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Abstract—The analysis of cognitive and autonomic responses
to emotionally-relevant stimuli could provide a viable solution
for the automatic recognition of different mood states, both in
normal and pathological conditions. In this study, we present a
methodological application describing a novel system based on
wearable textile technology and instantaneous nonlinear heart
rate variability (HRV) assessment, able to characterize the
autonomic status of bipolar patients by considering only ECG
recordings. As proof of this concept, our study presents results
obtained from eight bipolar patients during their normal da ily
activities and being elicited according to a specific emotional pro-
tocol through the presentation of emotionally relevant pictures.
Linear and nonlinear features were computed using a novel point-
process-based nonlinear autoregressive integrative model and
compared with traditional algorithmic methods. The estimated
indices were used as the input of a multilayer perceptron to
discriminate the depressive from the euthymic status. Results
show that our system achieves much higher accuracy than the
traditional techniques. Moreover, the inclusion of instantaneous
higher order spectral features significantly improves the accuracy
in successfully recognizing depression from euthymia.

Index Terms—Bipolar Disorder, Mood recognition, Heart Rate
Variability (HRV), Point Process, Wiener-Volterra Model, High
Order Statistics, Bispectrum, Nonlinear Analysis, Wearable sys-
tems, Wearable Textile monitoring.

I. I NTRODUCTION

A. The Bipolar Disorder

Bipolar disorder is one of the most diffuse psychiatric
disorders in the western world. It has been demonstrated that
more than two million Americans have been diagnosed with
such a mood alteration [1] and, in 2005, about 27% of the adult
European population, from 18 to 65 years of age, is or has
been affected by at least one mental disorder [2]. In general,
bipolar patients can experience different types of mood al-
terations, generally defined asepisodes, typically limited over
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defined time intervals and subjected to spontaneous remissions
or relapses. Four possible episodes are generally described:
depression, mania, hypomania (a less severe form of mania)
and mixed state. When the subject undergoes a remission
phase, clinicians refer to his condition aseuthymia.

During depressive episodes, sadness and desperation are
often the most prominent symptoms, although different other
complain are present, including cognitive complaints, suici-
dal thoughts, or somatic symptoms like gastrointestinal pain,
sexual and urogenital disorders. Neurovegetative symptoms
such as loss of appetite and insomnia may be present as
well. Patients might also experience pathological ideas ofself-
pity and guilt, which might grow towards delusional states.
During mania (and hypomania), a pathologically increased
physical and mental activity causes loss of attention, reduction
of the necessity to sleep, and an increased speed of the
stream of thoughts that eventually leads to incoherence. Thus
the subject is often hyperactive but often without specific
purposes. Moreover, (hypo)mania is often dominated by a
feeling of an excited mood with the idea of grandiosity and
hypertrophic self-esteem. In mania (but not in hypomania)
such feelings might become delusional with a progressive
detachment from the objective evaluation of external world.
Mixed-state is characterized by the contemporary presenceof
depressive and maniac or hypomaniac symptoms (e.g. patients
can have delusions of grandiosity but also have thoughts of
guilt, can have motor retardation but increased speed of their
thoughts). Generally, a diagnosis of mixed-state is made ifthe
patient fulfills at the same time the criteria for (hypo)maniac
and for depressive episode. In between these episodes, patients
typically experience periods of relatively good affectivebal-
ance (euthymia). Although remissions happen in the natural
history of bipolar disorders, this condition is often fostered by
treatments (both pharmacological and not-pharmacological).

Bipolar disorder is a chronic disease: even if a period
of remission could occur, bipolar patients manifest episodes
of mood alteration for decades. Despite its prevalence and
high cost of treatment [1], this disease may go undetected
for years before diagnosed and treated. Patients with mood
disorders might experience a heterogeneous pattern of symp-
toms which might be present even during euthymic periods as
sub-threshold mood alterations. Moreover, the phenomenology
and severity of the symptoms, the number and duration of
the episodes as well as the time interval between them are
often not consistent among subjects. Another open issue in
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diagnosing bipolar disorders as well as the great majority of
mental disorders is that symptoms are assessed by rating scales
both administered by clinicians and self-completed by patients.
So far, neither biological markers nor physiological correlates
were found to be specific and sensitive enough to be used
for clinical purposes [3], [4]. In this preliminary study, five
patients were monitored over a period of up to 90 days and
experienced only depressive and euthymic episodes. Our goal,
therefore, at least within this early acquisition phase, isto
discriminate depression from euthymia. In the next section,
we will describe a novel system able to robustly distinguish
depressive from euthymic episodes in bipolar patients by using
wearable textile technology and taking inspiration from the
mathematical theory of nonlinear dynamical system.

B. Analysis of Cardiovascular Dynamics in Bipolarism

Previous studies on bipolar disorders highlighted changes
in several physiological systems including sleep (as evaluated
both with EEG and behaviorally) [5]–[7], circadian heart rate
rhythms [8], [9], cortisol dynamics, [10]–[12], as well as
autonomic nervous system (ANS) functionality [13], [14]. One
important criterion for the inclusion of bipolar patients in
studies involving ANS monitoring is their full compliance with
the required recording procedures. There are also sensitive
issues in trying to avoid any possible stigmatization due to
participation. For these reasons, wearable, comfortable and un-
obtrusive systems, e.g. sensorized t-shirts [15]–[22] or gloves
[23], [24], are strongly recommended.

