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Abstract— Biofeedback assisted rehabilitation and inter-
vention technologies have the potential to modify clinically
relevant biomechanics. Gait retraining has been used to
reduce the knee adduction moment, a surrogate of medial
tibiofemoral joint loading often used in knee osteoarthritis
research. In this paper, we present an electromyogram-
driven neuromusculoskeletal model of the lower-limb to
estimate, in real-time, the tibiofemoral joint loads. The
model included 34 musculotendon units spanning the hip,
knee, and ankle joints. Full-body inverse kinematics, inverse
dynamics, and musculotendon kinematics were solved in
real-time from motion capture and force plate data to esti-
mate the knee medial tibiofemoral contact force (MTFF). We
analyzed five healthy subjects while they were walking on
an instrumented treadmill with visual biofeedback of their
MTFF. Each subject was asked to modify their gait in order
to vary the magnitude of their MTFF. All subjects were able
to increase their MTFF, whereas only three subjects could
decrease it, and only after receiving verbal suggestions
about possible gait modification strategies. Results indicate
the important role of knee muscle activation patterns in
modulating the MTFF. While this paper focused on the knee,
the technology can be extended to examine the muscu-
loskeletal tissue loads at different sites of the human body.

Index Terms— Gait modification, real-time biofeedback,
electromyography, knee joint, contact force.

|. INTRODUCTION
NAPPROPRIATE loading to the medial tibiofemoral joint
during walking is believed to be a main mechanical contrib-
utor to development and progression of medial compartment
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knee osteoarthritis (OA) [1]. Medial tibiofemoral contact
force (MTFF) is due to a combination of externally applied
knee loads [2], [3] and muscles forces [2], [4]-[6]. Increased
external knee adduction moment (KAM), which is related to
increased MTFF [7], has been associated with fast progression
of medial knee OA [8], development of chronic knee pain [9],
progression of articular tissue pathologies [10], and poor
outcomes after high tibial osteotomy surgery [2], [11]. Con-
versely, muscle atrophy, known to reduce maximum muscle
force production [12], is also associated with tissue-induced
damage in animal knee OA [13], [14] and fast progression to
knee OA [15]. These results implicate impaired muscle action
in the pathogenesis of knee OA— although it is not yet known
how it may affect MTFF.

There is an evolving understanding that MTFF underload-
ing, in addition to overloading, may also be an important
factor in the onset and progression of knee OA. Saxby
and colleagues [16] have recently shown that at 2-year post
anterior cruciate ligament reconstruction (ACLR) the MTFF
are lower during walking, running, and side stepping com-
pared to healthy controls. Additionally, healthy controls and
ACLR without meniscal damage that have larger MTFF during
walking have healthier cartilage and bone [17], while lower
loading of MTFF at 2-year after ACLR may lead to greater
risk of future onset of radiographic knee OA [18]. Currently it
is unclear whether increasing or decreasing MTFF may offer
therapeutic benefit; however, modifying gait to decrease MTFF
has been proposed to slow the disease progression in those
with established knee OA [19]-[23].

Different gait strategies have been proposed to reduce
the MTFF [22], [24]-[27]. However, as the MTFF can-
not be measured in-vivo in native knees, the KAM has
commonly been used as a surrogate measure [7], [28].
The KAM during walking can be modified through kine-
matic changes [29], such as walking with toes pointed in
[30], [31] or out [31], [32], increasing or decreasing side-to-
side trunk sway [31], [33], using longer or shorter strides [31],
[34], loading the inside or outside of the foot [34], changing
the step width [35], [36], and changing the knee alignment
[25], [37], [38]. Although gait retraining that uses biofeedback
has been shown to successfully reduce the KAM [19], [21],
[23], [38], is the KAM the correct biofeedback variable to
manipulate MTFF?

The KAM has been positively correlated with the shape
of MTFF during walking [7], [39], but this is not always
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the case [3], [4], [37], [40]. Studies based on instrumented
tibiofemoral prostheses [41] have shown that decreases in the
KAM do not necessarily result in decreases to MTFF [37], and
that only small changes occurred in the MTFF for gait patterns
designed to reduce KAM [42]. The KAM-MTFF relationship
probably breaks down due to large muscular contributions to
MTFF that are similar in magnitude to the contributions from
external loads [4], [6]. Thus, it is essential to consider both
external joint moments and muscle forces in order to estimate
MTFF accurately [4], [6].

