
Algebraic Statistics

msp

11 : 1 2020

INFERRING PROPERTIES OF PROBABILITY KERNELS
FROM THE PAIRS OF VARIABLES THEY INVOLVE

LUIGI BURIGANA AND MICHELE VICOVARO



Algebraic Statistics
Vol. 11, No. 1, 2020
https://doi.org/10.2140/astat.2020.11.79 msp

INFERRING PROPERTIES OF PROBABILITY KERNELS
FROM THE PAIRS OF VARIABLES THEY INVOLVE

LUIGI BURIGANA AND MICHELE VICOVARO

A probabilistic model may involve families of probability functions such that the functions in a family act
on a definite (possibly multiple) variable and are indexed by the values of some other (possibly multiple)
variable. “Probability kernel” is the term here adopted for referring to any one such family. This study
highlights general properties of probability kernels that may be inferred from set-theoretic characteristics
of the pairs of variables on which the kernels are defined. In particular, it is shown that any complete set
of such pairs of variables has the algebraic form of a lattice, which is then inherited by any complete
set of compatible kernels defined on those pairs; that on pairs of variables a criterion may be applied for
testing whether corresponding probability kernels are compatible with one another and may thus be the
building blocks of a consistent probabilistic model; and that the order between pairs of variables within
their lattice provides a general diagnostic about deducibility relations between probability kernels. These
results especially relate to models that involve a number of random variables and several interrelated
conditional distributions acting on them; for example, hierarchical Bayesian models and graphical models
in statistics, Bayesian networks and Markov fields, and Bayesian models in the experimental sciences.

1. Introduction

A general way of expressing the (possible) probabilistic dependence of a random variable Y on another
random variable X is in terms of a family of probability distributions for Y that are conditional on
the distinct possible values of X . If we denote by X◦ and Y ◦ the spaces of the two variables — or,
more concretely, the sets of their possible values — then such a family may formally be indicated as
(p(Y |x) : x ∈ X◦), where p(Y |x) (for any x ∈ X◦) is the probability function on the domain Y ◦ that
would rule the variable Y under the condition X = x . If there are differences within the family — that is, if
p(Y |x) 6= p(Y |x ′) for some x 6= x ′ belonging to X◦— then there is some form of stochastic dependence
of Y on X . Otherwise, the two variables are stochastically independent of each other. In this article, we
refer to such a family of conditional probability functions by the name probability kernel and by the
symbol p(Y |X)— so that p(Y |X) is the same as (p(Y |x) : x ∈ X◦) by definition. The terms X and Y
may be multiple variables and are here conceived as disjoint subsets of a full variable T , this being the
collection of all elementary random variables involved in a probabilistic model. Typically, the probability
functions constituting one kernel p(Y |X) are of the same measure-theoretic type; for example, they may
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be either all mass functions (p(Y |X) would be a kernel of discrete type) or all density functions (p(Y |X)
would be a kernel of continuous type)1.

A probabilistic model with a suitably large set T of elementary variables may involve several such
probability kernels p(Y |X), p(V |U ), p(Z |W ), . . . that concern (elementary or multiple) variables
included in T . The two variables in any single kernel are assumed disjoint, but variables involved in
different kernels may have non-empty intersections, which themselves count as variables included in T .
The importance of any single kernel may be due either to its being a postulate in a given model, that is, a
basic assumption characterizing the probabilistic dependence between relevant variables (or specifying
the kind of distributions of those variables), or to its being a logical consequence of the postulates, which
may be crucial for the interpretation of the model and its fitting to empirical data. Models involving
several interrelated kernels may be generally referred to as conditionally specified probabilistic structures,
for marking the central role played by assumptions of conditional distributions in the definition of such
models (Arnold, Castillo, & Sarabia, 1999). Examples can be found in various areas of applied probability,
such as graphical models in statistics (Koller & Friedman, 2009), hierarchical Bayesian modeling (Gelman
et al., 2014, chapter 5), Bayesian networks in artificial intelligence (Darwiche, 2009), applications of
Markov random fields (Blake, Kohli, & Rother, 2011), and Bayesian modeling in experimental sciences
(Kersten, Mamassian, & Yuille, 2004; Rouder, Morey, & Pratte, 2017).

Any probability kernel p(Y |X) has a definite variable pair (Y |X) as its field of action, that is, an
ordered pair formed of a conditioned variable Y (on the left of the bar) and a conditioning variable X
(on the right of the bar) which are, in general, disjoint sub-variables of a full variable T . Variable pairs
underlying distinct probability kernels may be subjected to comparisons, combinations, or transformations
in mere set-theoretic terms, that is, as pairs of sets of elementary variables, irrespectively of the individual
properties of the elementary variables they collect. Such set-theoretic manipulations may imply algebraic
regularities worthy of note, and one may conjecture that these regularities concerning the variable pairs
have meaningful consequences regarding the probability kernels acting on the variable pairs themselves.
The aim of this article is precisely that of highlighting some general properties of probability kernels that
may be inferred from the set-theoretic configuration of the variable pairs on which the kernels are defined.

In order to illustrate the association between actions on probability kernels and actions on the underlying
variable pairs, let us refer to Figure 1, which represents a basic case in the theory of conditional probabilities.
For simplicity, we suppose that X , W , and Z are elementary variables of discrete type, but the example
is easily generalizable to multiple and/or continuous variables. Three basic operations on kernels are
illustrated by the figure.

The first is projection. For example, one may pass from p(W, Z |X) to p(Z |X) by setting p(z|x)=∑
w∈W ◦ p(w, z|x) for all (x, z) ∈ (X, Z)◦ (this means: x ∈ X◦ and z ∈ Z◦).

1Our use of the word “kernel” is consistent with the meaning taken by this word in the theories of Markov processes and other
probabilistic structures extensively involving conditional probability distributions (Meyn & Tweedie, 1993, p. 65; Lauritzen,
1996, p. 46). Indeed, the concept of a probability kernel, in such theories, generalizes the concept of a transition matrix in
finite-state Markov chains, which amounts to an indexed set of conditional mass functions.
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p(W, Z |X)

p(Z |X) p(W |X)

p(W |Z , X) p(Z |W, X)

Figure 1. Probability kernels derivable from a top kernel p(W, Z |X) through projection
or conditioning.

The second is conditioning. For example, one may pass from p(W, Z |X) to p(W |Z , X) by setting
p(w|z, x)= p(w, z|x)/p(z|x) for all (x, w, z) ∈ (X,W, Z)◦, on presuming p(z|x) > 0 for all (x, z) in
(X, Z)◦.

The third operation is promotion. For example, one may return from p(W |Z , X) and p(Z |X) to
p(W, Z |X) by setting p(w, z|x)= p(w|z, x) · p(z|x) for all (x, w, z) ∈ (X,W, Z)◦.