Mood has been defined as a long-lasting, diffuse affective
state that is not associated to a specific trigger [25]. In
turn, emotions are considered transient, acute and arousing
responses to specific stimuli. It is well-known, however, that
mood status affects the normal emotional response, and for
this reason a possible assessment approach is to study the
physiological variations provoked by external affective cues
(e.g. [26]–[33]). Specifically, paradigms based on emotional
reactions have been proven to be widely able to differentiate
among different mood states both in normal [34] and patholog-
ical conditions [35], [36]. Therefore, in this study, we focus
on the ANS changes induced by emotional-related tasks in
bipolar patients. According to the above psychophysiological
considerations, it is reasonable to represent the cardiovascular
system as a nonlinear dynamical system and study it by
means of “perturbation” analysis, meaning that the analy-
sis will take into account observations during initial stable
conditions (i.e. during rest) and after fast perturbations(i.e.,
emotional elicitation). Hypothesizing that the ANS responds
with different time-varying heartbeat dynamics accordingto
the patient’s mood state, computational tools able to discern
rapid dynamic changes with high time resolution are the
best candidates for providing optimal assessments. For this
purpose, standard heart rate variability (HRV) analysis is
not recommended since it would require relatively long-time
intervals of electrocardiogram (ECG) acquisitions [37], [38]
and would be unable to detect instantaneous variations. To
overcome these limitations, we propose a novel stochastic
model of heartbeat dynamics based on point-process theory

that is able to instantaneously assess the patient’s mood state.
To our knowledge, this approach provides a novel paradigm
in the literature of psychiatric disorders. The core of the
model is the definition of the inter-beat probability function
to predict the waiting time of the next heartbeat, i.e. the R-
wave event, given a linear and nonlinear combination of the
previous events.

The use of the point process theory allows for a fully
parametric structure analytically defined at each moment in
time, thus allowing to estimate instantaneous measures [27],
[39]–[45] without using any interpolation method. It has been
demonstrated that the Inverse-Gaussian (IG) distributionwell
characterizes the inter-beat probability function [39] and, in
particular, a linear [39] and nonlinear [27], [42], [43], [45]
combination of the past events has been previously taken into
account.These methods have been demonstrated to provide a
faster and more accurate time-varying assessment than other
sliding window beat-to-beat based methods [40].In this study
we propose an improvement of the model by defining a
nonlinear combination of the derivative series of past events.
The resulting quadratic Nonlinear Autoregressive Integrative
(NARI) model improves the achievement of stationarity [46]
and consequently improves system identification. This power-
ful approach further considers an equivalent3rd-order input-
output Wiener-Volterra model, allowing for the instantaneous
estimation of the high-order polyspectra [47], such as bispec-
trum and trispectrum [48]. Along with mathematical and mod-
eling reasons, such a nonlinear model is also physiologically
justified. Cardiovascular control mainly refers to the signaling
of the sympathetic and parasympathetic nerves controllingthe
pacemaker cells in a nonlinear way [49].

In this study, we validate the engagement of the nonlinear
terms of the model by performing a comparative analysis
demonstrating how the inclusion of instantaneous higher order
spectral (HOS) features indeed improves the accuracy and
reduces the uncertainty (variance) in recognizing ANS de-
pressive patterns. We further compare results from standard
analysis with those obtained using the novel model proposed
here. Data were collected within the European funded project
PSYCHE whose goal is to discover possible correlations
between the patterns of physiological/behavioral signs and
mood fluctuations over short- and long-term monitoring (see
details in paragraph II-A). This project proposes a novel ap-
proach for bipolar disease management based on the paradigm
that a quasi-continuous monitoring in a natural environment
provides parameters, indices and trends that will be used to
assess mood status, support patients, predict and anticipate
treatment response in its early phase, prevent relapse and to
alert physicians in case of a critical event.

II. M ATERIALS AND METHODS

A. The PSYCHE Project and the Wearable Monitoring Plat-
form

Data used in this study were collected within the Euro-
pean project PSYCHE (Personalised monitoring SYstems for
Care in mental HEalth), which is funded in the Seventh
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Framework Programme (FP7). The PSYCHE system [15]–
[18] comprised a personal, pervasive, cost-effective, andmulti-
parametric monitoring system based on textile electrodes and
portable sensing devices for the long-term and short-term
acquisition of data from an homogeneous class of patients
affected by mood disorders. Currently, several physiological
signals as well as behavioral parameters are taken into account
as part of the PSYCHE project (e.g ANS-related signs, voice,
activity index, sleep pattern alteration, electrodermal response,
biochemical markers). The core sensing system of the project,
the PSYCHE platform developed by Smartex S.r.l., consists of
a comfortable textile-based sensorized t-shirt that is embedded
with fabric-based electrodes and acquires ECG, respiration
signals, and body activity (accelerometers). Figure 1 shows
the wearable system prototype that employs textile electrodes
to detect the ECG and piezoresistive sensors to acquire the
respiration signal. In addition, a three axial accelerometer
embedded into the system tracks the movement. The PSYCHE
platform is able to continuously acquire physiological data,
stored in a Micro SD card for up to 24 hours, using a
lithium battery. The ECG is acquired by using a single lead
configuration, 250 Hz of sampling rate and 16 bits of analog-
to-digital conversion resolution. A user-friendly devicesuch
as a smartphone for monitoring environmental information
such as light, temperature and noise complete the PSYCHE
platform.

Fig. 1. A prototype of the PSYCHE Wearable Platform

Another novelty of the PSYCHE platform is the number of
features estimated by a wide range of signal processing tech-
niques, as opposed to previous studies carried out on this topic
[5]–[9] where only a few parameters were included. Extracted
from linear and nonlinear methods, these features will be
investigated for finding possible relationships between physi-
ological signs and mental disorders. This approach increases
the sensitivity and the specificity of the system functionality
and, as a consequence, the success rate. In this work we focus
on novel linear and nonlinear features of heartbeat dynamics
which are crucial for the assessment of the depressive status
in bipolar disorder.The reliability of the PSYCHE wearable

platform, evaluated through the analysis of data gathered from
the sensorized t-shirt, has been verified in our previous studies
[16]–[19]. However, it is worthwhile mentioning that more
than 90% of HRV and respiration activity signals recorded
during long-term monitoring (about 18 hours) was artifact
free [17]. Such a high reliability is achieved through specific
manufacturing choices. In particular, the use of dry textile-
based electrodes provides comfort and reduces the rate of
evaporation reaching electrochemical equilibrium between the
skin and electrodes after a couple of minutes. Therefore, the
signal quality is remarkably improved and kept as constant as
possible. If the contact with the skin is not good due to size,
the quality of the signals cannot be adequate for obtaining
meaningful values. To avoid this problem, a preliminary check
on the quality of the data is done using available shirts with
different sizes before giving the system to the patients. The
shirt was designed for females and males and was made
of elastic fibers that allow for tight adhesion to the user’s
body, piezoresistive fibers to monitor fabric stretching (and
consequently respiration activity), and metallic fibers knitted
to create fabric electrodes to monitor the ECG.

