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Abstract
In this work, the mechanical response of a steel wire mesh panel against a punching load is studied starting from laboratory

test conditions and extending the results to field applications. Wire meshes anchored with bolts and steel plates are

extensively used in rockfall protection and slope stabilization. Their performances are evaluated through laboratory tests,

but the mechanical constraints, the geometry and the loading conditions may strongly differ from the in situ conditions

leading to incorrect estimations of the strength of the mesh. In this work, the discrete element method is used to simulate a

wire mesh. After validation of the numerical mesh model against experimental data, the punching behaviour of an anchored

mesh panel is investigated in order to obtain a more realistic characterization of the mesh mechanical response in field

conditions. The dimension of the punching element, its position, the anchor plate size and the anchor spacing are varied,

providing analytical relationships able to predict the panel response in different loading conditions. Furthermore, the mesh

panel aspect ratio is analysed showing the existence of an optimal value. The results of this study can provide useful

information to practitioners for designing secured drapery systems, as well as for the assessment of their safety conditions.

Keywords Discrete element method (DEM) � Punch test � Rockfall protection � Rock slope stability � Secured drapery

systems � Wire meshes

1 Introduction

Secured drapery systems are widely used as a counter-

measure to rockfalls and shallow unstable phenomena

along slopes. These systems are composed of a steel wire

mesh, which is pinned to stable outcrops or to firm layers

by means of tie rods or bolts and anchor plates (see Fig. 1).

The stabilizing action that the mesh system can exert is

strongly related to its deformation, which in turn is con-

trolled by the load induced on it by the retained material

[27] (e.g. unstable rock blocks, debris). This progressive

activation of the mesh system retaining action highlights

that secured draperies are characterized by passive beha-

viour [5, 9], and therefore, localized movements of the

retained material are expected in field applications. The

knowledge of the force–displacement behaviour of the

mesh system is therefore of fundamental importance for

correct design; moreover, it permits one to evaluate system

deformations in serviceability conditions. This aspect is

particularly important in secured drapery interventions

along railways and infrastructures.

Despite the large utilization of secured drapery systems,

a lack of knowledge of their in-field mechanical behaviour

exists and forecasting the latter in real applications still

represents a challenging task. On one hand, the realization

of real-scale experiments [4, 5] is complex and extremely

costly. On the other hand, the laboratory tests that are

currently used to evaluate the performance of the mesh do

not correctly reproduce conditions in the field

[5, 22, 24, 41]. In the laboratory characterization, the mesh

panel is generally fixed to a rigid frame along its outer

boundary, instead in the field the mesh is only locally fixed

by means of anchor plates. The standard tests therefore

provide a mechanical characterization of the mesh that is
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not representative of the in-field behaviour, which may lead

to an overestimation of the mesh resistance.

The utilization of a numerical approach represents a

valid alternative to expensive large-scale experimental

tests, permitting one to easily modify the test configuration

and providing an insight into the mechanical behaviour of

the system. Several numerical works dealing with wire

mesh structures, both considering the finite element method

(FEM) [13, 18, 19, 23, 25, 26, 40] and the discrete element

method (DEM) [2, 6, 15, 32, 34, 37, 38, 42], are reported in

the technical literature. In this work, the DEM is adopted

because it can handle large deformations, multiple-contact

problems and failures of mesh elements.

The main aim of this work is to extend the results of a

standard laboratory characterization to a condition closer to

the in-field one. In this perspective, the DEM is used to

analyse the force–displacement response of an anchored

mesh subjected to an out-of-plane loading condition. The

common 8� 10 hexagonal double-twisted steel wire mesh

is considered, adopting a node-wire-based approach [6, 38]

for the numerical representation of the mesh. The simula-

tions are performed with the open-source code YADE [36].

Firstly, the mesh model is validated against experimental

measurements (Sect. 3.2.1). Secondly, a large-scale

anchored mesh system is analysed considering two differ-

ent loading configurations (Sect. 4). Thirdly, the main

variables of the problem (i.e. the punching element

dimension and position, the size of the anchors and their

spacing, the mesh panel geometry) have been modified in

order to study their role on the mechanical performance of

an anchored mesh panel (Sects. 4.1–4.5). The results

obtained are used to define simple analytical relationships

to account for the effect of the different variables of the

problem. Finally, an application example is reported

showing the use of the analytical relationships for

extending the results of the standard laboratory character-

ization to field conditions (Sect. 4.6).

2 Discrete element modelling of the wire
mesh

The DEM [16] represents an effective numerical tool for

the analysis of multi-body mechanical problems that

include contact, slipping and detachment between them in

dynamic and quasi-static conditions. The first works

adopting the DEM for the study of steel wire mesh struc-

tures were carried out by Hearn et al. [29], and subse-

quently by Nicot et al. [32, 33]. In the last two decades, the

adoption of the DEM for analysing problems involving

wire mesh structures has seen a large growth. More refined

models have been implemented [7, 38] and applied to

analyse the mechanical behaviour of wire meshes in lab-

oratory conditions [3, 17, 20, 21, 30] as well as in large-

scale applications. In particular, the dynamics of a single

rock block impacting on wire mesh structures was studied

in [8, 11, 14]. Moreover, the impact of a dry granular flow

on a flexible barrier was analysed in [1, 2], while the

impact of a debris flow (using a CFD-DEM coupled

scheme) was considered in [31]. Only very recently, was

the DEM applied to secured drapery systems

[22, 34, 41, 42]. This is also the focus of the present work.

In a discrete element framework, a wire mesh is repre-

sented by a regular pattern of bodies connected by long-

range remote interactions, or, more recently, directly joined

to each other. The interaction between two connected mesh

bodies (i.e. discrete elements) is governed by specific

‘‘contact’’ laws. Three different approaches are generally

used to simulate a wire mesh: a cell-based approach (CB)

[15, 32, 33], a node-wire-based approach (NWB)

[6, 7, 35, 37, 38, 41, 42] and a cylinder-wire-based

approach (CWB) [1, 2, 17, 21, 34].

In this work, the NWB approach is adopted. It permits

reduction of the computational demand in comparison with

the CWB approach and it does not introduce any approx-

imation of the geometric pattern of the mesh elements

(differently from the CB approach). In cases in which large

bodies, in comparison with the mesh elementary cell,

interact with the mesh, the NWB and the CWB approaches

provide the same results in terms of mechanical response of

the mesh [21]. In the NWB approach, each physical node

of the mesh (i.e. intersection between two wires in the real

mesh) is represented by a nodal spherical particle that

concentrates the mass of the related wires. These nodal

particles are connected by means of long-range interac-

tions, thus representing the wires in the model (see

Fig. 2a). This implies that the wires are not explicitly

described in the numerical model; hence, contact with

Fig. 1 Example of application of a secured drapery system (location:

South Africa, courtesy of Dr. Giacchetti)
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external bodies is handled only at the level of the nodal

particles. The interactions between the nodal particles are

ruled by a user-defined piece-wise linear function (ele-

mentary wire model EWM) which describes the tensile

force–displacement behaviour of the wires (compressive

forces are neglected because of their low magnitude related

to the effect of buckling [6]). The force–displacement

relationship characterizing the EWM is derived from a

stress–strain relationship (input data) on the basis of the

defined wire diameter and the distance between two con-

nected nodal particles. It should be noted that the wire

diameter can be defined independently of the nodal particle

diameter, thus permitting an optimization of the computa-

tional time [38]. An unloading/reloading condition is

accounted for by using the same stiffness of the first branch

of the force–displacement curve. The failure of a wire is

considered (i.e. breakage of an interaction) by imposing a

threshold value on the wire elongation. A schematic rep-

resentation of the EWM is reported in Fig. 2b. The inter-

action at the contact point between a nodal particle and an

external element is instead described by using the classic

linear elastic-plastic contact law defined in [16]. The nor-

mal contact force Fn is linearly related to the interpene-

tration d (at the contact), while the tangential component Ft

is incrementally updated and is limited by a Coulomb’s

plastic condition. The normal and tangential contact forces

are given by:

Fn ¼knd ð1Þ

DFt ¼kt _udt ðjFtj � jFnj tan/lÞ ð2Þ

where kn and kt are the normal and tangential contact

stiffness, respectively, _ut the relative tangential velocity, dt

the time step of the integration scheme and /l the friction

angle at the contact between the two bodies.