In this paper, the letters J , C , and M are used to denote proJection, Conditioning, and proMotion,
respectively, so that the three moves just described may be symbolized as follows:

p(Z |X)= J [p(W, Z |X),W ] (1)

p(W |Z , X)= C[p(W, Z |X), Z ]
p(W, Z |X)= M[p(W |Z , X), p(Z |X)].

Of this example, what mostly matters for the aims of our study are the effects of the three operations
on the variable pairs involved: projection J implies canceling a targeted component W from the left field
(to the left of the bar), conditioning C implies moving a component Z from the left to the right field, and
promotion M implies moving a component Z from the right to the left field of p(W |Z , X) with the aid
of a “promoter” p(Z |X). We shall see that, based on these simple moves affecting the assignment of the
variables to the left or the right fields in the probability kernels, algebraic constructs can be elaborated
that have meaningful implications for the kernels at hand.

Our paper is formed of three main sections. Section 2 focuses on variable pairs and set-theoretic
operations on them, and defines a binary relation that organizes any complete collection of such pairs as
a lattice. In Section 3 the results obtained for variable pairs are transferred to probability kernels, and
conditions are discussed that make it possible to ascend from kernels of low rank to kernels of higher
rank in a lattice, which is a typical move in the construction of probabilistic models. In Section 4 the
key binary relation between variable pairs will be shown to possess a general diagnostic ability about the
deducibility relation between probability kernels.
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2. Lattice of variable pairs

Let T = {T1, . . . , Tn} be the complete set of elementary random quantities (observables, parameters,
hyper-parameters, etc.) involved in a probabilistic model. By a variable we mean any subset of T . Thus,
T itself is a variable, referred to as the full variable in the assumed model. Each singleton {Ti } in T is an
elementary variable. The symbol ∅ denotes the empty variable, which is the empty subset of T . Because
variables are here understood as sets, statements such as “X is a sub-variable of Y ” and “X and Y are
disjoint variables”, and formulas such as X ⊆ Y and X ∩ Y =∅, are legitimate and meaningful in the
language adopted in this paper.

A variable pair is any ordered pair (Y |X) such that X ∪ Y ⊆ T , X ∩ Y = ∅, and Y 6= ∅, and the
symbol O(T ) here denotes the complete collection of such pairs. Thus, if n is the cardinality of T , then
3n − 2n is the cardinality of O(T ). Besides, the symbol ⊥ and the name null variable pair are here used
for referring to any pair (∅|X) with X ⊆ T , and the symbol Õ(T ) is a substitute for O(T )∪ {⊥}.

Drawing on equations (1), we define projection J , conditioning C , and promotion M on variable pairs
by setting, for all (Y |X) ∈ O(T ):

J [(Y |X),W ] = (Y \W |X) for all W ⊂ Y (2)

C[(Y |X),W ] = (Y \W |W ∪ X) for all W ⊂ Y (3)

M[(Y |X), (V |U )] = (Y ∪ V |U ) for all (V |U ) ∈ O(T ) such that V ∪U = X. (4)

These definitions are designed so that reference to the null term ⊥ is avoided. This limitation, however,
can consistently be overcome by setting

J [(Y |X), Y ] = ⊥, C[(Y |X), Y ] = ⊥,
M[⊥, (V |U )] = (V |U ), M[(Y |X),⊥] = (Y |X). (5)

Note, in particular, that the two additional equations concerning the M operation turn out to be consistent
with rule (4) if ⊥ becomes replaced by (∅|V ∪U ) in the one equation and by (∅|X) in the other.

The equations in the next composite statement are self-evident:

for all (Y |X) ∈ O(T ) and all W, Z ⊆ Y such that W ∩ Z =∅,

J [J [(Y |X),W ], Z ] = (Y \ (W ∪ Z)|X)= J [J [(Y |X), Z ],W ] (6)

C[C[(Y |X),W ], Z ] = (Y \ (W ∪ Z)|W ∪ Z ∪ X)= C[C[(Y |X), Z ],W ] (7)

J [C[(Y |X),W ], Z ] = (Y \ (W ∪ Z)|W ∪ X)= C[J [(Y |X), Z ],W ]. (8)

They express invariance to change in order (commutativity) for combined J and C operations. In
describing the result of the M operation, the rule is followed of writing the “to be promoted” variable
pair (Y |X) on the left, and its chosen “promoter” (V |U ) on the right, so that X = V ∪U . Therefore,
if M[(Y |X), (V |U )] is a syntactically correct formula, then M[(V |U ), (Y |X)] cannot be syntactically
correct, because U 6= Y ∪ X . For this simple reason, the M operation is not commutative. It is, however,
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associative, because

for all (Y |X), (V |U ), (Z |W ) ∈ O(T ) (9)

if X = V ∪U and U = Z ∪W,

then M[M[(Y |X), (V |U )], (Z |W )] = (Y ∪ V ∪ Z |W )= M[(Y |X),M[(V |U ), (Z |W )]].

Furthermore, the following equations are easily proved:

C[M[(Y |X), (V |U )], V ] = (Y |X) (10)

J [M[(Y |X), (V |U )], Y ] = (V |U ). (11)

These show how the operands of the M operation may be recovered from its result by suitably applying
the C and J operations.

By combining the J and C operations, a binary relation between variable pairs is now defined, which
is a key component of the theory in this study.

Definition 1. Let (V |U ) and (Y |X) be variable pairs in O(T ). The former is JC-derivable from the latter
(notation (V |U )� (Y |X)) if (V |U )= J [C[(Y |X),W ], Z ] for some W and Z disjoint sub-variables of
Y . Furthermore, ⊥� (Y |X) for all (Y |X) in O(T ).

In other words, a variable pair is said to be JC-derivable from another variable pair if the former may be
obtained from the latter through a conditioning followed by a projection — or equivalently, on account of
(8), through a projection followed by a conditioning. Note that if (V |U )� (Y |X), then the variables W
and Z satisfying the equation in Definition 1 are uniquely determined by

W =U \ X and Z = Y \ (V ∪U ).

Also note this bi-conditional

(V |U )� (Y |X) if and only if V ∪U ⊆ Y ∪ X and U ⊇ X (12)

which is readily proved and offers a useful characterization of the relation just defined. A still simpler
characterization is expressed by the following formula, which makes use of the set-theoretic labels in
Figure 2, with V = B ∪ F ∪G, U = D ∪ E ∪ H , Y = A∪ E ∪ F , and X = C ∪G ∪ H :

(V |U )� (Y |X) if and only if B ∪C ∪ D ∪G =∅. (13)

The relation introduced with Definition 1 endows its domain with a regular algebraic organization.