B. The Autoregressive Integrative Identification System

Instantaneous nonlinear heartbeat dynamics can be pre-
dicted taking inspiration from the nonlinear system identifica-
tion theory, and in our case through the following Nonlinear
Autoregressive Integrative (NARI) form:

E[y(k)] = y(k − 1) + γ0 +

M∑

i=1

γ1(i)∆y(k − i) +

∞∑

n=2

M∑

i1=1

· · ·

M∑

in=1

γn(i1, . . . , in)

n∏

j=1

∆y(k − ij) (1)

where∆y(k − i) = y(k − i) − y(k − i − 1) and ∆y(k −
j) = y(k − j)− y(k − j − 1), n is the degree of nonlinearity
and M is the order, i.e., the number of past samples taken
by each term. The autoregressive structure of (1) allows for
the system identification with only exact knowledge of the
output data and with only few assumptions about the input
data. Here we represent the non-linear physiological system
by using nonlinear kernels up to the second order, i.e.γ0,
γ1(i), andγ2(i, j). This choice of a second order NARI system
retains an important part of the non-linearity of the system.
In order to complete the nonlinear system identification, itis
necessary to link the NARI model to a general input-output
form. By defining the extended kernelsγ′

1(i) andγ′
2(i, j) as

γ′
1(i) =

{
1, if i = 0

−γ1(i) if 1 ≤ i ≤ M
(2)

γ′
2(i, j) =

{
0, if ij = 0 ∧ i + j ≤ M

−γ2(i, j) if 1 ≤ i ≤ M ∧ 1 ≤ j ≤ M
(3)

it is possible to map a quadratic NARI model to an n-th order
input-output model [47]. After the input-output transformation
of the kernels, the choice of a second-order autoregressive
model allows evaluating all the High Order statistics (HOS)of
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the system, such as the Dynamic Bispectrum and Trispectrum
[50], [51]. In the following sections we report the definition
of the point-process framework of the heartbeat dynamics, as
well as mathematical details on the derivation of the nonlinear
kernels and of the HOS tools.

C. NARI-based Point-Process Models

To mathematically explain the point process framework, the
following definitions are needed:

• t ∈ (0, T ]: the observation interval.
• 0 ≤ u1 < · · · < uk < uk+1 < · · · < uK ≤ T : the times

of the R-wave events.
• N(t) = max{k : uk ≤ t}: the sample path of the

{uj}
J
j=1 counting process.

• dN(t): differential of N(t). dN(t) = 1 in case of
heartbeat event,dN(t) = 0 otherwise.

• Ñ(t) = limτ→ t− N(τ) = max{k : uk < t}: left
continuous sample path ofN(t).

• RRj = uj − uj−1 > 0: the jth RR interval.
Given such definitions, and assuming thatRRj =
f(RRj−1,RRj−2, ...,RRj−n) (history dependence), the prob-
ability distribution of the waiting timet − uj until the next
R-wave event follows an inverse Gaussian model [39]:

f(t|Ht, ξ(t)) =

[
ξ0(t)

2π(t− uj)3

] 1
2

× exp

{
−
1

2

ξ0(t)[t− uj − µRR(t,Ht, ξ(t))]
2

µRR(t,Ht, ξ(t))2(t− uj)

}
(4)

with j = Ñ(t) as the index of the previous R-wave event
before timet, Ht = (uj ,RRj ,RRj−1, ...,RRj−M+1),ξ(t) the
vector of the time-varing parameters,µRR(t,Ht, ξ(t)) the first-
moment statistic (mean) of the distribution, andξ0(t) > 0
the shape parameter of the inverse Gaussian distribution.
Sincef(t|Ht, ξ(t)) indicates the probability of having a beat
at time t given that a previous beat has occurred atuj,
µRR(t,Ht, ξ(t)) can be interpreted as the most probable
moment when the next beat could occur. The use of an
inverse Gaussian distributionf(t|Ht, ξ(t)), characterized at
each moment in time, is motivated both physiologically (the
integrate-and-fire initiating the cardiac contraction [39]) and by
goodness-of-fit comparisons [41]. In previous works [40], [41],
the instantaneous meanµRR(t,Ht, ξ(t)) was expressed as a
linear combination of present and past R-R intervals (in terms
of an AR model) and as a quadratic nonlinear coupling of
the heartbeat dynamics, based on a nonlinear Volterra-Wiener
expansion [42]. Here, we propose the novel NARI formulation
based on eq. 1 that allows us to define the instantaneous RR
mean as:

µRR(t,Ht, ξ(t)) = RRÑ(t) + γ0

+

p∑

i=1

γ1(i, t) (RRÑ(t)−i − RRÑ(t)−i−1)

+

q∑

i=1

q∑

j=1

γ2(i, j, t) (RRÑ(t)−i − RRÑ(t)−i−1)