OpenSim [43] is a popular musculoskeletal modelling soft-
ware for the analysis of the human motion that can account
for individual variations in anatomy and movement [44].
However, OpenSim estimates muscle forces via optimisation-
based algorithms (e.g. static and dynamic optimization) [45]
that cannot account for alterations in muscle excitation
patterns evident in individuals with knee pathologies dur-
ing gait [46]. Alternatively to optimization-based methods,
electromyogram (EMG)-driven neuromusculoskeletal (NMS)
models [47] use experimentally measured muscle excitations
to estimate muscle forces, and have been able to correctly
predict MTFF and lateral knee contact force (LTFF) measured
directly from instrumented knee implants [41], [48], [49].

In this study, a calibrated EMG-informed NMS model,
i.e. CEINMS [50], was used in combination with OpenSim to
estimate MTFF in real-time. Subjects were asked to modify
their gait pattern in order to modify the model estimate of
MTFF which was provided as visual biofeedback. Because
of the novel approach, it was unclear whether subjects using
this technology would be able to modify their gait strategy in
order to manipulate their MTFF on-demand or if they would
require suggestions. Also, it was unclear how subjects would
change their gait strategy to alter their MTFF and if a common
preferred strategy would emerge across the different subjects.

The aims of this paper were (1) developing a software
based on both OpenSim and CEINMS to estimate knee
contact forces in real-time using musculoskeletal modelling
techniques, (2) comparing real-time and offline estimates,
and (3) exploring the use of musculoskeletal tissue load-
ing as visual biofeedback for gait retraining by evaluating
the response of 5 different subjects in distinct experimental
conditions.

Il. METHODS
A. Experimental Setup

The Griffith University Human Research Ethics Committee
approved the study and 5 healthy male participants (mass:
764 £ 6.4 kg, height: 1.78 £+ 0.04 m, age: 26.8 =+
2.9 years) gave their written informed consent prior to testing.
A 12-camera Vicon motion capture system (Oxford, UK)
and an instrumented split-belt treadmill (Bertec Corporation,
Columbus, OH, USA) were used to collect marker trajec-
tories (200 Hz) from 44 retro-reflective markers [51] and
ground reaction forces (GRF) (1000 Hz) in real-time. Surface
EMGs (Zerowire, Milan, IT) were acquired (2000 Hz) from
16 sites on a single leg [52]: gluteus maximus, gluteus medius,
tensor fasciae latae, rectus femoris, sartorius, vastus lateralis,

vastus medialis, adductor group, gracilis, bicep femoris, semi-
tendinosus, gastrocnemius medialis, gastrocnemius lateralis,
soleus, tibialis anterioris, and peroneus group. The EMGs
were mapped to 34 muscle tendon units (MTUs), as described
in [53]. Muscle excitations were amplitude-normalized using a
set of maximum isometric voluntary contractions (MVC) per-
formed on a dynamometer (Biodex Medical Systems, Shirley,
NY, USA). MVC for muscles crossing knee and ankle were
acquired with subjects in a seated position at approximately
80 deg hip flexion, 60 deg knee flexion, and 0 deg ankle
plantarflexion; MVC trials for muscles crossing the hip were
first acquired in standing position, with the instrumented leg
at 30 deg hip abduction, 0 deg for both knee flexion and
ankle plantarflexion; and then in supine position at 60 deg hip
flexion, 90 deg knee flexion and 0 deg ankle plantarflexion.
The real-time data processing was executed on a Dell Precision
Workstation T7500, with 2 Intel®Xeon®Processors X5660
(12 MB Cache, 2.80 GHz, 6 cores per processor), 8 GB of
RAM, and Linux (kernel 4.2.0-18).

B. Software Description

We developed software (C++) based on CEINMS [50]
and OpenSim [43], [51] that uses a marker-based Vicon
motion capture system, force plates, and EMG to estimate
MTFF in real-time (Fig. 1). The MTFF was displayed on
a screen to provide augmented visual sensory feedback to
the subject walking on the treadmill. The software has five
different components: (1) anatomical model, (2) real-time
estimation of joint angles and moments [51], (3) real-time
estimation of tibiofemoral contact forces, (4) musculotendon
parameter calibration, and (5) biofeedback visualization. These
are briefly described below.

