mice failed to express CCL2 in HSV-1
infected enteric neurons. The missing macrophage recruitment
allowed a strong T-cell response in the myenteric plexus of
HSV-1 infected TLR2ko mice and attenuated the virus-induced
gastrointestinal dysfunction as compared with wild-type mice
thus demonstrating the importance of neuronal TLR2 in
coordinating the inflammatory response against HSV-1.

MATERIALS AND METHODS

Viral Stocks Preparation
HSV-1 strain SC16 was propagated on Vero cells (ATCC R©

CCL81TM, American Type Culture Collection, VA,
United States), as previously described (Brun et al., 2018).
Vero cells were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10% heat-inactivated fetal
bovine serum (FBS) and penicillin/streptomycin 1% (all from
Gibco), at 5% CO2 and 37◦C. HSV-1 stocks were prepared in
DMEM 2% FBS and titrated on Vero cells by standard plaque
technique. Viral stocks were adjusted to 1 × 108 plaque-forming
units (PFU)/mL.

Animal Model of HSV-1 Infection and
Mice Treatments
Wild-type (WT) C57BL/6J and TLR2 knockout (TLR2ko,
B6.129-Tlr2tm1Kir/J) mice were obtained from Envigo
Laboratories (Udine, Italy) and Charles River (Monza, Italy),
respectively. Animals were kept at 22 ± 2◦C with 12 hrs
light/dark cycle and fed with standard rodent food and tap water.
Eight weeks old mice received HSV-1 (1 × 102 PFU) into one
nostril. Animals were placed back in their cages and monitored
daily for the occurrence of neurological abnormalities assessed
using a validated scoring system (Garcia et al., 1995). Four weeks
later, 1 × 107 PFU of HSV-1 or equal volumes of Vero cell lysate
(sham infection) were inoculated via intragastric (IG) route
using a 24 gauge, 9-cm catheter. Mice were then sacrificed 1,
2, or 3 weeks following IG viral inoculum. Sham infected mice
(control) were sacrificed at matching time points but since data
were comparable, results were pooled and reported as one sham
infected group. For CD8 depletion mice were intraperitoneally
injected with 200 µg rat anti-mouse CD8 purified monoclonal
antibody (clone 2.43) produced by hybridoma (ATCC R© TIB-
210) and purified using Protein G PLUS-Agarose (Santa
Cruz Biotechnology, Italy). The monoclonal antibody was
administered 1 day after IG HSV-1 inoculation. As control mice
received equal volumes of rat IgG. This study was carried out in
accordance with the recommendations of National and European
guidelines for handling and use of experimental animals. The

Frontiers in Microbiology | www.frontiersin.org 2 September 2018 | Volume 9 | Article 2148

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02148 September 8, 2018 Time: 18:36 # 3

Brun et al. TLR2 Skews Immune Cells Recruitment

protocol was agreed by the Animal Care and Use Committee of
the Padova University under supervision of the Health Italian
Ministry.

Intestinal Whole Mount Preparation and
Staining
For whole mount preparations, distal ileum was flashed with PBS,
filled with 4% PFA and submerged in the same fixative for 1 h
at 22◦C (Brun et al., 2013). Then tissues were rinsed in PBS and
one cm long specimens were dissected under microscope (Zeiss,
Germany) to obtain the longitudinal muscle layer containing
the myenteric plexus (LMMP). LMMP preparations were fixed
on wax supports, washed in PBS containing 0.5% Triton-X100
and incubated in blocking buffer (2% bovine serum albumin,
0.5% Triton-X100 in PBS). Samples were stained with primary
antibody (Table 1) at 4◦C for 16 h and immune-complexes
were detected using fluorescent labeled secondary antibodies
(Table 1). Tissues were visualized using Leica TCSNT/SP2
confocal microscope.

TABLE 1 | Primary and secondary antibodies used in the study.