Proposition 1. The relation � is a partial order over the set Õ(T )= O(T )∪{⊥}. It organizes this set as
a lattice, whose supremum and infimum are the pair (T |∅) and the term ⊥, respectively, and whose join
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Figure 2. Quatrefoil representing a crossing between two generic variable pairs (V |U )
and (Y |X). Some of the eight parts could be empty.

and meet operations are determined by the following equations, for all (V |U ) and (Y |X) in O(T ):

(V |U )∨ (Y |X)= (V ∪ Y ∪ (U + X)|U ∩ X) (14)

with U + X = (U \ X)∪ (X \U );
(V |U )∧ (Y |X)= (V ∩ Y |U ∪ X) or =⊥ depending on whether (15)

the conditions V ∩ Y 6=∅, U ⊆ Y ∪ X, and X ⊆ V ∪U are or are not jointly true.

Proof. In the light of characterization (12), it directly appears that reflexivity, transitivity, and antisymmetry
of the relation� follow from the homonymous properties of the set-theoretic inclusion⊆. Thus, (Õ(T ),�)
is a poset (partially ordered set) having (T |∅) as its supremum and⊥ as its infimum (concluding statement
in Definition 1). Let us consider any two members (V |U ) and (Y |X) of the set O(T ). We develop our
argument concerning their join and meet in three stages. First we note that (V ∪ Y ∪ (U + X)|U ∩ X) is
itself a member of O(T ) (the intersection between left variable and right variable in the pair is empty)
and both (V |U ) and (Y |X) are JC-derivable from it (according to (12)). Furthermore, if (Z |W ) is any
member of O(T ) such that (V |U ) � (Z |W ) and (Y |X) � (Z |W ), then (V ∪U ⊆ Z ∪W and U ⊇ W )
and (Y ∪ X ⊆ Z ∪W and X ⊇ W ) (again because of (12)), so that (V ∪ Y ∪ (U + X) ⊆ Z ∪W and
U ∩ X ⊇W ), which implies (Y ∪V ∪ (U + X)|U ∩ X)� (Z |W ). Thus, (V ∪Y ∪ (U + X)|U ∩ X) is the
least upper bound of (V |U ) and (Y |X) in the poset, which proves the equation concerning the join. At a
second stage, let us suppose that (V |U ) and (Y |X) satisfy the three conditions

V ∩ Y 6=∅, U ⊆ Y ∪ X, X ⊆ V ∪U (16)
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and consider the variable pair (V ∩ Y |U ∪ X). It is seen that this pair is a member of O(T ) (in
particular, V ∩Y 6=∅ is the first hypothesis in (16)), and is JC-derivable both from (V |U ) (in particular,
(V ∩Y )∪U ∪ X ⊆ V ∪U is ensured by the third hypothesis in (16)) and from (Y |X) (for similar reasons).
Furthermore, if (Z |W ) is any member of O(T ) such that (Z |W ) � (V |U ) and (Z |W ) � (Y |X), then
(Z ∪W ⊆ V ∪U and W ⊇U ) and (Z ∪W ⊆ Y ∪ X and W ⊇ X ), so that Z ∪W ⊆ (V ∪U )∩ (Y ∪ X) and
W ⊇U ∪ X . But the second and third hypotheses in (16) imply (V ∪U )∩ (Y ∪ X)= (V ∩Y )∪ (U ∩Y )∪
(V ∩ X)∪ (U ∩ X)= (V ∩ Y )∪U ∪ X . Therefore, Z ∪W ⊆ (V ∩ Y )∪U ∪ X and W ⊇U ∪ X , which
means (Z |W ) � (V ∩ Y |U ∪ X). Because of the genericity of (Z |W ), this proves that (V ∩ Y |U ∪ X)
is the greatest lower bound of (V |U ) and (Y |X) in the poset, and confirms the stated formula for the
meet. At a third stage, we refer to any two members (V |U ) and (Y |X) of O(T ) that falsify some of
the conditions in (16) and prove that there cannot exist any member (Z |W ) of O(T ) such that both
(Z |W )� (V |U ) and (Z |W )� (Y |X), so that ⊥ is the only common lower bound of (V |U ) and (Y |X) in
the poset, which means (V |U )∧(Y |X)=⊥. Suppose the first condition in (16) is false, that is V ∩Y =∅
is true. Should a pair (Z |W ) exist in O(T ) such that (Z |W ) � (V |U ) and (Z |W ) � (Y |X), then (12)
combined with V ∩U = ∅ = Y ∩ X would imply V ∩ Y ⊇ Z , so that Z = ∅, which contradicts the
assumption (Z |W )∈ O(T ). Next, suppose the second condition in (16) is false, that is U \(Y ∪X) 6=∅ is
true, so that there is some non-empty variable S ⊆U \ (Y ∪ X). Should a pair (Z |W ) exist in O(T ) such
that (Z |W )� (V |U ) and (Z |W )� (Y |X), then we would have S ⊆W (because W ⊇U ) and not(S ⊆W )
(because W ⊆ Y ∪ X ), which of course is contradictory. The same argument may be applied when the
third condition in (16) is false. �

Using the labels in Figure 2, the equations that specify joins and meets in the lattice Õ(T ) can be
written as

(V |U )∨ (Y |X)= (A∪ B ∪C ∪ D ∪ E ∪ F ∪G|H) (17)

(V |U )∧ (Y |X)= (F |E ∪G ∪ H) if F 6=∅ and C ∪ D =∅.

The atoms in the lattice are the pairs (V |U ) such that |V | = 1, that is, the left-hand component is an
elementary variable. Thus, if n = |T |, then there are n2n−1 atoms. It is readily proved that any member
of O(T ) is expressible as the join of suitably chosen atoms and that the lattice is rankable, the rank of
any pair (V |U ) being the cardinality |V | of its left-hand component. Figure 3 illustrates the concept by
showing three-dimensional Hasse diagrams of three lattices of variable pairs. In these diagrams, each
backward (resp., downward) line represents a projection operation J [(Y |X),W ] (resp., a conditioning
operation C[(Y |X),W ]) with |W | = 1.

The relation �, which organizes the set Õ(T ) as a lattice, has been defined in terms of projection
J and conditioning C as specified by (2) and (3). Some additional comments are in order concerning
promotion M as specified by (4). First, if (V |U ) is a promoter of (Y |X) (i.e., V ∪U = X ), then the two
variable pairs are �-incomparable (because Y ∩ V = ∅) and the result of their promotion equals their
join, that is

M[(Y |X), (V |U )] = (Y ∪ V |U )= (Y |X)∨ (V |U ).
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Figure 3. Three-dimensional Hasse diagrams of the lattices Õ(T ) for |T | = 2 (top right),
|T | = 3 (top left), and (bottom) |T | = 4.