C. The Anatomical Model

The generic gait2392 OpenSim model [43] was first mod-
ified to allow calculation of external adduction/abduction
moments about lateral and medial condyle contact points [40]
and then scaled to fit the anthropometry of each participant.
The hip joint centers were calculated using regression equa-
tions [54], while knee and ankle joint centers were calculated
from markers on the femoral epicondyles and ankle malleoli,
respectively. Hip, knee, and ankle joint centers were then
used to scale the anatomical model to the individual’s seg-
ments lengths using the OpenSim scale tool. The tibiofemoral
intercondylar distances were scaled proportionally to femoral
epicondyles distance [5], [6]. Further personalization of MTU
insertion points and muscle paths was not performed. In the
scaled anatomical model, tendon slack length and optimal fiber
length of each MTU were estimated using the anthropometric
scaling method developed by Modenese and colleagues [55].

D. Real-Time Estimation of Joint Angles and Moments

Vicon Nexus software automatically reconstructed and
labelled markers in real-time. Joint angles and moments were
estimated through OpenSim’s inverse kinematics and inverse
dynamics algorithms (Fig. 1). A state-space filter implemen-
tation of a 2" order low-pass Butterworth filter [56], with a
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Fig. 1. Schematic representation of the real-time system. Experimental data are synchronized in Vicon Nexus and streamed to the real-time pipeline.
An anatomical model scaled to the subject is used to estimate joint angles and moments using real-time inverse kinematics and inverse dynamics,
respectively. Joint angles and moments, as well as experimental EMG are used as input for CEINMS in order to estimate MTFF and LTFF. Data are

then visualized in real-time on a custom graphic user interface (GUI).

cut-off frequency of 15 Hz [51], was used to filter both the
GRFs and joint angles. An extended description is provided
in [51].

E. Real-Time Estimation of Tibiofemoral Contact Forces

The tibiofemoral contact forces were estimated via
CEINMS [50] in EMG-driven mode [47], [53]. This required,
as inputs, MTU kinematics and muscle excitations. Multi-
dimensional cubic B-splines, predefined using the OpenSim
muscle analysis tool, calculated the MTU kinematics as a
function of the joint angles [57] in real-time. Muscle exci-
tations were calculated in real-time from raw EMGs that
were high-pass filtered (30Hz), full-wave-rectified, low-pass
filtered (6Hz) using a state-space 2" order Butterworth fil-
ter [47], [56], and amplitude-normalized using the maximal
values extracted from MVC trials acquired offline previously.
Medial (FM€) and lateral (FL€) tibiofemoral contact forces
were calculated as follows [6],

LC LC MC MC
FMC _ Myiry — Mgy FLC _ Myry — Mgy 1)
dic dic
with,
n n
LC _ LC MC _ MC
MMTU_ZFMTUirMTU; and MMTU_ZFMTUirMTUi

1 1

)

Where n represents the number of MTU crossing the knee
joint, Fyry, the force exerted by the ith MTU, r,I(,ICT U and
rAA,’IITCUi the moment arm of the ith MTU about the lateral
and medial condyle contact points, respectively, d;c the inter-
condylar distance, and le,[CTU/M}“,[’IgU and MLES/MMC the
net internal and external adduction/abduction moments about
the lateral/medial condyle contact points, respectively. The
n MTUs considered in the calculations were: bicep femoris
long head, bicep femoris short head, semimembranosus, semi-
tendinosus, gracilis, sartorius, rectus femoris, vastus medialis,
vastus lateralis, vastus intermedius, gastrocnemius medialis,

and gastrocnemius lateralis.

F. Model Calibration

Prior to real-time capability, each participant’s MTU para-
meters were calibrated using CEINMS [50]. The CEINMS cal-
ibration is an offline procedure whereby the MTU parameters
are optimized to minimize the summed square error between
predicted and experimental joint moments whilst minimizing
the peak magnitude of both MTFF and LTFF [48]. The cali-
bration was performed using a set of 3 walking stance phases
recorded and processed offline [58] before starting the real-
time protocol. The list of calibrating parameters and boundary
conditions is the same used in [50]. The total time for initial
data collection, offline data processing and calibration was
approximately 1.5 hours. After calibration, the system was
ready to estimate the contact forces in real-time.

G. Biofeedback Visualization

The real-time estimated MTFF was visualized as a continu-
ous time series graph plotted on a screen placed in front of the
subject (Fig. 2). Each new point was added to the rightmost
part of the visualization window scrolling previous data points
to the left, and permitted visualization of the last 10 seconds
of data (blue line in Fig. 2). The target was calculated as
percentage of the moving average of the previous 15 medial
contact force peaks and was also plotted onto the graph (red
line in Fig. 2). This feedback modality was chosen to guide
and promote the subject to further decrease or increase their
MTFF.