× (RRÑ(t)−j − RRÑ(t)−j−1) (5)

considering that the derivative RR interval series improves
the achievement of stationarity within the moving time win-
dow W (in this work we have chosenW = 70 seconds)
[46], [52]. SinceµRR(t,Ht, ξ(t)) is defined in continuous
time, we can obtain an instantaneous RR mean estimate
at a very fine timescale (with an arbitrarily small bin size
∆), which requires no interpolation between heartbeat ar-
rival times. Given the proposed parametric model, the non-
linear indices of heart rate variability (HRV) will be de-
fined as a time-varying function of the parametersξ(t) =
[ξ0(t), g0(t), g1(0, t), ..., g1(p, t), g2(0, 0, t), ..., g2(i, j, t)]. The
unknown time-varying parameter vectorξ(t) is estimated by
means of a local maximum likelihood method [39], [53].
Briefly, given a local observation interval(t− l, t] of duration
l, we consider a subsetUm:n of the R-wave events, where
m = N(t−l)+1 andn = N(t) and, at each timet, we find the
unknown time-varying parameter vectorξ(t) that maximizes
the following local log-likelihood:

L(ξ(t) |Um:n) =
n−1∑

k=m+P−1

w(t− uk+1)

log
[
f
(
uk+1 | Huk+1

, ξ(t)
)]

+ log

∞∫

t−un

f (τ | Hun
, ξ(t)) dτ

(6)

wherew(τ) = e̟τ is an exponential weighting function for
the local likelihood. We use a Newton-Raphson procedure to
maximize the local log-likelihood in (6) and compute the local
maximum-likelihood estimate ofξ(t) [53]. Because there is
significant overlap between adjacent local likelihood intervals,
we start the Newton-Raphson procedure att with the previous
local maximum-likelihood estimate at timet−∆, where∆ de-
fines the time interval shift to compute the next parameter up-
date. The model goodness-of-fit is based on the Kolmogorov-
Smirnov (KS) test and associated KS statistics (see detailsin
[39]). Moreover, autocorrelation plots are considered to test the
independence of the model-transformed intervals [39]. Once
the order{p, q} is determined, the initial NARI coefficients are
estimated by the method of least squares. In order to provide
reliable results, the HRV processing techniques require unin-
terrupted series of RR intervals. Nevertheless, peak detection
errors and ectopic beats often determine abrupt changes in the
R-R interval series that may result in substantial deviations of
the HRV indices, especially in changes in the dynamics. In
addition, they could potentially bias the statistical outcomes.
Therefore, we preprocessed all the actual heartbeat data with
a previously developed algorithm [54], also based on point
process statistics, able to perform a real-time R-R interval error
detection and correction.

D. Instantaneous Cardiovascular Assessment: Quantitative
Tools

Our framework allows for three levels of quantitative char-
acterization of heartbeat dynamics: instantaneous time-domain
estimation, linear power spectrum estimation, and higher order
spectral representation. The time-domain characterization is
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based on the first and the second order moments of the
underlying probability structure. Namely, given the time-
varying parameter setξ(t), the instantaneous estimates of
mean R-R, R-R interval standard deviation, mean heart rate,
and heart rate standard deviation can be extracted at each
moment in time [39]. Fromξ(t) it is also possible to derive
instantaneous quantitative tools such as thenth-order spectral
representations. To summarize, the necessary steps are the
following:

1) From the nonlinear kernelsγn(...) find the extended
kernelsγ′

n(...).
2) Compute the Fourier transformsΓ′

n(...) of the kernels
γ′
n(...).

3) Compute the input-output Volterra kernelsHk(...) from
theΓ′

n(...) of the autoregressive model.
4) Estimate thenth-order spectra such as the instantaneous

spectrumQ(f, t) and bispectrumBis(f1, f2, t).

Estimation of the Input-Output Volterra Kernels:As men-
tioned above, the model quantitative tools are defined by
means of the traditional input-output Wiener-Volterra coeffi-
cients. They are related to the the Volterra series expansion and
the Volterra theorem [55]. In functional analysis, a Volterra
series denotes a functional expansion of a dynamic, nonlinear,
and time-invariant function and has been widely used in
nonlinear physiological modeling [56], [57]. The quadratic
NARI model can be linked to the traditional input-output
Volterra models by using a specific relationship [47] between
the Fourier transforms of the Volterra kernels of orderp,
Hp(f1, . . . , fn), and the Fourier transforms of the extended
NAR kernels,Γ′

1(f1) and Γ′
2(f1, f2). In general, a second-

order NARI model must be mapped in a infinite-order input-
output Volterra model [47]:

ρ∑

k=mid(ρ)

∑

σ∈σρ

Hk(fσ(1), ..., fσ(r), ωσ(r+1)+

fσ(r+2), ..., fσ(ρ−1) + fσ(ρ))

×Γ′
1(fσ(1)) · · ·Γ

′
1(fσ(r))

×Γ′
2(fσ(r+1), fσ(r+2)) · · ·Γ

′
2(fσ(ρ−1), fσ(ρ)) = 0

where ρ is a given integer representing the kernel order,
mid(ρ) = ⌈ρ/2⌉, r = 2k − ρ andσρ is the permutation set
of Nρ. Obviously, there is the need to truncate the series to
a reasonable order for actual application. In this work, we
chose to model the cardiovascular activity with a cubic input-
output Volterra by means of the following relationships with
the NARI:

H1(f) =
1

Γ′
1(f)

(7)

H2(f1, f2) =−
Γ′
2(f1, f2)

Γ′
1(f1)Γ

′
1(f2)

H1(f1 + f2) (8)

H3(f1, f2, f3) =−
1

6

∑

σ3

Γ′
2

(
fσ3(1), fσ3(2)

)

Γ′
1

(
fσ3(1)

)
Γ′
1

(
fσ3(2)

)

×H2

(
fσ3(1) + fσ3(2), fσ3(3)

)
(9)

Instantaneous Spectral and Bispectral Analysis:The lin-
ear power spectrum estimation reveals the linear mecha-
nisms governing the heartbeat dynamics in the frequency
domain. In particular, given the input-output Volterra kernels
of the NARI model for the instantaneous R-R interval mean
µRR(t,Ht, ξ(t)), we can compute the time-varying parametric
(linear) autospectrum [46] of the R-R intervals:

Q(f, t) = 2(1− cos(ω))Sxx(f, t)H1(f, t)H1(−f, t)

−
3

2π

∫
H3(f, f2,−f2, t)Sxx(f2, t)df2 (10)

where Sxx(f, t) = σ2
RR. By integrating the (10) in each

frequency band, we can compute the indexes within the very
low frequency (VLF = 0.01-0.04 Hz), low frequency (LF =
0.04-0.15 Hz), and high frequency (HF = 0.15-0.4 Hz) ranges.