Thus, promotion M within a lattice Õ(T ) is tantamount to a part of the join operation. Second, if
(V |U )≺ (Y |X), then one or two promotions are enough for ascending from (V |U ) to (Y |X) within the
lattice. Specifically, in a writing justified by (9) (associativity of M), the following equation holds true:

(Y |X)= (Y \ (V ∪U )|V ∪U ) M (V |U ) M (Y ∩U |X). (18)

Indeed, if (V |U )� (Y |X) but not (Y |X)� (V |U ) (which is the meaning of the hypothesis (V |U )≺ (Y |X)),
then using the labels in Figure 2 we obtain B ∪C ∪ D ∪G = ∅ but A ∪ E 6= ∅ (because of (13) and
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its rewrite characterizing (Y |X) � (V |U )), so that V = F , U = E ∪ H , Y = A ∪ E ∪ F , and X = H ,
and (18) may be rewritten as (A ∪ E ∪ F |H)=(A|E ∪ F ∪ H) M (F |E ∪ H) M (E |H), which is true
according to the definition of the M operation. Note that if either A =∅ or E =∅, then either the first
or the third operand in the right hand side of (18) would be the infimum ⊥ in the lattice and could be
ignored (consistently with (5)), so that one single application of M would be enough for ascending from
(V |U ) to (Y |X). Third, as a special case of (18) we note the following equation:

(V |U )∨ (Y |X)= ((Y ∪ X) \ (V ∪U )|V ∪U ) M (V |U ) M (U \ X |U ∩ X).

It can be directly proved by noting that the indicated double promotion gives the result ((Y ∪X)\(V ∪U )∪
V ∪ (U \ X)|U ∩ X), that is (A∪ B∪C ∪D∪ E ∪ F ∪G|H) by the labeling in Figure 2, and this variable
pair is precisely the join (V |U )∨ (Y |X) according to (17). The equation thus proved supplements the
first comment in this paragraph, by showing that single and double promotions are enough to simulate
the whole of the join operation within any lattice of variable pairs.

3. Lattice of probability kernels

In this section we return to probability kernels mentioned in the Introduction, in order to show how the
results obtained in discussing variable pairs in the preceding section may conveniently be applied to them.

In the first step, we present the following formulas, which define projection J , conditioning C , and
promotion M as operations on probability kernels:

J [p(W ∪ Z |X),W ] = p(Z |X) (19)

in which p(z|x)=
∑
w∈W ◦

p(w, z|x) for all (x, z) ∈ (X, Z)◦

C[p(W ∪ Z |X), Z ] = p(W |Z ∪ X) (20)

in which p(w|z, x)= p(w, z|x)∑
w′∈W ◦ p(w′, z|x) for all (x, w, z) ∈ (X,W, Z)◦

M[p(Y |V ∪U ), p(V |U )] = p(Y ∪ V |U ) (21)

in which p(y, v|u)= p(y|v, u) · p(v|u) for all (u, v, y) ∈ (U, V, Y )◦.

These formulas generalize the rules mentioned in the Introduction and correspond to operations ordinarily
performed on conditional probabilities in Bayesian computations (Bernardo & Smith, 2000, pp. 127–130;
Koski & Noble, 2009, pp. 53–57). Here we assume that X , W , and Z — as well as U , V , and Y — are
(possibly multiple) variables that are disjoint from one another, and that p(W ∪ Z |X), p(Y |V ∪U ), and
p(V |U ) are probability kernels acting on them. Formulas (19) and (20), in the given writing, apply
when the kernel p(W ∪ Z |X) is of discrete type; similar formulas, with 6 replaced by

∫
, are suitable

for kernels of continuous type. Of course, the specification of the term p(w|z, x) in formula (20) is
acceptable only for any point (x, w, z) such that the denominator in the fraction is non-null, that is, the
value p(z|x) resulting from projection is positive. Furthermore, the kernels p(Y |V ∪U ) and p(V |U )
in formula (21) are here assumed to be of the same measure-theoretic type, that is, either both of them
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are families of mass functions (on domains Y ◦ and V ◦, respectively), or both are families of density
functions2. Lastly, it is readily seen that there is correspondence between the stated operations on kernels
and the operations on variable pairs defined by (2)–(4). For example, if p(Z |X)= J [p(Y |X),W ] then
(Z |X)= (Y \W |X)= J [(Y |X),W ], and similarly for the conditioning and promotion operations. Also
it is easily proved that the (6)–(11) still hold true when they are rewritten in terms of probability kernels
and operations on these.

The second step in this section is about the relation � specified by Definition 1, which may be recast
in terms of probability kernels as follows:

p(V |U ) is JC-derivable from p(Y |X) (notation p(V |U )� p(Y |X)) (22)

if p(V |U )= J [C[p(Y |X),W ], Z ] for some W, Z ⊆ Y such that W ∩ Z =∅.

Just as with the relation � between variable pairs, this relation between kernels is a partial order. Indeed,
it is reflexive, as W and Z in (22) could be the empty variable. It is transitive, by virtue of properties
(6)–(8) as referred to the J and C operations on kernels. It is antisymmetric, because if p(V |U )� p(Y |X)
and p(Y |X) � p(V |U ), then also (V |U ) � (Y |X) and (Y |X) � (V |U ), so that (V |U )= (Y |X), which
combined with p(V |U )� p(Y |X) implies p(V |U )= p(Y |X). Note that, in comparing any two kernels
p(V |U ) and p(V |W ∪U ), it could turn out that

p(v|u)= p(v|w, u) for all (u, v, w) ∈ (U, V,W )◦ (23)

which would mean that V and W are “conditionally independent” given U (Dawid, 1979, p. 3). In that
event, p(V |W ∪U ) would amount to a replica of p(V |U ), and we would accept p(V |U )� p(V |W ∪U )
as a true sentence, for a reason similar to accepting p(V |U )� p(V |U ) as a true sentence.

In order to relate Proposition 1 to probability kernels, we need to refer to a complete collection of
mutually consistent kernels. Let a full kernel p(T ) = p(T |∅) be given, that is, one single probability
function over the range T ◦ of the assumed full variable T . Then, in correspondence to any variable pair
(Y |X)∈ O(T ), we may JC-derive a kernel p(Y |X) from p(T |∅) by applying the conditioning operation
(20) relative to the variable X (i.e., variable X is transferred from the left to the right side of the bar) and
then applying the projection operation (19) relative to the variable T \ (Y ∪ X) (i.e., variable T \ (Y ∪ X)
is canceled from T \ X , so that precisely Y is what remains on the left side of the bar). By doing so for
each of the variable pairs in O(T ), a complete collection of kernels is obtained, here denoted by P(T )
and thus formally defined:

P(T )= {p(Y |X) : p(Y |X)= J [C[p(T |∅), X ], T \ (Y ∪ X)] for (Y |X) ∈ O(T )
}
.