H. Experimental Protocol

Participants were given a period of familiarization with the
treadmill and asked to select their preferred walking speed,
which was maintained for the remainder of the session. The
real-time protocol consisted of five different walking condi-
tions. First, “baseline walking” was recorded for 1 minute
and the mean of the peak values of MTFF was subsequently
calculated. The subjects were then provided with the visual
feedback of their MTFF and a target equal to 90% of the
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Fig. 2.
plotted in blue, with the current value at the right most point of the graph
and a history of 2000 number data points remains. The moving average
is plotted in red and superimposed on the graph.

Visual feedback provided to the subject. The MTFF force is

moving average of their MTFF peak. Subjects were then asked
to decrease their MTFF driving the displayed value below the
target (“decrease” condition). The subjects were then asked to
try different strategies while trying to maintain a symmetric
gait pattern; however in this instance specific instructions were
not provided. The researchers verbally confirmed whether the
strategy of the subjects was being effective or not when
compared to their baseline level. When subjects found an
effective gait strategy for reducing MTFF, they were asked to
sustain it for 1 minute. Then a washout period of 5 minutes of
normal walking was performed. Following washout, the same
protocol was repeated asking the subjects to increase the
medial force, using a target of 110% of MTFF peak displayed
on screen (“increase” condition). After these self-guided gait
trials, a washout period of 5 minutes of normal walking was
performed, and then began a series of researcher-suggest gait
patterns. The subjects were asked to decrease and then to
increase their MTFF following the same protocol described
above.

However, this time specific verbal suggestions were pro-
vided, which we refer to as “decrease with suggestions” and
“increase with suggestions” conditions. The following gait
strategies, previously found to modify external knee loading
[31], [34], [59], were presented to the subjects in both the
“decrease with suggestions” and “increase with suggestions”
conditions: walking with toes pointed in [30], [31] or out [31],
[32], increasing or decreasing side-to-side trunk sway [31],
[33], using longer or shorter strides [31], [34], loading the
inside or outside of the foot [34], changing the step width [35],
[36], and changing the knee alignment [25], [37], [38], i.e.
more medial or lateral knee positioning. Importantly, the sug-
gested gait modifications were used as guidance to subject in
order to find more effective gait modification strategies, but
were not imposed.

TABLE |
MTFF AND LTFF PREDICTION ERRORS

Medial tibiofemoral contact force

Time . .
Time-adjusted  Peak absolute
‘g‘;)y RMSE (BW)  RMSE (BW)  error (BW)
SD SD SD
Subject 1 36.40 0.195 0.016 0.055 0.006 0.029 0.022
Subject 2 3770 0.259 0.101 0.137 0.112 0.067 0.045
Subject 3 3720 0.244 0.028 0.116 0.023 0.076 0.042
Subject 4 37.60 0.200 0.015 0.087 0.010 0.029 0.023
Subject 5 39.60 0.225 0.023 0.117 0.019 0.041 0.032
Average 3770 0226  0.056 0.125 0.069 0.049 0.040
Lateral tibiofemoral contact force
Time . .
Time-adjusted  Peak absolute
‘zfrllz)y RMSE (BW)  RMSE (BW) error (BW)
SD SD SD
Subject 1 63.10 0.296 0.010 0.199 0.009 0.307 0.057
Subject 2 4430 0.172 0.096 0.125 0.098 0.092 0.054
Subject 3 70.00 0.248 0.018 0.168 0.015 0.105 0.042
Subject 4 48.70 0211 0.017 0.167 0.017 0209 0.073
Subject 5 90.40 0360 0.022 0.239 0.025 0.191 0.0838
Average 63.30  0.258 0.081 0.192 0.600 0.178 0.101

Errors between real-time and offline, and time-adjusted real-time and offline
predictions of MTFF and LTFF from 50 consecutive gait cycles for each
subject. For each subject, time delays were calculated from a cross-
correlation analysis performed on the entire data to avoid errors introduced
by the uncertainties in the identification of different gait cycles. RMSE =
Root Mean Square Error, BW = body weight, SD = standard deviation