The higher order spectral representation allows for the
consideration of statistics beyond the second order, and
phase relations between frequency components otherwise sup-
pressed [48], [58]. Higher order spectra (HOS), also known
as polyspectra, are spectral representations of higher order
statistics, i.e. moments and cumulants to the third-order and
beyond. HOS can detect deviations from linearity, stationarity
or Gaussianity. Particular cases of higher-order spectra is the
third-order spectrum (Bispectrum), i.e. the Fourier transform
of the third-order cumulant sequence [58]. As detailed below,
Bispectrum is defined from the Volterra kernel coefficients
estimated within the point process framework. LetH1(f)
and H2(f1, f2, t) denote the Fourier transform of the first
and second-order Volterra kernel coefficients, respectively. The
analytical solution for the bispectrum of a nonlinear system
response subject to stationary, zero-mean Gaussian input is
[59]:

Bis(f1, f2, t) = 2H2(f1+f2,−f2, t)H1(−f1−f2, t)H1(f2, t)

×Sxx(f1 + f2, t)Sxx(f2, t) + 2H2(f1 + f2,−f1, t)

×H1(−f1 − f2, t)H1(f1, t)Sxx(f1 + f2, t)Sxx(f1, t)

+2H2(−f1,−f2, t)H1(f1, t)H1(f2, t)

×Sxx(f1, t)Sxx(f2, t) (11)

The dynamic bispectrum is an important tool for evaluating
the instantaneous presence of non-linearity in time series[48],
[60], [61]. Since the bispectrum presents several symmetry
properties [58] dividing the(f1, f2) plane in eight symmetric
zones, for a real signal it is uniquely defined by its values
in the triangular region of computationΩ, 0 ≤ f1 ≤ f2 ≤
f1 + f2 ≤ 1. The sympatho-vagal linear effects on the
HRV are mainly characterized by theLF and HF spectral
powers [37], [38]. Through bispectral analysis it is possible
to further evaluate the nonlinerar sympatho-vagal interactions
by integrating|B(f1, f2)| in the appropriate frequency bands.
LL(t), LH(t), andHH(t) to obtain three bispectral measures:

LL(t) =

0.15∫

0.04

0.15∫

0.04

Bis(f1, f2, t)df1df2 (12)
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LH(t) =

0.15∫

0.04

0.4∫

0.15

Bis(f1, f2, t)df1df2 (13)

HH(t) =

0.4∫

0.15

0.4∫

0.15

Bis(f1, f2, t)df1df2 (14)

Equations 12 and 13 can be interpreted as indices of nonlinear
interaction between the sympathetic and the parasympathetic
system, whereas Eq. 14 can be exclusively attributed to
nonlinear vagal dynamics.

E. Classification

The performance of the recognition of depressive and eu-
thymic patterns was evaluated using a confusion matrix [62].
The generic elementrij of the confusion matrix indicates
the percentage of times a pattern belonging to the classi is
classified as belonging to the classj. The training phase was
carried out on 80% of the feature dataset, i.e., using no less
than 16 minutes for each acquisition, while the testing phase
was on the remaining 20%, i.e., using no less than 4 minutes
for each acquisition. We performed a 40-fold cross-validation
procedure [63]. In particular, for each of the 40 validation
steps, the examples associated to the training and testing set
are randomly chosen among all the available examples and
results are described as mean and standard deviation among
the 40 confusion matrices obtained. This procedure allows to
obtain unbiased results on the recognition accuracy.

Multi-layer perceptron: We adopted the Multi-Layer Per-
ceptron (MLP) [64] with the Integrate-and-Fire neuron model
for the representation of the relations between input and output
values. We trained it by implementing a supervised learning
method, i.e. input and output values are specified and the
relations between them learnt. Specifically, in the training
phase, for each data record, each activation function of the
artificial neurons is calculated. The weightwij of a generic
neuroni at the timeT , for the input vectorfk

n = fk
n1, ..., f

k
nF is

modified on the basis of the well-established back propagation
of the resulting error between the input and the output values.
The response of the MLP is a boolean vector; each element
represents the activation function of an output neuron. In this
work, we implemented a MLP having three layers of neurons:
input, hidden, and output layers. The input layer was formed
by 7 neurons, one for each of the feature space dimension.
The hidden layer was constituted by an empirically estimated
number of neurons. Specifically, we chose this number as the
upper limit of the half difference between the number of the
input and output neurons, i.e. 5. The output layer was formed
by 2 neurons, one for each of the considered classes to be
recognized.

III. E XPERIMENTAL PROTOCOLS

A. Recruitment of eligible subjects

Bipolar patients eligible for this study were chosen accord-
ing to the following criteria: age 18-65, diagnosis of bipolar
disorder (I or II), absence of suicidal tendencies, absenceof
delusions or hallucinations at the moment of recruitment, and