2This is a limitation of the M operation as understood in this paper, which may be overcome by setting the concept of
probability kernel in measure-theoretic terms. Kernels p(Y |V ∪U )= (p(Y |v, u) : v ∈ V ◦, u ∈U◦) and p(V |U )= (p(V |u) : u ∈
U◦) may generally be families of Radon-Nikodym derivatives (of probability distributions) with respect to reference measures
(possibly of different kinds) µ and ν on the spaces Y ◦ and V ◦, respectively (Billingsley, 1995, pp. 439–440; Pollard, 2002,
pp. 84, 119). Hence, for each u ∈ U◦ the product function p(Y ∪ V |u) = (p(y|v, u) · p(v|u) : y ∈ Y ◦, v ∈ V ◦) in turn is a
Radon-Nikodym derivative (of a probability distribution) with respect to the product measure µ×ν on the product space Y ◦×V ◦,
and the promoted kernel p(Y ∪ V |U )= (p(Y ∪ V |u) : u ∈U◦) is the whole collection of these derivatives.
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The kernels in the collection P(T ) are mutually consistent as they originate from the same “parent”
p(T )— indeed, P(T ) is the collection of all kernels that are �-dominated by the assumed full distribution
p(T ). In addition, let P̃(T ) stand for P(T )∪ {]}, where the term ]— here called the null kernel — is
assumed to be lower in the order � than all members of P(T ) and represents “fictitious kernels” p(∅|X)
for X ⊆ T 3. The one-to-one correspondence between variable pairs in O(T ) and kernels in P(T )— and
between the terms ⊥ and ]— is an isomorphism between the ordered sets (Õ(T ),�) and (P̃(T ),�).
Proposition 1 shows that the former set is a lattice, so that also the latter is a lattice. The assumed full
kernel p(T ) and the null kernel ] are the supremum and the infimum in the lattice P̃(T ). The kernels
p(Y |X) in which |Y | = 1 are the atoms. The join and meet operations are defined by formulas that
duplicate (14) and (15) in terms of probability kernels.

The preceding argument has been cast in a top-down perspective, as a full kernel p(T ) has been
assumed available, from which a complete collection P(T ) of mutually consistent kernels may be derived.
But, in the construction of probabilistic models, a perspective somewhat opposite to this is actually taken.
Indeed, in constructing a model, kernels of low rank are first specified — that is, kernels p(Y |X) in which
Y is a variable of small cardinality, possibly an elementary variable, for simplicity. These are the building
blocks of the model, from which other kernels of higher rank are obtained — by combining the building
blocks through promotion or multiplication under suitable assumptions of stochastic independence — and
then other lower rank kernels can be JC-derived for the necessities of the modeling (Koller & Friedman,
2009, pp. 4–5).

Illustrations of this circumstance are offered by hierarchical Bayesian models in statistics. Let us
consider, for example, the following assignment formulas, in which D is an observable random variable
(it could be the mean of a sample of data), whose distribution is assumed to involve a location parameter
µ and a precision parameter λ, which themselves are conceived of as random variables with distributions
depending on hyper-parameters ν, ξ , α, and β, these being provided with definite hyper-prior distributions
(a model compatible with Bernardo & Smith, 2000, p. 440):

D ∼ Normal(µ, λ), µ∼ Normal(ν, ξ), λ∼ Gamma(α, β), (24)

ν ∼ Uniform(0, 50), ξ ∼ Uniform(0, 1), α ∼ Uniform(0, 1), β ∼ Uniform(0, 1).

In the terms we are using in this paper, these formulas specify seven primitive kernels p(D|µ, λ),
p(µ|ν, ξ), p(λ|α, β), p(ν|∅), p(ξ |∅), p(α|∅), and p(β|∅), which express postulates in the model (their
variable pairs are atoms in a lattice, as the conditioned variables are one-dimensional). For purposes
of statistical inference, the modeler may be interested in determining the kernel p(µ|D) that is implied
by the assumed postulates, that is, the family of posterior distributions of the parameter µ given the
observable quantity D. But for determining such low rank kernel (itself an atom) one must first ascend
from the given primitive kernels to the top kernel p(D, µ, λ, ν, ξ, α, β|∅) and then descend from this
to p(µ|D) through suitable conditioning and projections. Of course, such a procedure is only plausible
if a kernel p(D, µ, λ, ν, ξ, α, β|∅) that �-dominates all seven primitive kernels really exists (and is

3In numerical operations, the null kernel ] acts as the number 1, which is the neutral term of multiplication (cf. Studený,
2005, p. 20).
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reachable from these by ascending operations, possibly supported by suitable independence assumptions).
In general, however, if the primitive kernels in a model are specified separately from one another, there is
no a priori guarantee that there is a “consensus kernel” covering all of them, so that the stated problem
might fail to have a solution.

In addressing this topic, use must be made of the concept of “compatibility” as understood in the
discussions concerning conditional specified distributions and, more generally, conditionally specified
statistical models (Arnold, Castillo, & Sarabia, 1999, 2001). The concept can consistently be framed
within the theory developed so far in this paper.

Definition 2. Given kernels p(Y1|X1), . . . , p(Ym |Xm) are compatible with one another if there is a kernel
p(Z |W ) from which all of them are JC-derivable, that is, p(Yi |X i )� p(Z |W ) for all i = 1, . . . ,m.

Note that if p(Z |W ) is a kernel that satisfies this condition, then (Yi |X i )� (Z |W ) for all i = 1, . . . ,m,
so that (Y1|X1)∨ · · · ∨ (Ym |Xm) � (Z |W ). Thus, for verifying whether m given kernels are mutually
compatible, the standard approach would be to verify whether on the join of their variable pairs a kernel
may be constructed from which all of them can be JC-derived. Also note that this compatibility relation
fails to be universally transitive. For example, if X and Y are disjoint discrete variables, then any kernel
p(X |∅) is compatible both with any kernel p(Y |X) and with any kernel p(Y |∅), but these two could be
incompatible with each other — certainly they are compatible if p(Y |∅)= J [M[p(Y |X), p(X |∅)], X ].

For applications, one wants to have conditions that are easily testable and sufficient to ensure compati-
bility. The next proposition provides such a condition, which is rather general, as it only concerns the
variable pairs on which the kernels are acting. No mention is made of the specific form of the probability
functions in the kernels.

Proposition 2. Let (p(Y1|X1), . . . , p(Ym |Xm)) be a list of m≥ 2 probability kernels of the same type (i.e.,
either all of discrete type, or all of continuous type) such that their variable pairs satisfy this condition:

Yi ∩ (Yi−1 ∪ X i−1 ∪ · · · ∪ Y1 ∪ X1)=∅, for all i = 2, . . . ,m. (25)

Then the m kernels are compatible.