I. Data Analysis

1) Verification of Real-Time Estimated Contact Forces: The
MTFF and LTFF estimated offline and in real-time during
walking trials were compared in order to verify the real-
time system. A cross-correlation analysis between offline
and real-time contact forces was used to estimate the time
delays introduced by the state-space filters used in the real-
time process. Then, real-time contact forces were time-shifted
according to the delay, creating a time-aligned real-time data
set. Offline, real-time, and time-aligned real-time contact
forces were then divided into the repeated gait cycles. Root
mean square errors (RMSE) were calculated between the
offline and time-aligned real-time contact forces to reflect
the error in time varying contact forces magnitude. For each
gait cycle, real-time and offline MTFF and LTFF peak values
were identified and a Bland-Altman analysis [60] was used
to evaluate agreement. For each subject, representative curves
were created using mean and standard deviation across time-
normalized gait cycles. Average computation times were esti-
mated via software using the std::chrono::system_clock class
available in C++11.

2) Evaluation of Gait Modification Protocol: For each subject,
1 minute of steady-state data from the five different protocol
conditions were analyzed in order to evaluate (1) whether
subjects were able to modify their MTFF from baseline
with or without suggestions, and (2) how the change was
achieved. For each gait cycle, the time frame corresponding to
the MTFF peak was used to identify 12 dependent variables
that are affected by the verbal suggestions: LTFF, trunk
sway, stride length, step width (calculated as lateral distance
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Fig. 3. Comparison between tibiofemoral contact forces predicted

offline (solid blue) and in real-time (dashed red) for 5 different subjects.
For each subject, medial and lateral tibiofemoral contact forces from
50 consecutive gait cycles of baseline trials were normalized to body
weight (BW), time normalized, and averaged to create representative
mean curves. The blue and red points represent the maximum mean
value of offline and real-time tibiofemoral contact forces, respectively.
Shaded area represents + 1 standard deviation.

between calcaneus markers at subsequent heel strikes), hip
internal rotation, knee flexion angle, knee flexion moment,
knee adduction moment, the external load contribution to the
medial force, the MTU contribution to the medial force,
the mean activation of the MTUs surrounding the knee, and
the directed co-contraction ratio (DCCR) calculated from knee
muscle activations [6], [46]:

1-Actext/Actfiex,
Actfiex /Actext-1,

if Actfiex> Actext

otherwise

DCCR = 3)
where Actext and Actgex are the mean activation of the knee
extensors and flexors, respectively. For each variable, multiple
paired t-tests were used to compare each condition to baseline.
Finally, examples of how subjects searched for an optimal
strategy in order to increase or decrease their MTFF were
reported.

The estimation of the MTFF was similar in real-time and
offline, with an average (mean =+ standard deviation) time-
aligned RMSE of 0.125 + 0.069 BW and a time delay of
37.7 £ 1.1 ms (Table I and Fig. 3). Differences between real-
time and offline estimation of LTFF were larger, resulting in
an average time-aligned RMSE of 0.192 4+ 0.60 BW and

RESULTS
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Fig. 4. Bland-Altman plot representing the agreement between real-time
and offline estimations of MTFF and LTFF peaks from 50 consecutive gait
cycles for baseline trials from all subjects.

TABLE Il
PERCENTAGE VARIATION OF MTFF AND LTFF ACROSS SUBJECTS
AND CONDITIONS

Percentage variation of peak MTFF from baseline
Decrease with Increase with

Decrease . Increase .
suggestions suggestions
+CI +CI +CI +CI
Subject1 231 1.72  3.88f 2.05 4.85 2.54 20.79 2.83
Subject2  -3.08 2.89 9.78 2.01 859 242 5426 1355
Subject3  -091 2.88 -26.77 2.68 6.93 1.76 18.70 2.36
Subject4  0.70 1.66 -3.15 1.68 136.05 16.32 31.61 4.52
Subject5 -0.46 231 2541f 3.50 55.00 6.61 13.65 1.49

Percentage variation of peak LTFF from baseline

Decrease with Increase with

Decrease . Increase .
suggestions suggestions
+CI +CI +CI +CI
Subject 1 026 186 21.88 242 988 230 1653 248
Subject2  22.78 10.09  28.56 7.12  28.97 7.12 4573 14.25
Subject 3 1545 261 1355 572 -3427 245 -2829 197
Subject4 -27.71 9.44 -1.01 9.10 925.27 103.70 12.22 11.66
Subject 5 43.39 1031 -1.37 408 -3440 1839 -13.65 3.24