Primary antibodies

Antigen (host) Clone Source Application

BetaIII-Tubulin (rabbit) polyclonal Couvance IHC, FC, WM

Peripherin (rabbit) polyclonal Millipore WM

S100β (rabbit) EP1576Y Millipore WM

CCL2 (rat) ECE.2 R&D systems IHC, IF

β-Actin (mouse) AC-15 Sigma-Aldrich WB

CD3 (rat) 17A2 eBioscience IHC, FC

CD4 (rabbit) 50134-R001 Sino Biological Inc FC

CD8 (rabbit) orb1269 Biorbyt Ltd FC

IFNγ (rat) XMG1.2 eBioscience FC

F4/80 (rat) CI:A3-1 Abeam FC

CD11b (rabbit) EPR1344 Abeam IHC, FC

CD19 (rabbit) C1C3 Gene Tex FC

NK1.1 (rabbit) PK136 Gene Tex FC

TLR2 (mouse) polyclonal Abeam WB, FC

TLR2 (rabbit) polyclonal Santa Cruz Biotech IP

TLR2 (mouse) T2.5 Abeam IHC

MyD88 (mouse) E-ll Santa Cruz Biotech WB

IL17 (rat) eBiol7B7 eBioscience FC

Secondary antibodies

Antigen (host) Source Application

anti-rabbit (goat) PE Chemicon WM, FC, IHC

anti-rat (rabbit) FITC Invitrogen IHC, FC

anti-rabbit (goat) HRP Sigma-Aldrich WB, IHC

anti-mouse (goat) HRP Sigma-Aldrich WB

anti-rat (rabbit) HRP Sigma-Aldrich IHC

anti-rabbit (goat) APC Chemicon FC

anti-rat (rabbit) PE Sigma-Aldrich FC

WB, western blot; IP, immunoprecipitation; WM, whole mount; IHC,
immunohistochemistry; FC, flow cytometry.

Dissection of Longitudinal Muscle
Myenteric Plexus
At the sacrifice, the abdomen was opened by a midline incision;
the small intestine was exteriorized and aseptically removed. The
explant was placed in oxygenated Krebs solution (126 mM NaCl,
25 mM NaHCO3, 2.5 mM KCl, 2.5 mM CaCl2, 1.2 mM MgCl2,
1.2 mM NaH2PO4, pH 7.2). Tissues were cut in pieces of ∼1 cm
length. LMMP were peeled off and placed in ice-cold sterile
Krebs solution. Samples were immediately snap-frozen in liquid
nitrogen or subjected to enzymatic digestion to obtain single cells
suspensions (Brun and Akbarali, 2018).

Nucleic Acid Extraction and Analysis
Total RNA was extracted from LMMP (SV total RNA isolation
system, Promega, Italy) and contaminating DNA was removed
by digestion with DNase I (Promega). Quantitative PCR was
performed using iTaq Universal SYBR Green One-Step Kit (Bio-
Rad Laboratories, CA, United States) and the ABI Prism 7700
Sequence Detection System (PerkinElmer, Monza, Italy) with
specific oligonucleotides (Universal Probe Library Assay Design
Center, Roche Applied Science) listed in Table 2. Data were
normalized to 18S ribosomal RNA (Rn18S) and results were
represented as mean fold changes (Brun et al., 2010).

Gastrointestinal Transit
Fluorescein-isothiocyanate dextran solution (70,000 MW;
6.25 mg/mL in PBS; 100 µL/mice; MP Biomedicals LLC, CA,
United States) was IG administered and mice were sacrificed
after 60 min. Luminal contents were collected form the stomach,
cecum, colon, and from 8 equal segments of the small intestine.

TABLE 2 | Oligonucleotides and PCR conditions.

Oligonucleotide sequence Tm (◦C)

LATs Fw 5′-gacagcaaaacaataaggg-3′

Rv 5′-acgagggaaaacaataaggg-3′
60

ICP0 Fw 5′-ggtgtacctgatagtgggcg-3′

Rv 5′-gctgattgcccgtccagata-3′
60

ICP4 Fw 5′-atgacggggacgagtacgac-3′

Rv 5′-acgacgaggacgaagaggat-3′
56

VP16 Fw 5′-tgcgggagctaaaccacatt-3′

Rv 5′-tccaacttcgcccgaatcaa-3′
60

tk Fw 5′-tagcccggccgtgtgaca-3′

Rv 5′-cataccggaacgcaccacacaa
60

gB Fw 5′-ggctccttccgattctcc-3′

Rv 5′-ggtactcggtcaggttggtg-3′
60

gC Fw 5′-ccaaacccaagaacaacacc-3′

Rv 5′-tgttcgtcaggacctcctct-3′
60

Ccl2 Fw 5′-gcctgctgttcacagttgc-3′

Rv 5′-caggtgagtggggcgtta-3′
60

Cxcl11 Fw 5′-cagctgctcaaggcttcctta-3′

Rv 5′-ctttgtcgcagccgttactc-3′
60

Cxcl9 Fw 5′-tcggacttcactccaacacag-3′

Rv 5′-agggttcctcgaactccacac-3′
60

Rn18S Fw 5′-tcaagaacgaaagtcggagg-3′

Rv 5′-ggacatctaagggcatca-3′
60

Fw, forward; Rv, reverse; Tm, melting temperature.
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Samples were clarified by centrifugation (10,000 × g, 15 min,
4◦C) and fluorescence was determined at 494/521 nm (Hitachi
F2000; Hitachi, Tokyo, Japan). The percentage of FITC-dextran
remaining in the stomach was calculated as the gastric emptying
value. The geometric center of the fluorescent probe distributed
along the ileum denotes the intestinal transit (Brun et al., 2013).

Colonic Transit Measurement
Mice were slightly anesthetized with isoflurane (<1 min; Merial,
France) and a single 2-mm glass bead was inserted into the distal
colon at 2 cm from the anus (Brun et al., 2017). Colonic transit
was assessed by monitoring the bead retention time.