Proof. The proof is by induction on the number m ≥ 2 of kernels. First step: For m = 2, let any two
variable pairs (Y1|X1) = (Y |X) and (Y2|X2) = (V |U ) be given such that V ∩ (Y ∪ X) = ∅, that is
F ∪G =∅ in the terms of Figure 2, so that (Y |X)∨ (V |U )= (A∪ B ∪C ∪ D∪ E |H) according to (17).
Let p(Y |X)= p(A∪E |C∪H) and p(V |U )= p(B|D∪E∪H) be arbitrary kernels of the same measure-
theoretic type on the indicated variable pairs. We may extend these kernels into p(A∪ E ∪ D|C ∪ H)
and p(B|A∪C ∪ D ∪ E ∪ H) by setting

p(a, e, d|c, h)= p(a, e|c, h) · p(d), for all (a, e, d, c, h) ∈ (A, E, D,C, H)◦

p(b|a, c, d, e, h)= p(b|d, e, h), for all (b, a, c, d, e, h) ∈ (B, A,C, D, E, H)◦

where p(D) is a freely chosen kernel of the same type as the two given kernels. Then we may combine
the extended kernels by promotion to obtain the following kernel on the join (Y |X)∨ (V |U ):

p(A∪ B ∪C ∪ D ∪ E |H)= p(B|A∪C ∪ D ∪ E ∪ H) M p(A∪ E ∪ D|C ∪ H) M p(C |H)
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where p(C |H) is itself a freely chosen kernel. Note that the double promotion in this equation is
syntactically regular, as the third kernel is a promoter of the second, and in turn this is a promoter of
the first. Kernel p(A ∪ E |C ∪ H) is derivable from p(A ∪ E ∪ D|C ∪ H) by projection, and this is
derivable from p(A∪ B ∪C ∪ D ∪ E |H) because of (10) and (11). Furthermore, the remark associated
to (23) ensures that p(B|D ∪ E ∪ H) is derivable from p(B|A∪C ∪ D ∪ E ∪ H), and this is derivable
from p(A∪ B ∪C ∪ D ∪ E |H) because of (10). Therefore, p(Y |X)= p(A∪ E |C ∪ H) and p(V |U )=
p(B|D∪E∪H) are compatible kernels, as there exists a kernel from which both of them are derivable. Note
that p(A∪B∪C∪D∪E |H) does not involve any variable besides those involved in p(A∪E |C∪H) or in
p(B|D∪E∪H). Inductive step: Let us now consider any list (p(Y1|X1), . . . , p(Ym−1|Xm−1), p(Ym |Xm))

of m > 2 kernels whose variable pairs comply with condition (25), and suppose (as inductive hypothesis)
that the first m− 1 members in the list are compatible with one another, so that there is a kernel p(Z |W )

from which all of them are derivable. Based on the remark that concludes the first step of the current
proof, we may presume Z ∪W ⊆ Ym−1 ∪ Xm−1 ∪ · · · ∪ Y1 ∪ X1, so that Ym ∩ (Z ∪W )=∅ because of
hypothesis (25). Thus, the conditions are satisfied that make it possible to apply the argument in the first
step of the current proof to the kernels p(Z |W ) and p(Ym |Xm). The argument ensures the existence of
a kernel from which both p(Z |W ) (hence p(Y1|X1), . . . , p(Ym−1|Xm−1)) and p(Ym |Xm) are derivable.
Therefore, the m kernels are all compatible with one another. �

The proposition thus proved directly shows the internal consistency of the Bayesian model specified in
(24). Indeed, if the primitive kernels in the model are listed in the order

(p(β|∅), p(α|∅), p(ξ |∅), p(ν|∅), p(λ|α, β), p(µ|ν, ξ), p(D|µ, λ)),
then it appears that the conditioned variable in each kernel falls out of the collection of the variables involved
in the kernels preceding that kernel in the list, so that condition (25) for mutual compatibility of the kernels
is satisfied. More generally, suppose that (Tr(1), . . . , Tr(n)) is an ordering of the elementary variables
that form the full variable T = {T1, . . . , Tn} of a probabilistic model, and that (Tr(1)|X1), . . . , (Tr(n)|Xn)

are variable pairs — specifically, atoms in the lattice Õ(T )— such that X i ⊆ Tr(1) ∪ . . . ∪ Tr(i−1), for
each i = 1, . . . , n (in particular, X1 = ∅). Then Proposition 2 implies, as a corollary, that any kernels
p(Tr(1)|X1), . . . , p(Tr(n)|Xn) of the same measure-theoretic type (e.g., all discrete or all continuous ker-
nels) on those variable pairs are compatible with one another, and such kernels uniquely determine (through
multiple promotion, possibly supported by assumptions of stochastic independence) a distribution p(T ) on
the full variable of the model. Thus, possible kernels on the atom variable pairs (Tr(1)|X1), . . . , (Tr(n)|Xn)

form a system of independent and minimum-rank generators of possible full distributions for the model.
The corollary now highlighted corresponds to a key result in the theory of Bayesian networks. Indeed,

if the elementary variables in a collection T = {T1, . . . , Tn} are represented as nodes of an acyclic directed
graph (DAG), then a list ((Tr(1)|X1), . . . , (Tr(n)|Xn)) of variable pairs with the stated characteristics can
be formed, in which (Tr(1), . . . , Tr(n)) is a suitable permutation of T and X i (for i = 1, . . . , n) is the
set of “parents” of the variable Tr(i) in the graph. Therefore, if p(Tr(1)|X1), . . . , p(Tr(n)|Xn) are the
elementary probability kernels postulated in the Bayesian network, then by virtue of the stated corollary
a joint “consensus” distribution p(T ) does exist and this may be uniquely inferred (also thanks to the
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T1 T2

T3 T4

T5

Figure 4. The DAG of a Bayesian network on five elementary variables (from Kjærulff
& Madsen, 2008, p. 13).

conditional independences represented in the DAG) through the “chain rule”, which corresponds to
multiple promotion in our terms (Pearl, 1988, pp. 119–120; Darwiche, 2009, pp. 57–58). The DAG in
Figure 4 offers the basis for an illustration of the stated property. By associating to each elementary
variable the set of its parents in the graph — that is, the variables emitting an arrow towards that variable —
the following list of variable pairs is obtained:

(T1|∅), (T2|∅), (T3|T1), (T4|T1, T2), (T5|T3, T4).

It is seen that, in this ordering, the variable pairs do comply with condition (25) (a circumstance ultimately
due to the acyclic character of the graph), so that Proposition 2 ensures mutual compatibility among the
probability kernels that a modeler may specify in defining a Bayesian network on the DAG:

p(T1|∅), p(T2|∅), p(T3|T1), p(T4|T1, T2), p(T5|T3, T4). (26)

Furthermore, the DAG represents a system of conditional stochastic independences, which are assumed
true by the modeler. For example, it implies that the variable T5 is assumed to be conditionally independent
of the variable {T1, T2} given the variable {T3, T4}, this being the set of parents of T5. Because of such
independences encoded in the hypothesized graph, the specification (by the modeler) of the kernels (26)
directly entails (on account of (23)) the specification of these kernels:

p(T5|T1, T2, T3, T4), p(T4|T1, T2, T3), p(T3|T1, T2), p(T2|T1), p(T1|∅).