Percentage variation of MTFF and LTFF across subjects and conditions. For
each of the final steady-state conditions, the MTFF peak was calculated for
each gait cycle. The time points corresponding to the peaks of the MTFF were
then used to analyse LTFF. Bold font represents represents significant
differences (p<0.05+4, i.e. with Bonferroni correction) from baseline, T symbol
represents significant differences for variation of MTFF opposite to the desired
condition.

a time delay of 63.3 = 16.5 ms (Table I and Fig. 3). The
Bland-Altman analysis (Fig. 4) reported a bias of 2.30% and
agreement limits of -3.36 and 7.95% for the MTFF, and a bias
of 16.13% and agreement limits of -1.32 and 33.59% for the
LTFFE.

The total time delay introduced by the real-time compu-
tation was approximately 115 ms. This included 4 ms of
data processing in Vicon Nexus, 57 ms to calculate contact
forces (including inverse kinematics, inverse dynamics, MTU
kinematics, filtering, and muscle force estimation), 37 ms of
time delay caused by the filtering phase shift (Table I), and
17 ms of refresh time of the 60 Hz monitor used to provide
the visual biofeedback.

No subjects were able to decrease their MTFF without
suggestions, but three subjects significantly decreased it fol-
lowing suggestions (Table II). All of the subjects were able
to increase the MTFF, where for subjects 1, 2, and 3,
the greatest change occurred after being provided sugges-
tions. Fig. 5 summarizes the results across subjects and
conditions and Fig. 6 shows examples of strategy search to
decrease and increase MTFF.
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Fig. 5.

Comparison among different subjects and different conditions across a variety of kinematic, kinetic, and muscle tendon force variables.

For each of the final steady-state conditions, the MTFF peak was calculated for each gait cycle. The time points corresponding to the peaks of
the MTFF were then used to analyse a variety of spatiotemporal, kinematic, kinetic, and muscular variables. The symbol “*’ represents significant
differences (p < 0.05 - 4, i.e. with Bonferroni correction) from baseline. Error bars indicate 95% confidence intervals.

V. DISCUSSION

We estimated MTFF and LTFF in real-time at 200 Hz,
using a scaled OpenSim model and CEINMS in EMG-driven
mode [50], [53]. EMG-driven NMS models have been previ-
ously used to estimate, in real-time, the MTU forces spanning
knee and ankle [61], [62]. However, this is the first time they
have been used to estimate, in real-time, articular loading
from motion capture data. The real-time estimated MTFF
was used as visual biofeedback to explore whether healthy
individuals could modify their gait patterns to manipulate
their MTFFE. All subjects were able to increase their MTFF,
whereas three subjects were able to decrease the MTFF after
being provided with suggestions on how to change their gait
patterns (Fig. 5 and Table II).

Differences between real-time and offline tibiofemoral esti-
mates were limited, although larger errors were present in
the real-time LTFF when compared to offline estimation
(Table I and Fig. 3). Errors were caused by the combined
effect of signal distortions associated with the real-time fil-
tering of force plates, EMG, and kinematics data [51], [63].
Also, muscle forces contribute more to LTFF than MTFF [6],
thus explaining larger errors (Table I and Fig. 3) and the
inter-subject variability evident in the Bland-Altman analy-
sis (Fig. 4).

As measuring knee contact forces in-vivo is challenging,
direct validation of real-time estimated MTFF on healthy
subjects using direct experimental measures was not per-
formed. Offline estimation of MTFF using CEINMS was
previously validated in [48] using data from instrumented knee
implants [41]. Despite the differences between instrumented
knee implants and healthy knees, CEINMS accounts for
personalized excitation patterns and the OpenSim anatomical
model can be adjusted to include variations in knee geometry
and alignment [44], [48]. Thus, we considered CEINMS
estimations of internal forces to be valid also on healthy
subjects, and the offline CEINMS estimates of MTFF were

used as the criteria for real-time verification in this study
(Table I, Fig. 3, and Fig. 4). Some subjects presented values
of MTFF that were higher in the first peak than second
peak for their baseline gait (Fig. 3). However, variability in
MTFF across subjects has been shown using instrumented
knee implants [39], so it is not surprising to observe such
variability in healthy individuals as well.