Histological Evaluation
Segments of ileum were placed in 10% buffered formalin for 24 h,
embedded in paraffin and sectioned (5 µm thick). Sections were
subjected to haematoxylin and eosin (H&E) staining and at least
10 fields per sample were examined using Leica microscope.

Immunoblot Analysis
Layers containing the myenteric plexus were homogenized
using a Retsch MM300 mixer in RIPA buffer added with
protease inhibitors (Brun et al., 2013). Samples were incubated
30 min in ice and debris were removed by centrifugation
(15.000 × g, 5 min at 4◦C). Protein concentration was assessed
in the supernatants using the bicinchoninic acid kit (Thermo
Scientific, MA, United States). Protein extracts (1 mg) were
incubated overnight at 4◦C with anti-TLR2 antibody (Table 1)
and immune-complexes were captured using Protein G–agarose
beads (Santa Cruz Biotechnology, Italy). The precipitates were
resolved on SDS–PAGE gel and blotted onto a PVDF membrane
(Bio-Rad Laboratories). Membranes were incubated 1 h in 5%
non-fat dry milk, 0.05% Tween20 in PBS and then probed with
specific antibodies (Table 1). Immune-complexes were revealed
by incubation with horseradish peroxidase (HRP)-conjugated
secondary antibodies (Table 1) and enhanced chemiluminescent
substrate (ECL, Millipore, Italy). Images were captured using
Hyper Film MP (GE Healthcare, Italy). Control loading were
obtained using antibody against mouse β-actin. Densitometric
determination was performed using the ImageJ software (US
National Institutes of Health).

Immunohistochemistry
Paraffin embedded samples of ileum were cut, deparaffinized,
and rehydrated (xylene 5 min; ethanol 100%, 95%, 70%, 1 min
each) following standard procedures (Brun et al., 2010). To
block endogenous peroxidase activity samples were exposed
to 10% H2O2 and treated with citrate buffer (pH 9) for
antigen retrieval as indicated. Tissue sections were incubated
with universal blocking solution (Lab Vision Corporation,
CA, United States) and proper antibody (Table 1; 1 h,
22◦C) and immune-complexes were visualized using Dako
Envision+ System-HRP labeled Polymer Detection (Dako, CA,
United States) and 3,3′ diaminobenzidine tetrahydrochloride
(DAB) chromogenic substrate. Sections were counterstained and
observed. As negative control, we used either isotype-matched

antibody of inappropriate specificity or we omitted the primary
antibody.

Immunofluorescence
After sacrifice, 10 cm long segments of the distal ileum
were carefully removed, flashed with PBS and immediately
placed in optimal cutting temperature mounting medium and
frozen. Sections (5 µm) were obtained with a cryostat and
thaw-mounted onto Superfrost Plus slides. Sections were air
dried, fixed in 10% PFA for 10 min, washed twice in TBS,
incubated for 30 min in blocking buffer, and then subjected
to immunohistochemistry using a polyclonal antibody to TLR2
and βIII-tubulin (Table 1). Sections were extensively washed
and then mounted with Prolong Antifade kit (Invitrogen)
and imaged using a Leica TCSNT/SP2 confocal microscope
(Leica Microsystems). Co-localization of immune-complexes
was achieved by sequentially scanning the specimens with the
individual lasers.

Isolation of Mononuclear Cells and
Enteric Neurons
For mononuclear cell isolation, LMMP were dissociated with
collagenase type II from Clostridium histolyticum (10 mg/ml),
dispase (62,5 µg/ml) and DNase I (10 µg/mL, all purchased
from Sigma) for 10 min at 37◦C (Brun et al., 2015; Brun
and Akbarali, 2018). Tissue debris was filtered and cells
were collected (900 × g for 5 min), purified by density
gradient using Ficoll-Hypaque (Sigma) and immediately stained
for flow cytometry or cultured for 24 h at 37◦C with or
without UV-inactivated HSV-1 in the presence of GolgiPlug
(DB Bioscience). For culture of enteric neurons, LMMP
were dissociated in 1.3 mg/ml collagenase type II (Sigma)
with 0.3 mg/ml bovine serum albumin (37◦C, 15 min). Cell
suspension was cultured on coverslips coated with laminin
and poly-D-lysine (Sigma) in Neurobasal A media added
with B-27 supplement, 1% FBS, 10 ng/mL nerve growth
factor (BioLegend, Italy), penicillin/streptomycin 1% (Brun and
Akbarali, 2018). On the seventh day of culture, neurons were
washed, the culture medium replaced and incubated for 16 h
with medium alone or containing UV-inactivated HSV-1. Then,
cells were fixed in 4% PFA for 10 min and subjected to
immunofluorescence staining for CCL2 and βIII-tubulin. Slides
were imaged using a Leica TCSNT/SP2 confocal microscope
(Leica Microsystems).