It is seen that, in this ordering (which for convenience is the opposite of that in (26)), each kernel is
a regular promoter of its immediate predecessor in the list. Thus, multiple promotion can be applied,
whose result will be the full distribution p(T1, T2, T3, T4, T5) the existence of which is ensured by the
configuration of the variable pairs owing to Proposition 2. Such multiple promotion amounts to an
ascension from five atoms in a lattice of kernels to their join (which, in this special case, equals the
supremum of the lattice itself).
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4. Order of variable pairs and compatibility of kernels

In this section, we present a result that illustrates the diagnostic power of the order � between variable
pairs as concerns a special aspect of compatibility between probability kernels. More precisely, we will
show that, for all variable pairs (V |U ) and (Y |X), one has (V |U ) � (Y |X) if and only if each kernel
p(Y |X) on the latter pair uniquely determines a kernel p(V |U ) on the former. In other words, if p(Y |X)
is given and (V |U )� (Y |X), then there exists one single kernel on (V |U ) compatible with it, whereas
if not (V |U ) � (Y |X), then there exist different kernels on (V |U ) compatible with the same p(Y |X).
As in the preceding section, implicit in the following arguments is the assumption that the kernels to be
combined or compared are of the same measure-theoretic type (either discrete or continuous).

In proving the indicated result, use will be made of one further operation on kernels, called multiplication,
which is defined as follows (cf. Koski & Noble, 2009, pp. 55–56):

for all p(Y |X) and p(Z |W ) such that Y ∩ (Z ∪W )=∅= Z ∩ (Y ∪ X) (27)

p(Y |X)× p(Z |W )= p(Y ∪ Z |X ∪W )

in which p(y, z|t, u, v)= p(y|t, u) · p(z|u, v)
for all (y, z) ∈ (Y, Z)◦ and (t, u, v) ∈ (X \W, X ∩W,W \ X)◦.

This formula is applicable also to cases in which W = ∅ (so that p(Z |W ) = p(Z |∅) is one single
probability function on the range Z◦) or Z =∅ (so that p(Z |W )= p(∅|W ) stands for the null kernel ];
see footnote 3). In these special cases, the definition becomes

p(Y |X)× p(Z |∅)= p(Y ∪ Z |X)
in which p(y, z|x)= p(y|x) · p(z) for all (y, z, x) ∈ (Y, Z , X)◦

p(Y |X)× p(∅|W )= p(Y |X ∪W )

in which p(y|x, w)= p(y|x) for all (y, x, w) ∈ (Y, X,W )◦.

It is easily shown that the product p(Y |X)× p(Z |W ) defined by (27) is itself a probability kernel; more
specifically, it is a family (indexed by (X ∪W )◦) of probability functions on (Y, Z)◦. Equally it can be
shown that multiplication is an associative and commutative operation, and for every variable S ⊆ Y it
satisfies these equations:

J [p(Y |X)× p(Z |W ), S] = (J [p(Y |X), S])× p(Z |W ) (28)

C[p(Y |X)× p(Z |W ), S] = (C[p(Y |X), S])× p(Z |W ). (29)

In other words, a kind of commutativity holds between multiplication × on the one hand and projection J
and conditioning C on the other hand.

Now we state and prove the main result in this section.

Proposition 3. Let (V |U ) and (Y |X) be any two non-null members of a lattice Õ(T ) of variable pairs.
Then (V |U )� (Y |X) if and only if for all kernels p(V |U ), p(Y |X), q(V |U ), and q(Y |X) such that the
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first two are compatible, and also the other two are compatible, the equality p(Y |X)= q(Y |X) implies
the equality p(V |U )= q(V |U ).
Proof. The “only if” part of this proposition is easily shown, on considering that if (V |U )� (Y |X), then
the stated compatibility hypotheses imply p(V |U )� p(Y |X) and q(V |U )� q(Y |X), that is

p(V |U )= J [C[p(Y |X),U \ X ], Y \ (V ∪U )] and q(V |U )= J [C[q(Y |X),U \ X ], Y \ (V ∪U )]
so that the equality p(Y |X)= q(Y |X) obviously implies the equality p(V |U )= q(V |U ). To prove the
“if” part is tantamount to proving that

if not (V |U )� (Y |X) (30)

then there are kernels p(V |U ), p(Y |X), q(V |U ), and q(Y |X) such that

p(V |U ) and p(Y |X) are compatible, q(V |U ) and q(Y |X) are compatible, and

p(Y |X)= q(Y |X) but p(V |U ) 6= q(V |U ).
In the terms of Figure 2 and on account of (13), the antecedent “not (V |U )� (Y |X)” in this implication
means that the condition B ∪C ∪ D ∪ G 6= ∅ holds true. Hereafter we separately discuss (using the
labels in Figure 2) three cases that exhaustively cover this condition. Case B ∪G 6=∅. Choose any two
probability functions p(B∪G) and q(B∪G) that are different from each other — such functions do exist,
simply because B ∪G 6=∅. Then consider any probability function r(A∪C ∪ D∪ E ∪ F ∪ H), combine
it with p(B ∪G) and q(B ∪G) by multiplication, thus obtaining

p(W )= p(A∪ B ∪C ∪ D ∪ E ∪ F ∪G ∪ H)= p(B ∪G)× r(A∪C ∪ D ∪ E ∪ F ∪ H)

q(W )= q(A∪ B ∪C ∪ D ∪ E ∪ F ∪G ∪ H)= q(B ∪G)× r(A∪C ∪ D ∪ E ∪ F ∪ H)

JC-derive the following kernels from p(W )

p(Y |X)= p(A∪ E ∪ F |C ∪G ∪ H)= J [C[p(W ),C ∪G ∪ H ], B ∪ D]
p(V |U )= p(B ∪ F ∪G|D ∪ E ∪ H)= J [C[p(W ), D ∪ E ∪ H ], A∪C]

and similarly the kernels q(Y |X) and q(V |U ) from q(W ). Kernels p(Y |X) and p(V |U ) are compatible,
because they are JC-derived from the same p(W ), and for a similar reason also q(Y |X) and q(V |U ) are
compatible. Furthermore, on account of (28) and (29),

p(Y |X)=
J [C[p(B ∪G)× r(A∪C ∪ D ∪ E ∪ F ∪ H),C ∪G ∪ H ], B ∪ D] =
J [C[p(B ∪G),G]×C[r(A∪C ∪ D ∪ E ∪ F ∪ H),C ∪ H ], B ∪ D] =
J [p(B|G)× r(A∪ D ∪ E ∪ F |C ∪ H), B ∪ D] =
J [p(B|G), B]× J [r(A∪ D ∪ E ∪ F |C ∪ H), D] =
p(∅|G)× r(A∪ E ∪ F |C ∪ H)
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and

p(V |U )=
J [C[p(B ∪G)× r(A∪C ∪ D ∪ E ∪ F ∪ H), D ∪ E ∪ H ], A∪C] =
J [p(B ∪G)×C[r(A∪C ∪ D ∪ E ∪ F ∪ H), D ∪ E ∪ H ], A∪C] =
J [p(B ∪G)× r(A∪C ∪ F |D ∪ E ∪ H), A∪C] =
p(B ∪G)× J [r(A∪C ∪ F |D ∪ E ∪ H), A∪C] =
p(B ∪G)× r(F |D ∪ E ∪ H).