It could be argued that multiple gait strategies could be
first tested in laboratory and then analyzed offline to identify
the best strategy to manipulate MTFFE. While this is possible,
subjects may not be able to replicate novel gait patterns
across sessions, or may find a combination of strategies more
successful than a single strategy or more suited to their
personal walking style. Also, while our study focused only
on increasing and decreasing MTFF, specific MTFF values
could be used as biofeedback target, which could be extremely
difficult, or impossible, to perform offline.

The association between action and biofeedback improves
as the biofeedback delay decreases [64]. Subjects were able to
visualize the MTFF biofeedback as a continuous time series
graph with a total delay of 115 ms from the data measurement.
While the time delay of our system may not be optimal (i.e.
less than 75 ms [64]), it was considered an improvement
from visualizing the MTFF peak only, which would require
to complete the current gait cycle before visualizing the new
value [34], thus introducing a larger delay.

While previous gait retraining studies have used kinematic
[23], [38], [65] and kinetic [21], [23] variables as biofeed-
back, we used the MTFEF. The MTFF arises due to the
complex changes in and interactions between whole-body
kinematics, kinetics, and muscle coordination. No subject
achieved a MTFF reduction when provided with only verbal
and visual biofeedback, and the three subjects that did reduce
their walking MTFF only did so when suggestions were
given on gait modification strategies. Studies on individuals
with instrumented implants also showed that alternative gait
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Fig. 6. A representative example of a strategy search to
(a.) decrease MTFF (Subject 2, “decrease with suggestions” condition),
and (b.) increase MTFF (Subject 4, “increase” condition). . For each
MTFF peak percentage variations from baseline were plotted as bar
charts. High values for changes in DCCR (b.) were caused by baseline
values close to zero. The red shaded area represents +£1 standard
deviation of MTFF peaks from 50 consecutive gait cycle of baseline trials.

patterns did not lead to statistical significant reductions of
MTFF [42], or that magnitude reductions were present in
the second MTFF peak only [24], [37]. Interestingly, in the
“decrease with suggestion” condition, subjects 1 and 5 were
unable to decrease their MTFF lower than baseline (Table II
and Fig. 5) and adopted altered gait that had the opposite
effect, resulting in increased MTFF (Table II and Fig. 5). This
may be a reflection of the study design and the subjects may
have felt necessary to follow some of the provided suggestions
even if they resulted in increased MTFF. Given the complex
nature of the biofeedback, it is also plausible that subjects
were unable to associate their action to the visual biofeedback.
However, all subjects increased their MTFF, even without
suggestions, indicating that a correct association between

continuous time series, peaks, bars) works best, similarly to
what has been done with KAM biofeedback [23], [29]. Finally,
learning effects of the decrease strategy in the increase condi-
tions cannot be excluded, as conditions were not randomized.

Gait strategies to modify the MTFF differed across sub-
jects (Fig. 5). Previous gait retraining studies identified
increased step width, medial knee thrust, increased hip internal
rotation, and trunk sway as common strategies to decrease
KAM [22], [66], even though large variations among sub-
jects were reported [26], [27]. However, our model included
joint kinematics, kinetics (e.g. KAM), and EMG-based MTU
forces when estimating the MTFF. Since muscle activation
patterns differ across tasks [67] and individuals even when the
joint kinematics and kinetics are the same [68], [69], MTFF
modulation strategies were expected to be different between
different individuals. When using a large number of subjects,
common kinematic patterns related to MTFF variations will
likely emerge, but large variations would still be expected in
the final strategies that individuals adopt.

A combination of kinematic, kinetic, and muscle activation
changes were used by the subjects to manipulate their MTFF
(Fig. 5). In the “decrease with suggestion” condition, subject
2 increased trunk sway and decreased hip internal rotation as
their effective MTFF reduction strategy (Fig. 5 and Fig. 0).
Interestingly, in the “increase” condition, subject 2 increased
their MTFF (Fig. 5) by increasing their total muscle co-
contraction, but maintained consistent KAM and knee flexion
moment. Conversely, subject 4 used a different gait strategy to
successfully increase MTFF by combining changes in stride
length, hip internal rotation, knee flexion angle, trunk sway,
and muscle activations and co-contraction (Fig. 5 and Fig. 6).
Interestingly, subject 4 increased their MTFF by substantially
increasing their total muscle activation, but reduced external
loading with reduced KAM and knee flexion moment. Impor-
tantly, the use of the EMG-driven neural control solution in our
NMS model was essential to identify changes in muscle forces
due to variation in activation patterns and co-contraction,
which static optimization based methods cannot correctly
predict [70].