The numerical simulations presented in this paper are

performed with the open-source code YADE [36].

3 Validation of the numerical model

3.1 Wire mesh characteristics

In this work, the 8� 10 hexagonal double-twisted wire

mesh with a nominal wire diameter of 2.7 mm (Maccaferri)

is considered. The periodic hexagonal cell is composed of

two sub-elements: the single wires (SW, ± 45� oriented)

and the double-twisted wires (DT, aligned in parallel with

respect to the machine manufacturing direction). The

geometry of the hexagonal cell is described by three geo-

metrical parameters: the characteristic lengths a and b, both

equal to 4 cm, and the mesh opening size (mos) equal to

8cm as shown in Fig. 3. In this work, the mechanical

behaviour of the single and double-twisted wires is char-

acterized by using the tensile stress–strain relationships

presented in [38] and reported in Fig. 4. These are used for

the definition of the force–displacement relationships

(EWMs) that govern the interaction between two con-

nected nodal particles in the numerical model (a different

(a) (b)

Fig. 2 a Graphical example of the mesh description with the NWB approach (adapted from [38]). b Graphical scheme of the EWM (adapted

from [38])

Fig. 3 View of the hexagonal double-twisted mesh with the indication

of the geometrical parameters a, b and mos
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EWM is used for describing the single and the double-

twisted wires).

The experimental results of a standard UNI punch test

are used for the model validation. This test is widely uti-

lized to investigate the response of a mesh panel against an

out-of-plane loading condition. The standard UNI 11437

[39] prescribes the use of a spherical dome with a diameter

D ¼ 1:0 m and a curvature radius of 1.2 m (curvature

radius of the dome edges equal to 0.05 m) as punching

element. Furthermore, a rectangular mesh panel with a

nominal side of 3 m (tolerance of 20%) must be utilized. In

the experimental procedure, the mesh panel is fixed to an

external rigid frame and the punching element is raised

with a constant velocity (� 0:01 m/s) until the complete

failure of the mesh (i.e. the mesh is no longer able to

contrast the punching element movement). During the test,

the force acting on the punching element, as well as its

displacement, are measured, providing as output a force–

displacement relationship.

In the experimental test considered here, a mesh panel of

dimensions 3 m� 3 m is adopted. In addition to this

standard punch test (i.e. 3 m� 3 m mesh panel and dome

diameter 1 m), a ‘‘reduced’’ version, in which a 1 m� 1 m

mesh panel and a punching element of diameter 0.33 m are

used, is performed in order to account for scale effects. A

view of the test on the 3 m� 3 m mesh panel is shown in

Fig. 5b, while the experimental data are reported in Fig. 6.

3.2 Numerical modelling of the punch test

3.2.1 Comparison to experimental results

In order to validate the mesh numerical model, the exper-

imental standard UNI punch test configuration described in

Sect. 3.1 is numerically simulated. In the numerical model,

the geometry of the experimental test is precisely repro-

duced. A mesh panel of dimensions 3 m� 3 m is descri-

bed by using 2890 nodal particles (� 322 particles per m2).

Following the strategy of [38], the nodal particles’ diameter

is set equal to four times that of real wires (dn ¼ 10:8 mm):

this entails a benefit in the computational time without

influencing the mechanical response of the mesh (see

Fig. 7a). The particles’ density is thus adjusted in order to

maintain the inertial proprieties of the mesh panel

(� 1:4 kg/m2). In order to reproduce the boundary condi-

tions of the experimental test, the displacement of the

particles belonging to the mesh outer boundary is fixed.

Moreover, the rotational degrees of freedom of all the

nodal particles are fixed (this permits frictional effects at

the mesh–punch contact to be accounted for). The punch-

ing element geometry is precisely reproduced in the model

by using 694 triangular elements. A sketch of the geometry

adopted in the numerical punch test model is shown in

Fig. 5a.

The numerical results are provided in terms of a force–

displacement curve by recording the force acting on the

punching element (F) and its displacement (d) during the

test. The simulation is ended when the complete failure of

the mesh is reached, namely when the tear in the mesh is

sufficiently large to permit the punching element to pass

through. In accordance with the experimental standard

[39], the final point of the force–displacement curve refers

to the maximum force value measured during the test.

Finally, the time step is set equal to dt ¼ 3� 10�5 s.

The contact parameters used for characterizing the

mesh–punch contact are kn ¼ 6:5� 105 N/m, kt ¼ 0:4kn
and a /u ¼ 0. It should be noted that these parameters have

a slight effect on the numerical results (i.e. F–d curve) as

highlighted by the sensitivity analysis reported in Sect.

3.2.2. Furthermore, in order to reduce the computational

time, the velocity imposed on the punching element in the

numerical model is higher than the one used in the

experimental procedure, and is equal to vz ¼ 0:1 m/s. This

does not modify the mechanical response of the mesh panel

as reported in Fig. 7b.

The numerical predictions are reported in Fig. 6a where

they are compared with the experimental results. A good

agreement is observed proving the effectiveness of the

numerical approach. In addition, the ‘‘reduced’’ punch test

configuration is simulated (i.e. 1 m� 1 m mesh panel,

punch diameter D ¼ 0:33 m). The same numerical

parameters as before are adopted. The comparison between

numerical and experimental results is in good agreement as

shown in Fig. 6b. This provides a further confirmation of

the validity of the mesh model; moreover, it highlights the

capability of the model to reproduce scale effects.

Fig. 4 Tensile stress–strain relationships of the single (SW) and

double-twisted (DT) wires
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3.2.2 Sensitivity analysis of the mesh–punch contact
parameters

The influence of the normal contact stiffness is analysed

varying its value in the range

6:5� 103 N/m� kn � 2:6� 107 N/m. A variation of kn

induces a variation of kt as well; however, since the mesh–

punch contact is assumed frictionless (i.e. /l ¼ 0), this

does not influence the tangential behaviour at the mesh–

punch contact. The numerical results (Fig. 8a) show that

for kn � 1� 105, this parameter does not significantly

influence the mechanical response of the mesh (differences

=

==

(a) (b)

Fig. 5 a Sketch of the numerical model of the standard UNI punch test (blue solid lines represent the fixed mesh boundary). b View of the

experimental standard UNI punch test (test conducted by Maccaferri) (color figure online)

(a) (b)

Fig. 6 Comparison between numerical and experimental punch test results for: a the standard UNI test on a 3 m� 3 m mesh panel (D ¼ 1:0 m)

and b the ‘‘reduced’’ test on a 1 m� 1 m mesh panel (D ¼ 0:33 m)

(a) (b)

Fig. 7 Effect of the nodal particle diameter dn in terms of force Fmax and deflection dmax values at failure. b Effect of the punching element lifting

velocity vz on the mechanical response of the mesh
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in terms of force and displacement values at failure are less

than 1%.). For lower values of kn, the interpenetration

between the mesh particles and the facet elements, at a

certain point of the simulation (depending on the kn value),

becomes too large compromising the correctness of the

simulation, namely the punching element passes through

the mesh before the failure of the latter. However, before

this moment the mechanical response of the mesh is the

same independently of the value kn (i.e. F–d curves are

superimposed).