Flow Cytometry Analysis and
Intracellular Cytokine Staining
Freshly obtained macrophages and lymphocytes (106/mL)
were stained for 30 min in ice with proper antibodies
(Table 1). In intracellular cytokine experiments, cells were
then incubated in fixation and permeabilization buffer
(eBioscience, Italy) containing the proper antibody (30 min,
room temperature). Fluorescence was analyzed using BD
FACSCantoTM Flow Cytometry (BD Bioscience, Italy) and
WinMDI 2.9 (Windows Multiple Document Interface for Flow
Cytometry) program.
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FIGURE 1 | HSV-1 infection of the ENS triggers TLR2 activation. (A) One, two, and three weeks (wks) post IG inoculum of HSV-1, total RNA was purified from the
LMMP of WT and TLR2ko mice. Quantitative PCR was performed to evaluate the expression of HSV-1 latency-associated transcripts (LATs), infected cell protein
(ICP0, ICP4), VP16, and thymidine kinase (tk) mRNA transcripts. Data were normalized to Rn18S and are reported as mRNA fold-change over WT mice. Sham: mice
IG inoculated with Vero cell lysate. n = 6 mice per group. ∗ denotes P < 0.05 vs. WT mice at the same time of infection. (B) Dual-label immunohistochemistry
showing expression of TLR2 and neural marker βIII-tubulin in frozen sections obtained from ileum of sham or HSV-1 infected WT mice. Scale bar: 37.5 µm.

(Continued)
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FIGURE 1 | Continued
Arrows indicate double positive stain. (C) Expression of TLR2 in βIII-tubulin+ cells isolated from LMMP of sham and HSV-1 infected WT mice. Cells were analyzed by
flow cytometry and 104 cells were collected. Representative dot plots are reported. (D) Mean percentage of TLR2 and βIII-tubulin positive cells acquired by flow
cytometry as described in (C). n = 6 mice per group. ∗ denotes P < 0.05 vs. sham infected mice. (E) Western blot analysis of TLR2 expression on protein extracts
obtained from LMMP of sham and HSV-1 infected WT mice. β-actin was used as loading control. Representative images are reported. kDa = kilodalton. (F) Protein
levels of TLR2 analyzed by western blot as described in (E) were determined by densitometry. Data were normalized to β-actin. n = 3 per group. ∗denotes P < 0.05
vs. sham infected mice. (G) Protein lysates from LMMP of sham and HSV-1 infected WT mice were immunoprecipitated with anti-TLR2 antibody. MyD88 expression
was determined by Western blot. IP = immunoprecipitation.

FIGURE 2 | TLR2ko mice experience mild gastrointestinal dysmotility following HSV-1 infection. (A) Sham and HSV-1 infected WT and TLR2ko mice were IG injected
with non-absorbable FITC-labeled dextran. Sixty minutes later mice were sacrificed. Gastric emptying was calculated as the percentage of probe retained into the
stomach compared with the total amount of fluorescence in the gastrointestinal tract. Intestinal transit was reported as the geometric center of distribution of the
fluorescent probe throughout the ileum. n = 8–10 mice per group. ∗denotes P < 0.05 vs. sham infected mice. (B) Time (seconds, sec) required for expulsion of a
glass bead inserted at two centimeters from the anal verge. n = 8 mice per group. ◦denotes P < 0.02 vs. sham infected mice.

CCL2 Quantification by ELISA
Layer containing the myenteric plexus were homogenized using
a Retsch MM300 mixer in PBS (1:10 wt/vol) containing protease
inhibitors (10 µg/mL aprotinin, 1 mmol/L phenylmethylsulfonyl
fluoride, and 10 µg/mL leupeptin). Samples were centrifuged
(10,000 × g, 10 min at 4◦C) and the supernatants were
assessed for CCL2 protein using commercially available
kit (eBioscience) and a microplate reader (Sunrise, Tecan;
Switzerland).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 3.03
software (GraphPad, San Diego, CA, United States). Data
were reported as mean ± standard error of the mean
(SEM) except for the fluorescent probe distribution in in vivo
gastrointestinal transit experiments reported as median ± SEM.
Statistical differences were assessed by one-way ANOVA and
Bonferroni multicomparison post hoc tests. The statistical

significance was reported in the legends of the figures.
Statistical significance was considered for P-values of 0.05 or
less.