Similar procedures show that q(Y |X) = q(∅|G)× r(A ∪ E ∪ F |C ∪ H) and q(V |U ) = q(B ∪ G)×
r(F |D∪E∪H). Therefore, p(Y |X)= q(Y |X) (because p(∅|G)= ]= q(∅|G)), but p(V |U ) 6= q(V |U )
(because p(B ∪ G) 6= q(B ∪ G) by the initial choice), so that the four kernels do comply with the
requirements in the consequent of implication (30). Case B ∪G =∅ and D 6=∅. As (V |U ) is presumed
different from ⊥ (the null variable pair), the hypothesis B ∪ G = ∅ implies that F 6= ∅. It is well
known that, for any two (non-empty) disjoint variables F and D, probability functions p(F ∪ D) and
q(F ∪ D) can be constructed such that p(F)= J [p(F ∪ D), D] and q(F)= J [q(F ∪ D), D] are equal,
but p(F |D)= C[p(F ∪ D), D] and q(F |D)= C[q(F ∪ D), D] are different. Given such functions, by
multiplication let us construct the following:

p(W )= p(A∪C ∪ D ∪ E ∪ F ∪ H)= p(F ∪ D)× r(A∪C ∪ E ∪ H)

q(W )= q(A∪C ∪ D ∪ E ∪ F ∪ H)= q(F ∪ D)× r(A∪C ∪ E ∪ H)

where r(A ∪C ∪ E ∪ H) is a freely chosen probability function. By applying the same method used
above, the following results are obtained:

p(Y |X)= p(A∪ E ∪ F |C ∪ H)= J [C[p(W ),C ∪ H ], D] = p(F)× r(A∪ E |C ∪ H)

p(V |U )= p(F |D ∪ E ∪ H)= J [C[p(W ), D ∪ E ∪ H ], A∪C] = p(F |D)× r(∅|E ∪ H)

and similarly q(Y |X)= q(F)×r(A∪E |C∪H) and q(V |U )= q(F |D)×r(∅|E∪H). Thus, the equality
p(F) = q(F) implies p(Y |X) = q(Y |X), and the inequality p(F |D) 6= q(F |D) implies p(V |U ) 6=
q(V |U ), so that the four kernels satisfy what the implication (30) requires. Case B ∪ D ∪ G = ∅
and C 6= ∅. A well-known fact, symmetric to that mentioned above, is that for any two (non-empty)
disjoint variables F and C , probability functions p(F ∪C) and q(F ∪C) can be constructed such that
p(F)= J [p(F ∪C),C] and q(F)= J [q(F ∪C),C] are different, whereas p(F |C)= C[p(F ∪C),C]
and q(F |C) = C[q(F ∪C),C] are equal. Drawing on this property, the third case in question can be
solved by the same method used for the previous ones, on taking account that (Y |X)= (A∪E∪F |C∪H)
and (V |U )= (F |E ∪ H) in the presumed situation. �

The proposition thus proved shows that the order relation � between variable pairs constitutes a general
criterion for deducibility between probability kernels. For illustrating the meaning of this statement, let
us assume T = {T1, T2, T3} as the full variable of a model and consider the following three variable pairs
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in the lattice Õ(T ) (see Figure 3 on page 86, top left):

(T1, T2|T3), (T1|T2, T3), (T3|T1, T2).

In principle, on each of these variable pairs various (infinitely many) alternative probability kernels may
be defined, but suppose that compatibility between kernels is required (cf. Definition 2). We may then
ask: given the compatibility requirement, does a deterministic constraint exist between how a kernel
on (T1, T2|T3) is chosen and how kernels on (T1|T2, T3) and (T3|T1, T2) may be chosen? Proposition 3
allows us to give the following answers. For any possible kernel p(T1, T2|T3) there is one single kernel
p(T1|T2, T3) compatible with it (and derivable from it by a C operation), because the relation (T1|T2, T3)�
(T1, T2|T3) between their variable pairs is true. On the contrary, for any possible kernel p(T1, T2|T3)

there are several kernels p(T3|T1, T2) compatible with it, because the relation (T3|T1, T2)� (T1, T2|T3)

between their variable pairs is false. It is remarkable that both answers can be given only considering the
candidate variable pairs, irrespectively of the specific kernel chosen for the pair (T1, T2|T3). In general,
for any fixed variable pair (Y |X) in a lattice Õ(T ), we may ask: which are the variable pairs (V |U ) such
that, for any kernel p(Y |X) there exists exactly one kernel p(V |U ) compatible with it? Proposition 3
answers that such variable pairs (V |U ) are precisely those such that (V |U )� (Y |X), that is, the members
of the ideal generated by the member (Y |X) within the lattice Õ(T ).

5. Concluding remarks

The motivations for this study arose from the examination of probabilistic models that involve several
variables and assign a prominent role to conditional probability distributions on them. Examples are
provided by Bayesian networks, probabilistic graphical models, hierarchical Bayesian models in statistics,
and Bayesian and Markov models in experimental sciences, which we mentioned in the Introduction along
with few selected references to the corresponding literature. In models of these kinds, distinct levels of
conditional probabilities are generally involved, in which the role played by any one variable in the system
may vary. An elementary illustration of such duplicity or reversibility of roles is provided by the Bayes
rule itself, as it intervenes in basic statistical models. Within the equation p(θ |D)= p(θ) · p(D|θ)/p(D)
that expresses the rule, the parameter quantity θ is a conditioning variable (placed on the right of the bar)
in the likelihood term p(D|θ), and becomes a conditioned variable (placed on the left of the bar) in the
posterior term p(θ |D). The opposite is true of the variable D representing the data.

With this study, we contribute ideas for a general framework in which the key components of such
probabilistic models may be represented and interrelated for analysis. For representing the key components
of a model, the comprehensive concept of “probability kernel” has been adopted, characterized as a family
of probability functions on one (possible multiple) variable that are indexed by some other (possible
multiple) variable. The analysis has been focused on such pairs of multiple variables and on the set-
theoretic relations and operations applicable to them. This analysis is bent toward generality, as it is
independent of the peculiar characteristics of the probability functions collected in a kernel. Working in
this perspective, significant implications of algebraic character have been found, especially relating to the
concept of a lattice.
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Although focused on the variables, our analysis has meaningful consequences concerning the probability
kernels acting on the given variables. Proposition 1 reveals a kind of algebraic structure into which the
kernels in a complex probabilistic model may be mapped and interrelated through operations, in a way
suggested by the Hasse diagrams in Figure 3. Proposition 2 provides a general criterion of compatibility
between kernels, that makes it possible to test whether given low rank kernels may be the building blocks
of a consistent probabilistic model. Proposition 3 provides a criterion for finding which kernels are
uniquely determined by a given kernel and may thus be unambiguously deduced from it. The criterion
is quite general and becomes strengthened when assumptions are introduced that specify the kind of
probability functions forming the kernels in a model — for example, deducibility between kernels of
Gaussian form.
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