For the analysis of the effect of the tangential contact

stiffness kt, an extremely high value of the contact friction

angle (/l ¼ 89�) is used in order to maximize the possible

differences due to tangential effects at the mesh–punch

contact. The value of kt is varied in a wide range

0:1kn � kt � 1:0kn (kn ¼ 6:5� 105 N/m). The results

reported in Fig. 8b show that the influence of kt is also

negligible (differences in terms of force and displacement

values at failure are less than 1.3%.).

Finally, the mesh–punch contact friction angle /l is

varied from a frictionless case up to the extremely high

frictional condition /l ¼ 89� (kn ¼ 6:5� 105 N/m,

kt ¼ 0:4kn). The numerical results obtained for /l ¼ 0�,

/l ¼ 10�, /l ¼ 89� are compared in Fig. 9. The

mechanical response in the initial part of the force–dis-

placement curve (i.e. d� 0:35 m) is the same for all three

cases, then the curves diverge very slightly. Considering

the two extreme cases (i.e. /l ¼ 0� and /l ¼ 89�), the

difference is approximately equal to 4% and 6% concern-

ing the force and the deflection values at failure, respec-

tively. This shows the slight influence of the contact

friction angle on the mesh response. This fact is ascribable

to the particular testing conditions: on one hand, the

rounded shape of the punch limits the mesh sliding on

contact with the punching element, on the other hand, the

loading direction (i.e. normally oriented to the mesh plane)

entails that tangential forces have a marginal effect on the

mesh mechanical behaviour.

From a numerical perspective, it is interesting to note

that the failure modality is different moving from a fric-

tionless to a frictional case as shown in Fig. 9. In the for-

mer, the mesh starts to break just in the centre of the panel,

while the failure occurs near the edges of the punching

element for a frictional case. In the experimental test, the

failure starts approximately from the centre of the mesh

panel and propagates parallel to the double-twisted wires

orientation. This condition is similar to the one obtained

adopting /l ¼ 0. Having said that, given the low influence

of /l on the mesh response and the lack of knowledge of a

precise value of the mesh–punch friction coefficient, a

frictionless mesh–punch contact is adopted representing

the most critical condition for the mesh (i.e. /l ¼ 0 min-

imizes the force value at failure).

In light of the above reported results, it is evident that

the mesh–punch contact parameters play a negligible role

in the problem under consideration. Indeed, the problem is

controlled by the tensile behaviour of the mesh, which is

ruled by the contact laws governing the mesh particles’

interactions (i.e. EWMs). The EWMs are defined from

stress–strain tensile relationships obtained from the

experimental tensile test. In this sense, since deterministic

(a) (b)

Fig. 8 Effect of the mesh–punch a normal contact stiffness kn and b tangential contact stiffness kt in terms of force Fmax and deflection dmax
values at failure

Fig. 9 Effect of the mesh–punch contact friction angle in terms of

force–displacement curve
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EWMs are used here, a more detailed calibration of the

numerical parameters is not needed.

3.2.3 Effect of the size of the punching element

The standard UNI punch test is widely used for the char-

acterization of the punching resistance of a wire mesh

[5, 20, 41]; however, other configurations are adopted in

practice [10, 12]. The difference between the test proce-

dures, which is mainly related to the punching element

dimension, makes direct comparison between the experi-

mental results in the technical literature difficult. In order

to evaluate the effect related to a variation of the punching

element dimension, the latter has been varied ranging from

D ¼ 0:1 m to D ¼ 2:5 m with an incremental step of 0.1 m.

In all the simulations, a 3 m� 3 m panel is considered and

the contact parameters are the same as in Sect. 3.2.1

(kn ¼ 6:5� 105 N/m, kt ¼ 0:4kn, /l ¼ 0�).

In Fig. 10, the mesh mechanical response, obtained for

five values of D (i.e. 0.5 m, 1.0 m, 1.5 m, 2.0 m, 2.5 m), is

reported. The trend of the values of the force and the

deflection at failure, in the entire range of variation of D, is

instead reported in Fig. 11a, b, respectively. In Fig. 11, the

values are normalized on the ones obtained in the standard

UNI test (FU ¼ 73:3 kN, dU ¼ 0:60 m) to facilitate the

comparison.

The numerical results show that the mesh puncturing

resistance Fmax linearly scales with the punching element

dimension D (see Fig. 11a). For example, increasing the

UNI punching element diameter by a factor of 2 (i.e.

D ¼ 2:0m) results in twice the Fmax value with respect to

the UNI condition (FmaxðD ¼ 2:0mÞ ¼ 146:3 kN). The

force sustained by the mesh panel can be viewed as an

integral of the tensile forces supported by the wires along

the punching element boundary. A larger punching element

intercepts a higher number of wires (this linearly scales

with the punch diameter D) and therefore determines an

increase in the maximum force supportable by the mesh

panel. The relationship between the maximum force and

the punching element dimension (DU ¼ 1:0 m) is well

represented by the following expression (linear least

squares fit):

Fmax ¼
D

DU
FU ð3Þ

Equation 3 accounts for the effect of the punching element

dimension on the puncturing resistance of a mesh panel.

This permits the results obtained from different test con-

figurations (i.e. different dimensions of the punching

device) to be extended to a ‘‘common’’ dimension of the

punching element, thus allowing a first comparison

between the different data reported in the technical litera-

ture. It should be noted, that possible effects deriving from

the shape of the punching device, as well as from its ori-

entation with respect to the mesh wires (wire meshes are

generally characterized by anisotropic behaviour in the two

principal directions) were not considered in the definition

of Eq. 3.

The value of the deflection at failure dmax increases as a
linear function up to D ¼ 1:2 m, then it reaches a plateau

as reported in Fig. 11b. The relationship between the

deflection at failure and the punching element dimension

(DU ¼ 1:0 m) is well represented by the following

expression (linear least squares fit):

dmax ¼ 0:34
D

DU
þ 0:66

� �
dU if

D

ly
\0:4

dmax ¼ 1:07dU if
D

ly
� 0:4

8>><
>>:

ð4Þ

The specific trend of dmax proves that the finite size of the

mesh panel acts as a limiting factor. In this perspective, the

emergence of the plateau of dmax should be related to the

ratio D/ly. In particular, the ratio between the size of the

punching element and the mesh side length ly affects the

strain distribution in the wires. For D=ly � 0:4, some of the

wires along the mesh outer boundary experience a strong

tensile strain (i.e. �� 0:05) and start to experience plastic

deformation as reported in Fig. 12. From this moment, the

mesh panel cannot redistribute the load coming from the

punching element and a further displacement leads to a

localization of strains in the centre of the mesh panel

triggering the failure of the latter. As for the out-of-plane

stiffness of the mesh panel, it increases when increasing the

dimension of the punching element (see Fig. 10). In fact,

increasing D leads to a better distribution of tensile stress

on the panel, which entails a stiffer response of the mesh

panel.

Fig. 10 Effect of the punching element dimension in terms of force–

displacement curve
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4 Mechanical behaviour of an anchored
mesh panel

The standard UNI punch test procedure is used as an

informative test for the design of secured drapery inter-

ventions. Nevertheless, the boundary conditions imposed

on the mesh panel (i.e. fixed outer boundary), substantially

differ from the ones characterizing field applications in

which the mesh is only locally anchored. This difference

determines an incorrect characterization of the mesh

mechanical behaviour, which, if not duly considered, may

negatively reflect on the performance of the mesh system.