RESULTS

TLR2 Does Not Affect HSV-1 Replication
in Murine LMMP
Several studies have reported the involvement of TLR2 in
anti-HSV-1 response (Sørensen et al., 2008; Zolini et al.,
2014) but no data are available about the role of TLR2 in
controlling HSV-1 infection and replication in the ENS. We
previously reported that HSV-1 retains infectivity following
IG inoculum in WT mice (Brun et al., 2018). By comparing
WT and TLR2ko mice we found that HSV-1 infected the
ENS of both animal strains (Figure 1A). Indeed, mRNA of
HSV-1 latency-associated transcripts (LATs), ICP0, ICP4, VP16,
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FIGURE 3 | Alterations in myenteric plexus of TLR2ko mice during HSV-1 infection. One, two, and three weeks post IG infection with HSV-1, samples of distal ileum
was removed from WT and TLR2ko mice, fixed in neutral buffered formalin and processed to obtain whole mount preparations. Immunofluorescence analysis for
(A) S100β (glial marker), (B) neurotubules βIII-tubulin, and (C) neurofilament peripherin was performed. Scale bars: 75 µm. Representative images of three separate
experiments.

and thymidine kinase (tk) were detectable in the LMMP of
WT and TLR2ko infected mice. Even if higher levels of virus
mRNA transcripts (i.e., LATs and tk) were occasionally reported
in TLR2ko mice, expression of late genes (gB and gC) were
undetectable in both murine strains (data not shown), suggesting
abortive viral replication (see also Brun et al., 2010; Brun et al.,
2018).

Intragastric HSV-1 Inoculum Induces
TLR2 Activation in LMMP
Since enteric neurons express functional TLR2 (Brun et al., 2013)
and HSV-1 engages this receptor to initiate intracellular signaling
(Leoni et al., 2012), in this study we at first asked whether TLR2
senses HSV-1 replication in the LMMP. Immunofluorescence
analysis of ileum sections reported negligible expression of
TLR2 in sham infected animals but TLR2 immunoreactivity
increased in βIII-tubulin positive myenteric neurons at the first
and second week post IG inoculum of HSV-1 (Figure 1B).
Flow cytometry staining of cells dissociated from LMMP
confirmed the increased expression of TLR2 in myenteric
neurons of HSV-1 infected mice (Figures 1C,D). Finally, western
blot analysis performed on extracts of LMMP preparations
revealed a significant increased expression of TLR2 following
IG inoculum of HSV-1 (Figures 1E,F). HSV-1 infection induced
association and co-precipitation of TLR2 and the adaptor protein
MyD88 (Figure 1G), demonstrating activation of functional
TLR2-dependent signaling pathway in the LMMP of HSV-1
infected mice.

TLR2ko Mice Are Partially Protected
Against HSV-1 Induced Gastrointestinal
Dysfunction
To examine the role of TLR2 in HSV-1 induced gastrointestinal
dysfunction, we infected WT and TLR2ko mice with HSV-1
and we monitored the animals for the onset, severity, and
evolution of gastrointestinal neuromuscular dysfunction as well
appearance of structural anomalies in the ENS. Following
IG inoculum of HSV-1, WT mice reported quicker gastric
emptying and persistent delay in intestinal transit whereas
TLR2ko mice had less pronounced alterations in gut motility
(Figure 2A). At the first and second weeks post infection colonic
motility, measured as the time required for bead expulsion,
was slower in WT mice as compared with TLR2ko mice
(Figure 2B). However, in both WT and TLR2ko mice infection
with HSV-1 did not result in evidence of neurological or motor
deficits (data not shown). However, we observed abnormalities
in neuronal and glial cells of WT mice. Indeed, increased
immunoreactivity of the glial marker S100β and enhanced
expression of neuronal marker βIII-tubulin were observed
2 weeks post IG HSV-1 inoculum (Figures 3A,B). In contrast,
S100β and βIII-tubulin immunoreactivity were not significantly
modified by HSV-1 injection in TLR2ko mice (Figures 3A,B).
HSV-1 infection of the ENS did not significantly affect expression
of the neuronal marker peripherin (Figure 3C). All together
our data demonstrated that TLR2 activation contributes to
functional and structural anomalies of the ENS during HSV-1
infection.
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FIGURE 4 | Lack of macrophage infiltration in HSV-1 infected TLR2ko mice. (A) LMMP collected from sham and HSV-1 infected WT and TLR2ko mice were
enzymatically dissociated. The resulting cell suspensions were labeled with anti-CD11b and anti-F4/80 antibodies and analyzed by flow cytometry. 104 events were
collected. Data were graphed and reported as number of double positive cells. n = 8 mice per group. ◦denotes P < 0.02 vs. sham infected WT mice.
(B) Immunohistochemistry for CD11b was performed on sections of distal ileum of WT and TLR2ko mice. Representative images of three different experiments.
Scale bars: 40 µm. (C) Myenteric plexuses showing contiguous or infiltrating CD11b+ cells were counted and normalized to the total number of myenteric plexuses.
Data are reported as percentage. n = 6 mice per group. ◦denotes P < 0.02 vs. sham infected WT mice.