TABLE I
CLINICAL LABELS ASSOCIATED TO EACH PATIENT DURING EACH

ACQUISITION

ID ACQ. 1 ACQ. 2 ACQ. 3 ACQ. 4 ACQ. 5

BP1 Euth
BP2 Depr
BP3 Depr Euth
BP4 Depr Depr
BP5 Depr Depr Depr Depr Euth
BP6 Depr Depr Euth
BP7 Depr Euth
BP8 Depr Euth

absence of relevant somatic or neurological conditions. Details
on patient acquisitions and associated mood states are reported
in Tab. I. Patients were studied with an average frequency of
2 times a month. Each patient was evaluated and monitored
from the day of the hospital admission toward remission, i.e.,
until the reaching of an euthymic state as long as such a
condition was presented within 3 months after the first visit.
All clinical states were evaluated by clinicians accordingto
DSM-IV-TR criteria [65]. In this way four possible clinical
mood labels (depression, hypomania, mixed-state, and eu-
thymic state) were assigned. The mood label associated to each
patients evaluation was assigned independently with respect to
the previous ones. Euthymic state i.e. clinical remission was
defined by having a score below threshold on a quantitative
psychopathological rating scale (for depressive symptoms,
score below 8 on the 16-item Quick Inventory of Depressive
Symptomatology Clinician Rating and for manic symptoms
score below 6 on the Young Mania Rating Scale). The same
thresholds were also used to define a change in mood state. No
data selection criteria were used to choose the time window.A
physician presented the study to each patient. Before entering
the study, each patient signed an informed consent approvedby
the ethical committee of the University of Pisa. Once enrolled,
the patients were administered a set of questionnaires and
rating scales in order to assess the current mood. Clinicians
associated a mood label in agreement with one of the five
possible defined mood states: euthymia, depression, mania,
hypomania, mixed-state.

B. Affective Elicitation Protocol

Patients BP1, BP2, BP3, BP4, and BP5 underwent a ded-
icated affective elicitation protocol which started with two,
five minutes phases in resting state with eyes closed and
open. Subsequently, passive (IAPS, International Affective
Picture System [66]), lasting for six minutes, and active
(TAT, Thematic Apperception Test [67]), lasting for at least
two minutes, visual stimuli were administered. Finally, in
order to provide a common point of reference, patients were
asked to recite a paragraph from the Universal Declaration of
Human Rights lasting two more minutes. The IAPS database
consists of hundreds of pictures tagged by specific emotional
ratings in terms of valence, arousal, and dominance. The
protocol implies a slideshow of pictures having two classesof
arousal, either minimum or maximum, and random valence,
ranging from unpleasant to pleasant. After IAPS elicitation,
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Fig. 2. Timeline of the Affective Elicitation Protocol.

the patients were asked to describe several TAT images. The
TAT, a projective psychological test, is supposed to tap the
subject’s subconscious and reveal repressed aspects of person-
ality, motives and needs for achievement, power and intimacy,
and problem-solving skills. However, in this protocol, the
pictures were only used to elicit spontaneous comments from
the patients. Of note, as there is no standardization of the use
of the texts/pictures according to the subjects’ clinical state,
text/picture stimuli were always proposed in the same order.
A schematic timeline of the experimental protocol is shown
in Fig. 2.

C. Unstructured Activity

In order to study the capability of the proposed NARI
methodology in generalizing the recognition of depressive
and euthymic patterns of bipolar patients on the experimental
protocol, we further studied three bipolar patients (i.e.,BP6,
BP7, and BP8) who were asked to wear the PSYCHE wearable
monitoring platform at all times until the battery ran out,
i.e. approximately 18 hours. Therefore, there was no need of
particular experimental conditions as the patient was freeto
perform normal activities. Here, we analyzed a smaller partof
these long term acquisitions in order to study the same amount
of data with respect to the first affective elicitation protocol.
Therefore, no less than 20 minutes of heartbeat dynamics
gathered during unknown (unstructured) activities were taken
into account.

D. Analysis Overview

We analyzed eight bipolar patients having depressive and
euthymic states. ECG was acquired by using the PSYCHE
platform and RR interval series were extracted and analyzed
by the NARI model to obtain the cardiovascular indices. Then,
a set of features extracted from the linear and the nonlinear
kernels was used to implement the automatic mood-tracking
system. Experimental results are shown in terms of statistical
inference and confusion matrices [62]. A comparative study
considering the same features extracted using standard signal
processing techniques was further performed.Classification
performances encompass both experimental protocols.

We considered the median values over the estimated in-
stantaneous time series according to the protocol timeline. All
ranges reported in this work are expressed as median and its
respective absolute deviation (i.e. for a featureX , we report
Median(X) ± MAD(X) whereMAD(X) = Median(|X −
Median(X)|)).

TABLE III
RESULTS FOR THE INTRA-SUBJECTEUTHYMIA -DEPRESSION

DISCRIMINATION

BP4 Derivation ACQ1 (Depr) ACQ2 (Depr) P-val
µRR(ms) L-NL 734.46±15.94 655.34±5.92 < 10−6

σRR(ms) L-NL 146.39±67.50 39.86±7.62 < 10−6

LF (ms2) L 197.54±186.57 23.90±18.67 < 10−6

HF (ms2) L 53.42±30.45 18.47±9.49 < 10−6

LF/HF L 3.16±2.86 1.29±1.16 > 0.05

LL (106) NL 65.83±53.67 17.35±11.52 < 10−6

LH (106) NL 83.46±58.22 75.44±34.19 < 10−6

HH (106) NL 121.09±64.45 124.64±71.65 < 10−6

P-values are obtained from the Rank-Sum test.

IV. RESULTS

For each subject, the NARI model was applied to the
RR series detected from the recorded ECG. The optimal
model order was chosen by means of the Akaike Information
Criterion (AIC) [39] applied to the first 5-min RR recordings.
The AIC analysis indicated6 ≤ p ≤ 8 and 1 ≤ q ≤ 2
as optimal orders. All the KS distances were< 0.06 and
no less than 97% of the autocorrelation points were inside
the boundaries. The linear and nonlinear indices, described in
section II-B, were evaluated for all available recordings.The
instantaneous identification (5 ms resolution) was averaged
within a time window of 1 second. Representative tracking
results are shown in Fig. 3 for BP1 (Euthymic phase, top) and
BP2 (Depressive phase, bottom).