While the implementation of an ‘‘in situ’’ test set-up may

be difficult to achieve (an example of large-scale test can

be found in [5]), the use of a numerical approach allows

this problem to be overcome [22, 37, 41].

In this work, in order to move towards typical field

conditions two large-scale configurations were simulated in

the first phase. In both configurations, the mesh has

dimensions 12 m� 12 m (45152 nodal particles) and is

subdivided into 9 square mesh panels (3 m� 3 m each);

the distance between the borders of the lateral mesh panels

and the outer boundary of the mesh system was set equal to

1.5 m to limit possible boundary effects (see Fig. 13). The

presence of the anchor plates is simulated by fixing the

degrees of freedom of the nodal particles ideally inter-

cepted by the anchor plates. Square anchor plates of side

dp ¼ 0:32 m were considered in the model, which repre-

sents a standard plate dimension in practice. The loading

condition is simulated by using the same punching element

(or several punching elements) and the same contact

parameters adopted in Sect. 3.2.1. The punching element is

moved with a constant velocity (vz ¼ 0:1 m/s) in a direc-

tion perpendicular to the mesh plane until the complete

failure of the mesh. In this case (i.e. anchored mesh pan-

els), the failure condition is determined by the tear of the

mesh at the level of the anchor plates. In the first config-

uration (Test A), a single punching element is considered,

acting in the centre of the mesh system as shown in

Fig. 13a. This condition ideally simulates the load caused

by a single unstable block similarly to what was considered

in [41]. In the second configuration (Test B), a punching

element is considered acting on each mesh panel (i.e. 9

punching elements are simulated) as shown in Fig. 13b.

This condition ideally simulates the restrictive case in

which each mesh panel has to support a single block and

cannot share the external load with neighbouring panels, as

instead happens in Test A. In both configurations, the

output is represented by the force–displacement curve

referred to the punching element acting on the central mesh

panel (in Test B differences in terms of maximum force are

lower than 10% between the different panels); the final

point of the force–displacement curve refers to the maxi-

mum force value measured during the test. The mechanical

(a) (b)

Fig. 11 Effect of the punching element dimension in terms of: a force Fmax (fit Eq. 3) and b deflection dmax (fit Eq. 4) values at failure

(a) (b) (c)

Fig. 12 Strain contour plot of the wires prior to failure for: a D ¼ 1:0 m, b D ¼ 1:2 m, c D ¼ 1:4 m. The contour plots are obtained from a linear

interpolation of the strain acting on the wires on a regular grid with a spacing of 4 cm
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response obtained in Test A and Test B is reported in

Fig. 14. In the former configuration a higher localized

force can be sustained by the mesh system

(Fmax ¼ 43:4 kN in Test A, Fmax ¼ 31:3 kN in Test B),

because the load can be shared between the different panels

(i.e. the central panel can partially transmit the external

load to adjacent panels). Even if a condition similar to the

Test B configuration is unlikely in practice, it provides a

lower bound estimation of the puncturing resistance of an

anchored mesh panel. From the perspective of character-

izing the mesh resistance to be used in the design phase of

secured drapery systems, the adoption of Test B configu-

ration is more conservative.

Finally, the Test B configuration is schematized by using

a ‘‘periodic’’ single panel test configuration (Test B1). In

this a quarter of a square anchor plate of side length dp is

considered at the panel corners and periodic boundary

conditions are imposed on the panel edges (i.e. the
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Fig. 13 a Test configuration Test A, b test configuration Test B, c test configuration Test B1 (the nodal particles ideally intercepted by the anchor

plates are represented in blue) (color figure online)

Fig. 14 Comparison of the force–displacement curves obtained from

the different test configurations (Test A, Test B, Test B1)
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displacement along the direction parallel to the mesh side

is fixed). For the sake of clarity, a sketch of the model of

the Test B1 configuration is reported in Fig. 13c. This

approximation permits a significant reduction of the com-

putational cost of the simulation, and entails a negligible

effect on the mechanical response of the mesh as observ-

able comparing the force–displacement curves reported in

Fig. 14. Therefore, the ‘‘periodic’’ single panel configura-

tion is adopted in the following in order to analyse the

mechanical response of an anchored mesh panel. The

numerical and geometrical parameters characterizing the

model are summarized in Table 1.

In order to quantify the difference in terms of mechan-

ical response of the mesh panel, moving from the labora-

tory to field conditions (i.e. anchored mesh panel), the

force–displacement curve obtained from the standard UNI

punch test is compared with the one obtained in the Test B1

configuration as reported in Fig. 15a. A significant reduc-

tion of the maximum sustainable force is observed when

considering more realistic boundary conditions: FU ¼ 73:3

kN in the standard UNI configuration, F	
a ¼ 29:1 kN in the

Test B1 configuration. This is due to the lower number of

wires that can sustain an out-of-plane force (i.e. fixed nodal

particles in the model). In the standard UNI punch test all

the wires converging to the panel outer boundary are able

to sustain an out-of-plane load; considering an anchored

panel (i.e. Test B1), the number of wires that can sustain

such a kind of loading condition is significantly lower (i.e.

only the wires intercepted by the anchor plates). The failure

modality is also different in the two cases: in the standard

UNI punch test the failure is observed in correspondence

with the punching element (see Fig. 15b), while it occurs in

proximity to the anchor plates considering the anchored

mesh panel (see Fig. 15c). The ratio between the maximum

force obtained in standard UNI conditions and the one

obtained considering an anchored mesh panel

(aF ¼ F	
a=F

U � 0:40) can be used, to a first approximation,

in order to estimate the reduction of the panel’s ultimate

strength moving from laboratory to field conditions. The

same reasoning can be applied for the maximum deflection

(ad ¼ d	a=d
U � 1:08). However, these results are strongly

related to the geometry of the problem (e.g. anchor size and

spacing, punching element size) and the mesh mechanical

properties, therefore, should be carefully considered.

Once the in situ punch test configuration is defined (i.e.

Test B1), a parametric analysis is performed in order to

extend the results of the standard mesh characterization

(i.e. UNI punch test) to more general field conditions. The

influence of the size and position of the punching element

as well as the role of anchor plate dimension and spacing

are discussed in the following. Finally, the dependency of

the mechanical response on the aspect ratio of the mesh

panel (i.e. AR ¼ lx/ly) is investigated. The numerical sim-

ulations are characterized by the parameters reported in

Table 1, with the only exception of the parameter under

investigation (the range of variation will be explicitly

specified in the related paragraph). For facilitating the

comparison, all the results are normalized on the values of

the force F	
a ¼ 29:1 kN and of the deflection d	a ¼ 0:65 m

at failure, obtained in the reference test (i.e. Test B1,

parameters are reported in Table 1).

4.1 Effect of the size of the punching element

In the design phase of a secured drapery system, the

expected dimension and sharpness of the unstable blocks

Table 1 Geometrical parameters and numerical mesh–punch contact

parameters

Panel size lx 3.00 m

Panel size ly 3.00 m

Anchor plate side dp 0.32 m

Punching element diameter D 1.00 m

Punching element position (x, y) 1.5 m, 1.5 m

Normal contact stiffness kn 6:5� 105 N/m

Tangential contact stiffness kt 0:4kn

Contact friction angle /l 0:0�

(b)

(a)

(c)

Fig. 15 a Comparison of force–displacement curve obtained from the

standard UNI punch test and the configuration Test B1. Failure modes

observed for b the standard UNI punch test and c the configuration

Test B1
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should be carefully considered to optimize the system’s

mechanical performance. The knowledge of how the

geometry of the retained block influences the mechanical

response of the mesh panel is therefore of great impor-

tance. In this perspective, dimension D of the punching

element is varied ranging from 0.1 m to 2.5 m with an

incremental step of 0.1 m. The other parameters are the

same as those in the reference test reported in Table 1. A

variation of the dimension of the punching element permits

consideration, in addition to scale effects, also of the

impact of block sharpness on the mesh mechanical

response. The main effect of block angularity is to vary the

contact surface between the block and the mesh, thus a

reduction of the punching element dimension may repre-

sent a simple but effective way to consider the reduction of

the contact surface associated with the increment of block

angularity. In other words, the sharper the assumed block,

the lower the punching element dimension considered in

the model.