TLR2 Is Mandatory for Macrophage
Recruitment During HSV-1 Infection
Compelling evidence indicate that infiltrating macrophages
play a relevant role in intestinal dysfunctions (Galeazzi et al.,
2001; Kurt-Jones et al., 2004; Ellermann-Eriksen, 2005; Brun
et al., 2018) since they regulate enteric neuronal activities
(Muller et al., 2014). We therefore asked whether TLR2 is
involved in macrophage recruitment in the LMMP of HSV-1
infected mice. Flow cytometry analysis of cells dissociated from
LMMP and immunohistochemistry on sections of ileum revealed
negligible macrophage recruitment nearby the myenteric ganglia
of HSV-1 infected TLR2ko mice whereas WT animals reported a
significant increase in CD11b+F4/80+ macrophages contiguous
to the myenteric ganglia (Figures 4A–C). Moreover, quantitative
RT-PCR and ELISA performed in the LMMP of WT mice
at 1–3 weeks post IG infection revealed increased mRNA and
protein levels of CCL2, a chemoattractant factor involved in
macrophage-driven tissue damage (Gosling et al., 1999; Huang
et al., 2001; Brun et al., 2018). TLR2ko mice completely failed
to up-regulate CCL2 following HSV-1 exposure (Figures 5A,B).
During HSV-1 infection, CCL2 positive cells were revealed
in the myenteric ganglia of WT but not TLR2ko mice
(Figure 5C). Moreover in striking contrast to myenteric neurons

cultured from WT mice, cells obtained from TLR2ko mice
completely failed to express CCL2 in response to HSV-1
challenge (Figure 5D). Overall these data indicate that TLR2
in enteric neurons is required to generate chemotactic signals
for macrophages in response to HSV-1 infection. The lack of
TLR2 signaling pathway skews the immune cells recruitment.
Indeed, by quantitative RT-PCR performed on the LMMP of
TLR2ko mice we detected increased levels of Cxcl11 and Cxcl9,
chemokines involved in recruitment of T-cells (Figures 5E,F).

TLR2ko but Not WT Mice Develop
Lymphocytic Infiltration in the Myenteric
Ganglia Following HSV-1 IG Challenge
Along with other receptors of innate immunity, TLR2 has been
reported to shape the adaptive immune response in different
animal models of viral infection (Iwasaki and Medzhitov,
2010). Therefore, we next examined the recruitment of
lymphocytes in HSV-1 infected myenteric plexus of WT
and TLR2ko mice. IG HSV-1 infection had no significant
consequence in WT mice as regard the percentage and
distribution of CD3+ cells and the CD8+:CD4+ ratio in the
LMMP (Figures 6A–C). The percentage of CD3+/CD19+
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FIGURE 5 | TLR2 is required for expression of CCL2 during HSV-1 infection. (A) LMMP collected from sham and HSV-1 infected WT and TLR2ko mice were
homogenized and CCL2 levels were quantified by ELISA. (B) Quantitative RT-PCR analysis of Ccl2 mRNA transcripts. Data were normalized to Rn18S and reported
as mRNA fold-change over sham infected mice. n = 6 mice per group. ∗denotes P < 0.05 vs. sham infected WT mice. (C) Immunohistochemistry for CCL2 on
sections of ileum collected from sham and 1wk HSV-1 infected WT and TLR2ko mice. Scale bars: 40 µm. (D) Immunofluorescence for CCL2 (green) and neuronal
marker βIII-tubulin (red) on primary neurons isolated from LMMP of WT and TLR2ko mice exposed to UV inactivated HSV-1 for 16 h. Scale bars: 23.8 µm.
(E) Quantitative RT-PCR analysis of Cxcl11 and (F) Cxcl9 mRNA transcripts. Data were normalized to Rn18S and reported as mRNA fold-change over sham infected
mice. n = 6 mice per group. ∗denotes P < 0.05 vs. sham infected WT mice.

cells and CD3+/NK1.1+ NK cells was comparable in
HSV-1 infected mice and sham infected WT mice (data
not shown). At the opposite, an abundant infiltrate of T
cells was detected in the LMMP of TLR2ko infected mice
(Figures 6A–C), composed primary of HSV-1 responsive
CD3+CD8+IFNγ+ cells (Figure 6D). Furthermore, following IG
HSV-1 inoculum a significant increase in CD3+IL17+ infiltrated
cells was detected in TLR2ko mice as opposed to WT mice
(Figure 6E).