A preliminary statistical analysis was performed in order to
evaluate the intra-subject contribution of each feature. Statis-
tical inferences were performed to test the null hypothesisof
no significative differences occurring among different mood
states. Such analyses were performed on patients undergoing
the affective elicitation protocol and having more than one
acquisition, i.e., BP3, BP4, and BP5. First, the whole feature
pattern (linear and nonlinear) was treated as multivariatedis-
tribution and tested by means of non-parametric multivariate
analysis of variance (npMANOVA). Such a test revealed statis-
tical differences among acquisitions for all the three patients
(BP3: p < 10−6; BP4: p < 0.005; BP5: p < 10−6). No
significant conclusions can be drawn from this analysis, which
is therefore insufficient for an effective discriminative task.
As a consequence, further monovariate statistical analyses
were performed to evaluate the difference among acquisitions
for each of the extracted features. Non-parametric Kruskal-
Wallis and Rank-Sum tests were used to investigate the inter-
subject variability among the 5 acquisitions of BP5 and the
2 acquisitions of BP3 and BP4, respectively. These results
are summarized in Tables II, III, and IV. All of the features
coming from the linear (L) and nonlinear (NL) coefficients
were taken into account. We obtained significative p-valuesin
all cases but theLF/HF ratio of BP4. Remarkably, this is the
only patient having more than one acquisition with the same
mood label. Moreover, an inter-subject analysis was performed
to reveal the mood pattern, which would be in common among
patients. Discrimination of the mood states was performed
using the well-known MLP Neural Network [64]. All results
are expressed in the form of confusion matrix, after 40-fold
cross validation.
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TABLE II
RESULTS FOR THE INTRA-SUBJECTEUTHYMIA -DEPRESSIONDISCRIMINATION

BP5 Derivation ACQ1 (Depr) ACQ2 (Depr) ACQ3 (Depr) ACQ4 (Depr) ACQ5 (Euth) P-val
µRR(ms) L-NL 708.46±6.47 764.01±11.47 733.67±13.94 660.95±14.45 590.86±6.93 < 10−6

σRR(ms) L-NL 31.82±7.07 47.13±13.09 84.59±29.12 22.74±5.82 15.28±3.67 < 10−6

LF (ms2) L 21.56±15.29 40.80±34.84 28.49±27.96 2.38±2.05 1.51±0.89 < 10−6

HF (ms2) L 12.37±7.88 23.41±12.32 36.28±18.85 6.88±3.11 4.75±2.17 < 10−6

LF/HF L 1.01±0.81 1.60±1.29 0.69±0.65 0.40±0.30 0.41±0.21 < 10−6

LL (106) NL 10.32±8.94 42.85±36.54 29.73±26.34 2.85±2.05 1.23±0.76 < 10−6

LH (106) NL 28.20±20.06 61.78±44.17 73.22±50.80 17.87±11.98 5.43±3.46 < 10−6

HH (106) NL 104.27±68.47 117.11±75.44 140.95±81.53 90.81±54.20 31.89±16.26 < 10−6

P-values are obtained from the Kruskal-Wallis test.

TABLE IV
RESULTS FOR THE INTRA-SUBJECTEUTHYMIA -DEPRESSION

DISCRIMINATION

BP3 Derivation ACQ1 (Depr) ACQ2 (Euth) P-val
µRR(ms) L-NL 632.61±9.44 628.13±18.84 < 10−6

σRR(ms) L-NL 304.79±97.86 237.73±104.25 < 10−6

LF (ms2) L 11.45±10.14 104.77±86.99 < 10−6

HF (ms2) L 42.69±21.98 107.00±53.63 < 10−6

LF/HF L 0.27±0.23 0.99±0.75 < 10−6

LL (106) NL 3.92±2.92 35.54±27.75 < 10−6

LH (106) NL 12.61±9.88 83.34±48.59 < 10−6

HH (106) NL 67.53±48.78 136.46±73.80 < 10−6

P-values are obtained from the Rank-Sum test.

For each experimental protocol (affective elicitation and
unstructured activity), we compared the MLP accuracy by
creating two feature sets. The first set,α, is composed by
µRR(t,Ht, ξ(t)), σRR, and the spectral indices LF, HF, and
LF/HF. In other words, the feature setα comes from the linear
terms of the model. The second set,β, includes the nonlinear
LL, LH, and HH indices which will be joined to theα set for
future evaluations.

A. Affective Elicitation Protocol

In this paragraph, the results of the classification using
data gathered from patients undergoing the affective elicitation
protocol (i.e., BP1, BP2, BP3, BP4, and BP5), are reported.
In order to take into account the imbalanced number of
available examples per class, two different learning rateswere
considered in the MLP training phases giving the euthymic ex-
amples three times more penalty with respect to the depressive
examples. MLP results using the NARI model are summarized
in Table V. It shows the recognition accuracy by considering
all five patients. Using datasetα, correct recognition of the
euthymic state is below75%, whereas accuracy increases up
to 99% using datasetα+β. To further justify the instantaneous
point-process NARI approach, we estimated the linear and
nonlinear features of theα andβ sets by means of standard
AR models [68] and then tested the MLP capability of mood
discrimination. The relative confusion matrices are shownin
Table VI. In this case, neither using theα feature set nor using
the joinedα + β set a sufficient satisfactory recognition was
reached.

B. Unstructured Activity

In this paragraph, the results of the classification using
data gathered from patients performing unstructured activity
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Fig. 3. Instantaneous HRV statistics computed from Subject1 (top) and
Subject 2 (bottom) during the euthymic and depressive state, respectively.
The estimatedµRR(t,Ht, ξ(t)) is superimposed on the recorded RR series.
Following below, the instantaneous heartbeat standard deviation, the instanta-
neous heartbeat spectral Low frequency (LF) and High frequency (HF) powers
and their ratio. Finally, bottom rows report on the three bispectral statistics.
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TABLE V
RESULTS FOR THE INTER-SUBJECTEUTHYMIA -DEPRESSION

DISCRIMINATION IN PATIENTS BP1, BP2, BP3, BP4,AND BP5USING
THE POINT PROCESSNARI MODEL

MLP-5 Patients Dataset Euthymia Depression

Euthymia α 74.44± 18.21 1.09± 1.92
α+ β 99.56± 0.39 0.01± 0.06

Depression α 25.55± 18.21 98.91± 1.92
α+ β 0.44± 0.40 99.98± 0.06

Bold indicates the best classification accuracy for each class.