The mechanical response of the mesh panel, obtained

for five different values of D (0.1 m, 0.2 m, 0.4 m, 1.0 m,

2.0 m), is reported in Fig. 16. The trend of the values of the

force and the deflection at failure, in the entire range of

variation of D, is instead reported in Fig. 17a, b, respec-

tively. Furthermore, an estimation of the out-of-plane

stiffness of the mesh panel is provided by means of the

parameter k75. This is defined as the stiffness of the F–d
curve at 75% of the maximum force. The trend of the

stiffness parameter k75 is reported in Fig. 17c (k	75 ¼ 105

kN/m).

The punching resistance of the mesh panel (i.e. Fmax)

considerably increases when increasing the punching ele-

ment dimension for D� 0:40 m. After this threshold, the

increase in Fmax with D is greatly reduced as shown in

Fig. 17a. Such a change of behaviour is related to the

variation of the failure modality of the mesh panel. In the

former case (i.e. D� 0:40 m), the mesh failure starts at the

centre of the panel, namely in correspondence to the

punching element. In the latter case (i.e. D[ 0:40 m),

instead, the failure moves close to the anchor plates. The

two failure modalities are shown in Fig. 18. The variation

of failure modality is observed for a threshold value of D

that is very close to the anchor plate dimension

(D ¼ 0:40 m and dp ¼ 0:32 m). The maximum force of an

anchored mesh panel is limited by the available resistance

at the mesh–plate connection, which can be considered a

function of the number of wires intercepted by an anchor

plate. In this perspective, when considering a punching

element characterized by a dimension lower than the

anchor plate dimension, the former intercepts a lower

number of wires, and thus the mesh fails in correspondence

with the punching element. In the opposite case (i.e.

DJdp), the larger interacting surface between the mesh

and the punch permits avoidance of a premature failure,

and the mesh fails at the mesh–plate connection when the

maximum available resistance of the latter is overcome. In

this case, the anchor plate can be seen as the ‘‘new

punching element’’. The two observed failure modalities

can be characterized on the basis of where the local

punching mechanism takes place. In this sense, it is pos-

sible to define a ‘‘block-punching’’ failure mechanism

when D.dp and an ‘‘anchor-punching’’ failure mechanism

when DJdp. Finally, the slight increment of the maximum

force observed when increasing the punching element

dimension over the threshold values D[ 0:40 m may be

attributable to a better redistribution of the forces inside the

mesh panel.

The effect of the two different failure mechanisms is

also observable with regard to the trend of the deflection at

failure dmax as reported in Fig. 17b. An increase in dmax
with D is observed if the mesh failure is characterized by

the ‘‘block-punching’’ mechanism. In fact, under this

condition an increase in D permits a delay of the failure of

the mesh panel related to the puncturing at the punch–mesh

contact. Conversely, if the mesh failure is characterized by

the ‘‘anchor-punching’’ mechanism, a reduction of dmax
when increasing D is observed. In this case, a larger

punching element determines a prompter response of the

mesh, the distance between the punching element edges

and the anchor plates being lower, thus determining a

reduction of the mesh panel deflection.

Finally, it is interesting to analyse the influence of the

punching element dimension on the mesh panel out-of-

plane stiffness (represented by using the stiffness parameter

k75). The numerical data (Fig. 17c), show a linear increase

in the stiffness parameter k75 with the punching element

dimension D, and no significant differences are observed

moving from one to the other failure mechanism. The

increase in the stiffness parameter k75 with the punching

element dimension is therefore related to the greaterFig. 16 Effect of the punching element dimension in terms of force–

displacement curve
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proximity of the punching element edges to the anchor

plates.

From the numerical data, the relationships permitting

estimation of the effect of a variation of the punching

element size D on the force (linear least squares fit) and

deflection (second-order polynomial least squares fit) val-

ues at failure and on the stiffness parameter k75 (linear least

squares fit) can be derived (the punch dimension is related

to the reference value D	 ¼ 1:0 m). They are given by:

Fmax ¼ 2:47
D

D	 F
	
a if D.dp

Fmax ¼ 0:06
D

D	 þ 0:94

� �
F	
a if DJdp

8>><
>>:

ð5Þ

dmax ¼ 0:72
D

D	 þ 0:78

� �
d	a if D.dp

dmax ¼ 0:03
D

D	

� �2

�0:16
D

D	 þ 1:13

" #
d	a if DJdp

8>>>><
>>>>:

ð6Þ

k75 ¼ 0:38
D

D	 þ 0:62

� �
k	75 ð7Þ

4.2 Effect of the position of the punching
element

The position of a possible unstable block on the mesh

panel, or more precisely, the relative position between the

block and the anchors, can somehow be controlled during

the installation of a secured drapery system. Therefore, it

may be interesting to investigate its effect on the

mechanical response of an anchored mesh panel. In the first

phase, the effect of a shift of the punching element along

(a) (b)

(c)

Fig. 17 Effect of the punching element dimension in terms of: a force Fmax (fit Eq. 5), b deflection dmax (fit Eq. 6) values at failure and c stiffness
parameter k75 (fit Eq. 7)

Fig. 18 Failure mechanism observed in the numerical simulation for a

punch dimension of a D ¼ 0:40 m, b D ¼ 1:0 m (reference case).

The nodal particles ideally intercepted by the anchor plates are

represented in blue (color figure online)
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the central axes of the mesh panel is analysed. Succes-

sively, the punching element is ‘‘freely’’ moved on the

mesh panel (a dense regular grid spaced by 4 cm is con-

sidered) in order to characterize the value of Fmax and dmax
with reference to a generic shift. The other parameters are

the same as those in the reference test reported in Table 1.

In Fig. 19, the force–displacement curves obtained

shifting the punching element along the panel central axes

are reported. The same shifts are applied along both axes,

namely ej ¼ 
lj=4 and ej ¼ 
lj=2 (subscript j represents the

shift direction). The results relating to a shift along the x-axis

(i.e. ex 6¼ 0) are reported in Fig. 19a, while the results

relating to a shift along the y-axis (i.e. ey 6¼ 0) are reported in

Fig. 19b. In the former case, a significant variation of the

mechanical response is observed both in terms of maximum

sustainable force and out-of-plane stiffness of theF–d curve.
Furthermore, a non-monotonic effect on the F–d curve is

observed: for ex ¼ 
lx=4 a decrease in the maximum force

is observed (Fmax � 0:85F	
a), while for ex ¼ 
lx=2 the

maximum force is greater than the one obtained from a

centred case (Fmax � 1:25F	
a). The shift ex ¼ 
lx=2 also

determines a significant increase in the stiffness of the mesh

panel response (i.e. k75 ex ¼ 
lx=2; ey ¼ 0
� �

� 1:6k	75).

Conversely, a shift along the y-axis has a very low influence

on the mesh panel response, and the F–d curves obtained are
almost coincident, as shown in Fig. 19b.