Lymphocytic Infiltration in the LMMP of
TLR2ko Mice Contributes to
Neuromuscular Dysfunction Following
HSV-1 IG Challenge
To elucidate the role of CD3+CD8+ cells on the mild
gastrointestinal neuromuscular dysfunctions described in
TLR2ko mice during HSV-1 infection (Figure 2), infected
animals were administered with monoclonal anti-CD8 antibody
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FIGURE 6 | Strong lymphocyte recruitment in LMMP of TLR2ko mice following HSV-1 exposure. (A) Freshly collected LMMP were enzymatically dissociated and the
resulting cell suspensions were labeled with anti-CD3 antibody and analyzed by flow cytometry. CD3+ cells were expressed as percentage of 104 collected events.
n = 8 mice per group. ∗denotes P < 0.05 vs. sham infected TLR2ko mice (B) Cell suspensions obtained from LMMP as described in (A) were labeled with anti-CD3,
anti-CD4 or anti-CD8 antibodies and analyzed by flow cytometry. CD8:CD4 ratio of CD3+ cells was calculated. n = 8 mice per group. ∗denotes P < 0.05 vs. sham
infected TLR2ko mice (C) Sections of ileum obtained from sham and HSV-1 infected WT and TLR2ko mice were subjected to immunohistochemistry for CD3. Scale
bars: 40 µm. Representative images of three separate experiments. (D) Cell suspensions obtained from LMMP of TLR2ko mice were cultured for 16 h in presence or
absence of UV-inactivated HSV-1. Cells were then collected, labeled with anti-CD3, anti-CD8 and anti-IFNγ antibodies and analyzed by flow cytometry. 104 events
were collected in CD3+ gated cells. Data were graphed and reported as percentage of positive cells. n = 8 mice per group. ∗denotes P < 0.05 vs. no HSV-1 pulsed
cells at the same time point. (E) Cell suspensions obtained from LMMP of sham and HSV-1 infected WT and TLR2ko mice were labeled with anti-CD3 and anti-IL17
antibodies and analyzed by flow cytometry in 5 × 104 events. n = 8 mice per group. ∗denotes P < 0.05 vs. sham infected TLR2ko mice.

7 day after IG HSV-1 injection and were sacrificed 1 week later.
As reported in Figures 7A,B, administration of monoclonal
anti-CD8 antibody was effective at depleting CD3+CD8+ cells in
the LMMP. Depletion of CD8+ cells abolished HSV-1 induced
gastrointestinal dysmotility as assessed by in vivo intestinal transit

measurement (Figure 7C), suggesting that the CD3+CD8+ cells
recruited in the LMMP account for the observed gastrointestinal
alterations in TLR2ko mice. Control mice administered with
rat IgG did not reported significant intestinal alterations as
compared with sham infected animals (data not shown).
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FIGURE 7 | Depletion of CD8+ T cells in the LMMP of TLR2ko mice
ameliorates HSV-1-induced gut dysmotility. TLR2ko mice were inoculated IG
with HSV-1 and 1 day after received intraperitoneal injection of monoclonal
anti-CD8 antibody. One week later, mice were sacrificed. (A) To confirm T cells
depletion, cells isolated from LMMP were labeled with anti-CD3 and anti-CD8
antibodies and analyzed by flow cytometry. Representative dot plot.
(B) Sections of ileum obtained from sham and 1 wk HSV-1 infected TLR2ko

mice were subjected to immunohistochemistry for CD3. Scale bars: 40 µm.
Representative images of three separate experiments. (C) Distribution of
FITC-labeled dextran was determined in the gut of TLR2ko mice. Intestinal
transit was reported as the geometric center of distribution of the fluorescent
probe throughout the ileum. n = 6 mice per group. ∗denotes P < 0.05 vs.
sham infected mice administered with anti-CD8 monoclonal antibody.

DISCUSSION

Toll-like receptors are expressed by diverse cell population
through the gut wall, including muscle cells, glial cells, enteric
neurons, and immune cells (Brun et al., 2013). In the gut,
the engagement of TLR2 by PAMPs or endogenous ligands
regulates tissue development, homeostasis, and repair but
also triggers inflammatory responses against a wide spectrum
of microorganisms (Cario et al., 2007). In this study we
demonstrated that during HSV-1 infection of the ENS, TLR2
expressed on enteric neurons orchestrates the recruitment of
T lymphocytes involved in neuropathology and gut motor
dysfunctions (Figures 2, 3).

TLR2 is strategic in switching on the inflammatory response
to HSV-1 infection (Kurt-Jones et al., 2004; Sørensen et al.,
2008). Thus, in vitro HSV glycoproteins gH/gL and gB engages
TLR2 on epithelial cells and neurons to elicit intracellular NF-
κB signaling (Leoni et al., 2012). Moreover, expression of TLR2
is enhanced in the hindbrain of mice infected with HSV-2
(Boivin et al., 2002) whereas TLR2 activation during acute HSV-1
encephalitis in neonatal and adult mice significantly boost the
inflammatory damage in the nervous tissue (Kurt-Jones et al.,
2004; Aravalli et al., 2005). Here we reported that in WT mice
HSV-1 infection of the ENS induced TLR2 upregulation on
myenteric neurons and TLR2/MyD88 dependent activation in
the LMMP (Figure 1) leading to production of CCL2 and
macrophage recruitment (Figures 4, 5). Indeed, in TLR2ko

mice infection of the ENS with HSV-1 induced a skewed

chemokine response compared with WT mice (Figure 5)
suggesting that HSV-1 recognition through TLR2 plays a
pivotal role in coordinating the initial anti-viral inflammatory
response.