In this preliminary analysis, a reduction of MTFF did not
always result in an increase of LTFF or vice-versa (Table II).
However, LTFF results should be interpreted cautiously,
as larger limits of agreement and bias are present in the
LTFF estimates when compared to MTFF (Fig. 4). Also,
variation in hip and ankle contact forces should be analyzed
to better understand how variation in MTFF could affect other
joints [71].

While this study aimed to evaluate whether the MTFF
could be used for biofeedback, we recognize that subjects
may struggle to adopt different kinematic patterns during gait,
and that verbal suggestions may be essential to achieve MTFF
reductions. Subjects were free to adopt any symmetrical gait
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pattern, but, as also observed by van den Noort and col-
leagues [23], this could result in extreme kinematics changes
that are unsuitable for daily living activities. Furthermore,
subjects were not allowed to walk with their new gait for a long
period of time; thus, if they adopted a kinematic change, it is
unlikely that they were walking with the most efficient coordi-
nation strategy [72]. Also, while multiple optimal solutions to
decrease or increase MTFF may exist, subjects may have only
explored a limited portion of the solution space. Computer
simulations [25] and/or data-driven approaches [20] to suggest
minimal gait kinematic changes could mitigate extreme gait
patterns and address the limited time subject have to explore
potential solutions.

This study has limitations that should be considered.
Although scaled to the subjects’ dimensions and mass,
the anatomical model was based on a generic template.
This potentially produces less accurate estimates compared to
subject-specific models [48]. Also, the inter-condyle distance
in the knee model was scaled proportionally to the femoral
epicondyles, possibly resulting in MTFF magnitude errors as
the contact model is sensitive to the contact geometry [44, 49].
Further studies should include subject specific knee align-
ment [44], geometry [48], and kinematics [73] to improve the
estimation of MTFE.

Prior to using CEINMS in real-time, it was necessary to
scale the anatomical model and calibrate the MTU parameters.
These operations are time consuming, but they were performed
within the same session to avoid marker and EMG electrode
repositioning errors. To reduce the time burden on the subjects,
we limited the CEINMS calibration time to less than 1 hour
using the stance phase, rather than the full gait cycle. This
potentially resulted in sub-optimal MTU parameters, although
due to the complex solution space of the NMS system it is not
at all clear that more calibration time will necessarily improve
MTU parameter estimates. Future improvements will focus on
the development of faster calibration routines able to operate
“in the background” to automatically calibrate and update
MTU parameters during the real-time execution. Another lim-
itation regards the use of the split-belt treadmill. The treadmill
forced the subjects to maintain a minimum step width to
avoid treading on the junction between the moving belts. Also,
while the subjects were asked to maintain a symmetric gait,
a measure of that symmetry was not provided as biofeedback.
Thus, it is not possible to exclude compensatory changes in
the contralateral limb, or in other joints. However, these should
be considered in future clinical applications of this technology.
Finally, while we acknowledge the listed limitations, we also
stress the exploratory nature of this study and its main goal to
assess whether people could use the MTFF as biofeedback to
modify their gait.

V. CONCLUSIONS

This study presented the real-time estimation of MTFF and
its use as a visual biofeedback variable for gait modification.
The MTFF was estimated from joint angles and moments
calculated through real-time inverse kinematics and inverse
dynamics analyses, respectively, that were used within the
CEINMS framework in EMG-driven mode [47], [50], [53].

The current study is not meant to be an extensive exploration
of possible gait modification strategies, and further investi-
gations into the use of MTFF for gait retraining involving a
larger number of subjects is required before reaching general
conclusions. Despite the modest sample size, these results
show the importance of personalized NMS models that account
for variations in movement, external joint loading, and muscle
activation patterns across different individuals. Accounting
for this variability is of particular importance when studying
individuals with altered activation patterns [46], [74], joint
pathology [75] or who have received specialized training [76].
Finally, the present research focused on the knee joint, yet the
computational system is fully generic and could be applied
to other musculoskeletal structures. While some limitations
need to be addressed before translating this technology to
clinical practice, merging real-time estimation of forces inside
the human body with subject-specific anatomical models [77]
can provide clinicians with accurate and relevant estimates of
musculoskeletal loading, and has the potential to revolutionize
the current use of post-hoc gait analysis for rehabilitation and
training.
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