The effect of a generic shift ex; ey
� �

, on the maximum

sustainable force and on the deflection value at failure, can

be observed in the contour plots of Fig. 20a, b, respec-

tively. They are obtained by a linear interpolation of the

numerical data on the same grid used for defining the

punch shift. In these plots, a value of generic coordinates

(x, y) refers to a simulation in which the punching element

is centred in the same (x, y) position. The light grey areas

at the corners represent the zones where the punching

element cannot be placed because of interference with the

anchor plates (the fixed nodal particles in the model), while

the latter are represented by the smaller black areas. The

contour plots show that the effect of the position of the

punching element, on the mechanical behaviour of the

mesh, is not trivial. The anisotropy of the mesh mechanical

response is particularly evident observing the trend of the

deflection at failure. A very slight influence is observed

moving the punching element in a vertical direction, while

a shift along the horizontal direction entails a significant

variation of dmax. In particular, in the latter case, the

deflection at failure diminishes when moving towards the

boundary of the mesh panel. Concerning the trend of the

maximum force Fmax, it is useful to consider the central

part of the panel, namely 0:5 m� x� 2:5 m and

0:5 m� y� 2:5 m, separately from the remaining four

parts, which are comprised between the anchor plates. In

the central part, shifting the punch along the y-direction

leads to a slight variation of the Fmax, while the effect on

Fmax is more significant moving it along the x-direction.

Three zones of local maximum of Fmax are observable: they

(a) (b)

Fig. 19 Effect of the punching element position on the mechanical behaviour of the mesh panel for a shift along a the x-axis and b the y-axis in
terms of force–displacement curve
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are approximately located corresponding to a symmetric

position of the punching element with reference to the

anchor plates, namely (1.5 m, 1.5 m), (1.5 m 
 lx
2
; 1:5 m)

and (1.5 m, 1.5 m
 ly
2
). The global maximum of Fmax is

observed for a punching element aligned in-between two

anchor rows (1.5 m
 lx
2
; 1:5 m); furthermore this position

also presents the highest overall mesh stiffness

(k75 1:5 m
 lx
2
; 1:5 m

� �
� 1:6k	75).

From this analysis, it can be argued that the relative

position between the punching element and a possible

unstable block influences the mechanical behaviour of the

mesh panel. In particular, a significant gain in terms of both

maximum sustainable force and out-of-plane stiffness of

the mesh panel is observed when the block is comprised in-

between two anchor rows. It is therefore advisable, when

possible, to consider the position of the unstable blocks on

the slope face during the design and the installation phases

of a secured drapery system in order to optimize its

mechanical behaviour in terms of retaining capacity and

panel deformability.

4.3 Effect of the anchor plate size

The dimension of the anchor plate is one of the controllable

design parameters of a secured drapery system together

with the mesh type, the anchor spacing and the panel aspect

ratio (the latter two will be analysed in Sect. 4.4 and

Sect. 4.5, respectively). In Sect. 4.1, it was observed that

the maximum force sustainable by an anchored mesh panel

is limited by the available resistance at the mesh–anchor

connection and that the latter is mainly controlled by the

anchor plate dimension (for the same mesh type). Never-

theless, a quantitative estimation of the effect of a variation

of the dimension dp of the anchor plate was not provided.

In order to characterize a relationship between the maxi-

mum sustainable force Fmax and the plate dimension, the

latter is varied in the range 0.16 m � dp � 0:64 m with an

incremental step of 0.08 m. The other parameters are the

same as those in the reference test reported in Table 1. It is

worth mentioning that in practical applications the anchor

plate size is generally limited to 0.16 m \dp\0:40 m;

however, larger values are adopted in the numerical model

to obtain a wider range of values for the definition of a

relationship between Fmax and dp.

The numerical results are reported in Fig. 21 in terms of

force–displacement curve, while the trends of the maxi-

mum force and of the deflection at failure are shown in

Fig. 22a, b, respectively. Considering the Fmax value, a

linear increasing trend is observed when increasing the

plate dimension dp. In fact, an increase in dp leads to a

higher number of wires intercepted by the anchor plate,

thus a higher force can be sustained by the mesh panel. It is

also interesting to note that the linear trend is in analogy to

what is observed when increasing the punching element

(a) (b)

Fig. 20 Effect of the punching element position: a contour of force values at failure Fmax and b contour of deflection values at failure dmax. The
contour plots are obtained from a linear interpolation of the numerical data on a regular grid with a spacing of 4 cm

Fig. 21 Effect of the anchor plate size in terms of force–displacement

curve
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size; in fact in this case the failure of the mesh is charac-

terized by the ‘‘anchor-punching’’ mechanism (dp\D), and

so the anchor plate can be seen as the ‘‘punching element’’.

Conversely, the deflection dmax is almost unaffected by a

variation of the anchor plate dimension. Finally, an incre-

ment of the stiffness of the F–d curve is observed when

increasing the anchor plate dimension (see Fig. 21). The

step-like trend observed in Fig. 22a, b may be related to the

discrete nature of the mesh model. In the latter, in fact, an

anchor plate embraces a finite number of nodal particles

(i.e. constrained numerical wires), which is dependent on

the mesh cell geometry. Finally, from the numerical

results, the influence of dp (d
	
p ¼ 0:32 m) on the maximum

sustainable force by the mesh panel (linear least squares fit)

and on the deflection at failure (linear least squares fit) can

be described by the following relationships:

Fmax ¼ 0:48
dp
d	p

þ 0:45

 !
F	
a dp � 0:16 m ð8Þ

dmax ¼ 0:02
dp
d	p

þ 0:98

 !
d	a dp � 0:16 m ð9Þ

The non-null value of the intercept in the linear fit is

associated with the fact that dp ¼ 0 m is meaningless. This

value is related to the minimum dimension of the anchor

plate that can be realistically considered in the model (i.e.

dp ¼ 0:16 m).

4.4 Effect of the anchor spacing

The anchor spacing i, or equivalently for a square panel,

the panel side length (i.e. i ¼ lx ¼ ly), can be controlled

during the design phase of a secured drapery system. It can

be argued that the spacing i controls the out-of-plane

deformability of the mesh panel (and thus dmax); however,
it is not trivial to give a quantitative estimation of the effect

of i on the mesh mechanical response without performing a

specific analysis. In this perspective, the anchor spacing is

varied ranging from i ¼ 1:25 m to i ¼ 4:5 m with an

incremental step of 0.25 m. The other parameters are the

same of the reference test reported in Table 1. Initially, the

force–displacement curves obtained for four different val-

ues of anchor spacing (i.e. 1.5 m, 2.0 m, 3.0 m, 4.0 m) are

compared in Fig. 23. The numerical results confirm the

assumption of an increment of panel deformability when

increasing the anchor spacing as well as of the maximum

deflection at failure.

In order to have a more precise overview of the effect of

the anchor spacing on the mesh mechanical response, the

trends of Fmax and dmax as a function of i are reported in

Fig. 24a, b, respectively. The effect of a variation of the

anchor spacing i (i	 ¼ 3:0 m) on Fmax can be estimated by

the following relationship (linear least squares fit):

Fmax ¼ 0:16
i

i	
þ 0:84

� �
F	
a : ð10Þ

A variation of i seems to have a slight effect on the max-

imum force sustainable by the panel. The small increase in

Fmax observed when increasing i may be related to a better

redistribution of stresses for larger panels. The effect on the

deflection at failure is instead significant, and a linear

increment of the value of dmax with i (i	 ¼ 3 m) is observed

(a)

(b)

Fig. 22 Effect of the anchor plate size in terms of: a force Fmax (fit

Eq. 8) and b deflection dmax (fit Eq. 9) values at failure

Fig. 23 Effect of the anchor spacing in terms of force–displacement

curve
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in Fig. 24b. The trend of dmax is well represented by the

following relationship (linear least squares fit):

dmax ¼ 0:98
i

i	
d	a : ð11Þ

In light of the obtained results, for practical applications,

the maximum force that a mesh panel can sustain may be

assumed as independent from the anchor spacing. For

instance, considering the two extreme values of i, namely

i ¼ 1:25 m and i ¼ 4:5 m, the increment in terms of Fmax

is approximately equal to 16%. This increment is very

limited, considering that the panel is more than three times

larger in the second case. However, the role of the anchor

spacing on the mesh panel performance, namely the rela-

tionship between the activated force for a given deflection

of the panel, cannot be neglected.