Expression by embryonic and adult neurons of different
functional Pattern Recognition Receptors (Barajon et al.,
2009; Brun et al., 2013, 2015) enables detection of microbial
signals (i.e., bacterial PAMPs or viral components) and allows
secretion of specific soluble factors to generate appropriate
protective microenvironments (Burgueño et al., 2016). In
the ENS, enteric neurons express TLRs and play a primary
role in shaping gastrointestinal inflammatory responses since
they directly integrate a variety of environmental signals
including bacterial toxins or microbial PAMPs (Pothoulakis
et al., 1998; Burgueño et al., 2016). Indeed, enteric neurons
directly recruit inflammatory cells through the production of
cytokines, growth factors, and chemokines (Burgueño et al.,
2016; Gabanyi et al., 2016). In neurons, lack of TLR3
empowers protective responses to neurotropic viruses such
as West Nile virus and Japanese encephalitis virus (Daffis
et al., 2008; Fadnis et al., 2013) whereas TLR2 elicits innate
responses following HSV exposure (Gianni et al., 2013). In
the present study we demonstrated that at early time of
infection, TLR2-mediated HSV-1 recognition induced enteric
neurons to produce CCL2 and drove a robust macrophage
recruitment from the bloodstream (Figures 4, 5; Chen et al.,
2003; Dessing et al., 2007). Indeed, neurons of TLR2ko mice
failed to express CCL2 in response to HSV-1 thus reducing
macrophage infiltration (Gosling et al., 1999; Muessel et al.,
2002; Kurt-Jones et al., 2004). Therefore, through TLR2
signaling HSV-1 appears to favor macrophage recruitment and
to minimize lymphocytes activation which instead prevails in
the myenteric plexus of TLR2ko mice (Figure 6). Consistent
with our results, we suggested that CCL2 has a dominant
role in the neuronal-mediated response to HSV-1 infection
(Brun et al., 2018). Indeed, during viral encephalitis neurons
secrete CXCL10 to recruit anti-viral effector CD8+ T cells,
demonstrating that neuronal cells specifically shape immune
responses against invading pathogens (Patterson et al., 2003;
Klein et al., 2005). Similarly, we found that in absence of
a macrophage-mediated immune response the recruitment of
CD8+IL17+ lymphocytes increased in TLR2ko mice compared
with WT animals (Figure 6).

Upon recognition of viral antigens carried by MHC class
I on antigen presenting cells (APCs), naïve CD8+ T cells
differentiate into Tc1, Tc2, or Tc17 cells and express high levels
of KRLG-1 (killer lectin-like receptor subfamily G member 1)
and the pro-inflammatory cytokine IFN-γ that mediate the
biological effects (Bettelli et al., 2008). Tc17 cells have a pivotal
role in the controlling of infection diseases (Kolls and Lindén,
2004) and have been involved in experimental autoimmune
encephalomyelitis (Komiyama et al., 2006; Nichols et al., 2009).
An earlier report described IL-17 expression in the central
nervous system of mice chronically infected with Toxoplasma
gondii (Stumhofer et al., 2006) whereas IL-17 producing cells
have been associated to HSV-1 uveitis (Yu et al., 2013). Alike
our findings in the ENS, IL-17 significantly increased in abscesses
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of the central nervous system in TLR2ko mice (Kielian et al.,
2005; Stenzel et al., 2008; Nichols et al., 2009), suggesting that
the Tc17 infiltrate compensates the loss of TLR2-dependent
signals in controlling infections. Indeed, the increased presence
of Tc17 cells in the myenteric plexus of HSV-1 infected TLR2ko

mice could be the result of a different milieu of soluble factors
shaped by the lack of TLR2 signaling. Thus, TLR2-mediated
signals have been reported to affect transcription factors that
promote/repress Tc17 development (Ivanov et al., 2006; Moisan
et al., 2007) and expression of soluble factors (i.e., IL-27) reducing
Th17 development (Stumhofer et al., 2006; Batten et al., 2006).
In this study we found that the absence of TLR2 diminishes
the recruitment of macrophages (Figure 4), APCs also involved
in production of Tc17 regulators (Mangan et al., 2006; Dong,
2008).

As major finding, in this work we confirmed the harmful effect
of TLR2 responses in enteric neurons during microbial insults.
Indeed, we provided original evidence that TLR2 signaling
on neuronal cells plays an important role in HSV-1 induced
neuropathogenesis in the ENS since TLR2 activation shapes the
inflammatory infiltrate through a precise chemokine milieu and
supports macrophage recruitment which results in a more severe
neuronal damage.
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