In order to better understand this concept, let us define

the force Fd as the force value that can be mobilized for a

panel deflection d� dd, where dd represents the maximum

admissible deflection in serviceability conditions. It should

be noted that dd is here intended as a design parameter and,

generally, does not coincide with the deflection d experi-

enced by the system. Therefore, if dd � dimax (dimax is the

maximum deflection related to a specific anchor spacing i

observed in the numerical characterization as reported in

Fig. 24b), the system retaining capacity is only partially

mobilized, namely Fd\Fi
max (Fi

max is the maximum force

related to a specific anchor spacing i observed in the

numerical characterization as reported in Fig. 24a). Con-

versely, if dd � dimax then the system retaining capacity is

fully mobilized even for a deflection d\dd and therefore

one can consider Fd ¼ Fi
max. Finally, the mobilized rate of

the system retaining capacity is indicated as fm ¼ Fd=F
i
max.

In Fig. 24c, the latter is reported as a function of the

anchor spacing i, considering four different values of

admissible deflection dd. The fm-i curves thus defined

permit evaluation of the system performance, quantifying

the mobilized retaining capacity associated with a given

limit condition on the maximum deflection of the system

(i.e. d� dd). They represent a useful design tool consid-

ering that limitations of system deformations, in service-

ability conditions, are generally required, especially when

secured drapery systems are applied along railways or

other infrastructures. In fact, by means of the fm-i curves, it

is possible to characterize the maximum anchor spacing

that permits mobilization of the required rate of system

retaining capacity, and at the same time fulfilling the

condition d� dd on the system deformations.

For instance, if a limit deflection dd ¼ 0:50 m is

imposed in serviceability conditions, the fm-i curve char-

acterized by dd ¼ 0:50 m (green line with diamond marker

in Fig. 24c) shows that the mesh panel retaining capacity is

fully mobilized for i� 2:25 m (i.e. fm ¼ 1:0, with d� dd),
while the retaining efficiency of the intervention is very

low (i.e. fm\0:5, with d ¼ dd) for i� 3:0 m. Furthermore,

considering that reduction of the anchor spacing entails a

significant increment of the cost of the system, the benefit

related to the use of fm-i curves also has an effect in

financial terms.

4.5 Effect of the mesh panel aspect ratio

In order to extend the results related to a simple varia-

tion of the mesh panel dimension (i.e. the same variation of

the anchor spacing along both directions presented in

Sect. 4.4), the aspect ratio AR ¼ lx=ly is varied. The length

(a)

(b)

(c)

Fig. 24 Effect of the anchor spacing in terms of: a force Fmax (fit

Eq. 10) and b deflection dmax (fit Eq. 11) values at failure. c Evolution
of the mobilized rate of the retaining capacity fm as a function of the

anchor spacing
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of the panel sides is varied in the range 1.25 m � lj � 4:5 m

(incremental step of 0.25 m) considering one side at a time.

The other parameters are the same as those in the reference

test reported in Table 1. Firstly, the effect of AR on the

force–displacement response of three equiareal panels (i.e.

2 m �4:5 m, 3 m� 3 m, 4.5 m� 2 m) is considered. From

the comparison of force–displacement curves reported in

Fig. 25, it is evident that the adoption of a panel which is

more elongated along the horizontal direction (i.e.

AR ¼ 2:25), leads to a significant increment of panel

deformability (dmax � 1:37d	a) and also determines a

reduction of the maximum sustainable force with respect to

the square panel case (Fmax � 0:91F	
a). Conversely, for

AR ¼ 0:45, panel deformability is almost unaffected and an

increase in the force sustainable by the mesh panel is

observed (Fmax � 1:11F	
a).

The effect of a generic variation of the panel aspect ratio

on the mesh mechanical response can be observed in the

contour plots of Fig. 26. The solid yellow lines indicate

equiareal panels. The effect of a variation of AR on Fmax is

observable in Fig. 26a. It is evident that, for equiareal

panels, an increment of AR leads to a decrease in the

maximum sustainable force by the mesh panel. This

highlights the anisotropy that characterizes the mechanical
Fig. 25 Effect of the panel aspect ratio (AR ¼ lx=ly) in terms of force–

displacement curve

(a) (b)

(c)

Fig. 26 Effect of the panel aspect ratio (AR ¼ lx=ly) in terms of: a force Fmax, b deflection dmax values at failure, c out-of-plane stiffness k75. The
plots are obtained from a linear interpolation of the numerical data and the solid yellow lines indicate equiareal panels (color figure online)
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behaviour of the hexagonal double-twisted wire mesh

indicating that a square mesh panel may not be the optimal

configuration. For a fixed value of AR instead, increasing

the panel size leads to an increase in the maximum sus-

tainable force, which may be related to a better redistri-

bution of the stress on larger mesh panels. This was also

observed in Sect. 4.4 with reference to square panels.

Considering a generic variation of AR, a reduction of the

latter determines an increase in Fmax. Nevertheless, the

effect on panel resistance seems to be controlled by the side

length ly (side oriented with the double-twisted wire), a

variation of lx having a negligible effect on Fmax. In fact, an

increment of the side length ly, while keeping constant lx,

permits a more efficient transmission of the force inside the

mesh. The internal transmission mechanism is more and

more oriented with the direction of the double-twisted

wires; the mesh being characterized by better tensile

resistance in such direction, this reflects in an enhancement

of the mechanical response of the mesh in terms of sus-

tainable force.

The effect of a variation of AR on the deflection value at

failure dmax is reported in Fig. 26b. Considering equiareal

panels, dmax increases when increasing AR; however, panel

deformability seems to be more affected by a variation of

the side length lx rather than a variation of the side length

ly. A general increment of dmax is also observed when

increasing the dimension of the mesh panel (i.e. panel area)

confirming the observation from Sect. 4.4.

Finally, the influence of the panel aspect ratio on the

out-of-plane stiffness of the mesh panel is analysed. As

before, this is quantified by using the stiffness parameter

k75. Observing the results reported in Fig. 26c, an

increasing trend of k75 is observed when decreasing the AR;

however, the out-of-plane stiffness seems mostly con-

trolled by the dimension of the mesh panel (i.e. panel area).

It is interesting to note that the stiffness parameter k75, for a

given panel area, is greatest when the panel aspect ratio is

in the range 0:65�AR� 0:75.

4.6 Application example

A calculation example is reported in the following in order

to show the use of the analytical relationships presented in

the previous paragraphs. The secured drapery system that is

considered here is characterized by an anchor spacing i of

2.5 m (a square anchor pattern is adopted, thus

lx ¼ ly ¼ 2:5 m) and the dimension of the anchor plates is

equal to dp ¼ 0:25 m. Finally, the nominal dimension of

the unstable block considered is equal to D ¼ 0:60 m. The

wire mesh is the hexagonal double-twisted mesh (nominal

wire diameter of 2.7 mm) described in Sect. 3.1. The

characteristic values given by the manufacturer (obtained

from an experimental characterization in UNI punch test

conditions) are FU ¼ 73:3 kN and dU ¼ 0:60 m.

The analytical relationships derived from the numerical

analysis, starting from the values obtained from the stan-

dard UNI laboratory characterization, can be applied in

sequence in order to estimate the characteristic values to be

used in the design phase of the mesh system

(Fmax ¼ 22:8 kN and dmax ¼ 0:56 m). The procedure is

summarized in Table 2.

A simulation characterized by the same parameters

considered in the calculation example (i.e.

i ¼ lx ¼ ly ¼ 2:5 m, dp ¼ 0:25 m and D ¼ 0:60 m) was

performed for an ex-post verification of the analytical

relationships derived in the parametric analysis. The

obtained values of the force and deflection values at failure

are Fmax ¼ 22:5 kN and dmax ¼ 0:56 m. The slight differ-

ence between these values and the ones obtained from the

application of the analytical relationships confirms the

validity of the latter. Moreover, the force–displacement

curve (obtained from the simulation) permits the expected

panel deflection to be estimated with reference to a given

force value (the latter can be obtained from limit equilib-

rium analysis [28]) as schematically reported in Fig. 27.

Table 2 Application example of the analytical relationships

(i ¼ 2:5 m, dp ¼ 0:25 m and D ¼ 0:60 m)

Fmax [kN] dmax [m]

UNI characteristic values 73.3 (FU) 0.60 (dU)

Field boundary conditions 29.1 (aFFU) 0.65 (add
U )

Block dimension D 28.4 (Eq. 5) 0.68 (Eq. 6)

Anchor plate dimension dp 23.4 (Eq. 8) 0.68 (unaffected)

Anchor spacing i 22.8 (Eq. 10) 0.56 (Eq. 11)

Design characteristic values 22.8 0.56

Fig. 27 Force–displacement response obtained from the numerical

simulation (Test B1 configuration) of the mesh panel considered in the

application example. The simulation is characterized by

lx ¼ ly ¼ 2:5 m, dp ¼ 0:25 m and D ¼ 0:60 m. The star indicates

the couple Fmax, dmax obtained from the analytical relationships (see

Table 2)
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5 Conclusion

In this study, the DEM was used to analyse the mechanical

behaviour of a hexagonal double-twisted wire mesh panel

subjected to a punching loading condition. The numerical

mesh model was validated against experimental results of a

standard UNI punch test. The DEM model had shown it

was capable of efficiently reproducing the mechanical

response of a wire mesh to an out-of-plane loading con-

dition, requiring as input only the stress–strain relation-

ships characterizing the tensile behaviour of the wire

elements. Moreover, the model was able to correctly pre-

dict scale effects related to a variation of the dimension of

the mesh panel and of the punching element.

In order to move towards a more realistic schematization

of the field conditions, two large-scale test configurations,

in which the mesh is locally anchored, were considered. A

‘‘periodic’’ loading condition (i.e. Test B) was shown to be

more restrictive in terms of puncturing resistance and was

therefore preferred. Finally, it was shown that a ‘‘periodic’’

single panel configuration (i.e. Test B1) is equivalent to the

large-scale one in terms of mesh mechanical response,

permitting a significant reduction of the computational

time. The ‘‘periodic’’ single panel configuration was

therefore adopted when following the analysis. It was

shown that the mesh panel resistance provided by standard

UNI punch test configuration overestimates the resistance

of the wire mesh in field conditions. This is due to the

difference in terms of boundary conditions between the

experimental punch test and field applications. Subse-

quently, the mesh model was used to perform a parametric

analysis aimed at quantifying the influence of the funda-

mental parameters characterizing the field conditions. The

main results are summarized as follows:

• the size of the punching element controls the amount

of the mesh–punch interacting surface, and determines

the failure modality occurring in the mesh. Two

different failure mechanisms were observed, namely a

‘‘block-punching’’ and an ‘‘anchor-punching’’ mecha-

nism. The transition between the two is controlled by

the available resistance at the mesh–plate connection,

which is a function of the anchor plate dimension dp
(for the same mesh type). The former mechanism

occurs when the resistance at the mesh–block contact is

lower than the mesh–plate connection resistance (a

condition likely when the mesh is retaining a sharp

block). In this case, a significant increment of the

maximum sustainable force is observed when increas-

ing the punching element size (Eq. 5 for D.dp). When

instead the failure is caused by the overcoming of the

mesh–plate connection resistance (a condition likely

when the mesh is retaining large and/or rounded

blocks), the panel resistance is very slightly affected

by a variation of the punching element size (Eq. 5 for

DJdp);

• the position of the punching element influences the

mechanical performance of the mesh panel. The effect

of an eccentric load is strongly related to the anisotropy

that characterizes the hexagonal double-twisted mesh;

in particular, an eccentricity along the direction parallel

to the double-twisted wires orientation has a negligible

effect on the mesh response, while an eccentricity along

the opposite direction strongly influences the mesh

response. Three zones of local maximum for the

sustainable force were observed, namely for a block

centred on the mesh panel and when the block is in-

between two anchor plates. The global maximum is

observed when the block is located in-between two

anchor rows and vertically aligned with them. Con-

cerning the panel’s maximum deflection, this reduces

when increasing the proximity between the retained

block and the anchor plates in a direction orthogonal to

the orientation of the double-twisted wires;

• the anchor plate dimension controls the maximum

resistance of the mesh panel (i.e. mesh–plate connec-

tion resistance). Considering the case in which the mesh

failure is characterized by the ‘‘anchor-punching’’

mechanism, the panel resistance linearly scales with

the anchor plate dimension (Eq. 8). Instead, the

maximum deflection of the panel, can be considered

to be independent of the anchor plate dimension;

• the anchor spacing controls the deformability of the

mesh panel. The maximum deflection linearly scales

with the anchor spacing (Eq. 11), while the effect on

the maximum force is very limited (Eq. 10). As the

deformability of the mesh panel is ruled by the anchor

spacing, the latter can be used in a performance

perspective, namely to control the rate of the system

retaining capacity associated with a certain deflection

level of the mesh panel (e.g. maximum admitted

deflection in serviceability conditions). This can be

achieved by using the fm-i curves as defined in

Sect. 4.4;

• the panel aspect ratio has a significant role in the panel

mechanical response. In particular, considering equiar-

eal panels, an enhancement of the mechanical beha-

viour was observed when considering panels that are

more elongated along the double-twisted wires direc-

tion (i.e. AR\1). Moreover, it was shown that the side

length ly has a significant effect on the puncturing

resistance of the mesh panel, while the side length lx
mostly influences panel deformability. Finally, the

adoption of 0:65�AR� 0:75 seems to maximize the

out-of-plane stiffness of the mesh panel.
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It is important to note that, in this work, the mesh panel is

tested up to its failure. This permits the entire mechanical

response (i.e. F–d curve) to be provided and to define the

ultimate limit condition of an anchored mesh panel. The

analytical relationships presented in Sect. 4 permit exten-

sion of the mesh characteristic values provided by manu-

facturers (obtained from standard laboratory tests) to field

conditions (i.e. anchored mesh panel) as reported in

Sect. 4.6. Such information can be of great importance in

practice, providing a more realistic mechanical character-

ization of mesh resistance in field conditions. Moreover,

knowledge of the entire force–displacement behaviour

permits estimation of the system deformations in service-

ability conditions at the design phase. In this work, the

hexagonal double-twisted wire mesh was considered;

however, the extension of the approach used to other mesh

types is straightforward. Further studies are ongoing in

order to analyse the effect of a debris accumulation, which

represents the other main cause of failure in secured

drapery applications.
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