TABLE VI
RESULTS FOR THE INTER-SUBJECTEUTHYMIA -DEPRESSION

DISCRIMINATION IN PATIENTS BP1, BP2, BP3, BP4,AND BP5USING
STANDARD BIOSIGNAL PROCESSING TECHNIQUES.

MLP-5 Patients Dataset Euthymia Depression

Euthymia α 25.00± 25.32 15.50± 16.00
α+ β 32.50± 31.11 21.50±19.42

Depression α 75.00± 25.32 84.50±16.00
α+ β 67.50± 31.11 78.50±19.42

(i.e., BP6, BP7, and BP8), are reported. MLP results using
the NARI model are summarized in Table VII. It shows the
recognition accuracy by considering all three patients. Using
datasetα, correct recognition of the euthymic state is below
61%, whereas accuracy increases up to82.38% using the
feature setα+β, i.e., considering the instantaneous nonlinear
cardiovascular dynamics.

C. Joined Dataset

In order to investigate whether common patterns of heart-
beat linear and nonlinear dynamics exist between euthymia
and depressive states regardless of the experimental pro-
tocol/elicitation, we performed the inter-subject euthymia-
depression classification using data gathered from all patients.
The two datasets representing instantaneous cardiovascular dy-
namics in bipolar patients during affective elicitation protocol
and unstructured activity were joined. The classification results
are shown in Tab. VIII, which also confirms the crucial role
of heartbeat nonlinear dynamics in pathological mood states.

TABLE VII
RESULTS FOR THE INTER-SUBJECTEUTHYMIA -DEPRESSION

DISCRIMINATION IN PATIENTS BP6, BP7,AND BP8USING THE POINT

PROCESSNARI MODEL

MLP-3 Patients Dataset Euthymia Depression

Euthymia α 60.36± 18.35 14.34± 7.80
α+ β 82.38± 14.97 13.88± 10.99

Depression α 39.64± 18.35 85.66± 7.80
α+ β 17.60± 14.99 86.12± 10.99

Bold indicates the best classification accuracy for each class.

TABLE VIII
RESULTS FOR THE INTER-SUBJECTEUTHYMIA -DEPRESSION

DISCRIMINATION ON ALL EIGHT PATIENTS USING THE POINT PROCESS

NARI MODEL

MLP-8 Patients Dataset Euthymia Depression

Euthymia α 43.40± 20.83 2.21± 2.61
α+ β 91.06± 6.02 2.46± 1.74

Depression α 56.60± 20.83 97.79± 2.61
α+ β 8.94± 6.02 97.54± 1.74

Bold indicates the best classification accuracy for each class.

When processing the feature setα + β, in fact, the recogni-
tion accuracy dramatically increases, and the corresponding
average accuracy is beyond 90%.

V. D ISCUSSION ANDCONCLUSION

In both normal psychology and in psychopathology, mood
is considered quite a stable characteristic of the individual
affective dimension, while emotions are considered transient,
acute and arousing responses to specific environmental stimuli.
However, it is very well documented both in clinical expe-
rience and in research studies that mood affects emotions,
emotional regulation and emotional response. For this reason,
a possible approach to investigate mood recognition is to
explore emotional changes provoked by external stimuli. Ac-
cordingly, along the conceptual rationale behind the PSYCHE
project, we have proposed a novel system along with an
experimental/methodological approach for the assessmentof
instantaneous ANS patterns of depression in bipolar patients.
The use of ANS dynamics represents a reasonable way to
explore neurobiological and psychophysiological correlates of
mood disorders. The feasibility of this approach has been
documented in other research articles both for depression and
bipolar disorders [15]–[18], [69], [70]. For instance, Levy
[71] showed a higher ANS activation in bipolar patients as
compared to controls and linked chronic ANS arousal to
neurodegeneration and toxiticty. It is also well known that
emotional modulation techniques (used in the psychotherapy
of mental disorders) modulates ANS activity [72], [73]. Fi-
nally, vagal nerve stimulation is currently used as treatment
for refractory depression [74] based on the fact that a boost
of parasympathetic activity can modulate positive mood. All
of these research points to a link between ANS dynamics and
bipolar disorders, i.e. links the peripheral nervous system to
a disorder of the central nervous system. In-depth psycho-
physiological reasons of such a link are still debated, although
few hypotheses can be drawn. In particular, it is important to
note that the ANS is indirectly affected by central nervous
system activity: anxiety, fear, disgust and the other primary
emotions have both a central and peripheral correlates. For
instance, the central activity of some brain structures such
as amygdala, anterior cingulate, hypothalamus, ventromedial
prefrontal cortex can directly affect ANS discharge through the
modulation of sympathetic and vagal nuclei of the brain stem
[75], [76]. We believe that since this modulation is present
in healthy subjects, it is also present in an anomalous way
in patients with mood disorders and dysfunctions of emotion
expressions and regulations [77].

The proposed approach allows the mathematical represen-
tation of the cardiovascular system as a nonlinear dynamical
system characterized by means of a “perturbation” analysis,
i.e, analysis before and after short-time emotional elicitation.
In order to show a preliminary validation of the proposed
methodologies, we analyzed data coming from five patients
experiencing depressive and euthymic episodes, and enrolled
them to participating in dedicated affective elicitation protocol.
Furthermore, data from three bipolar patients while performing
unlabeled and unstructured normal activities were taken into
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account. In both cases,a comfortable, textile-based sensorized
t-shirt (namely the PSYCHE platform) was used to perform
noninvasive recordings of physiological variables, and a novel
point-process NARI model was implemented and applied to
the RR series derived from the ECG in order to produce
novel instantaneous features. In particular, standard features in
both the time (i.e.µRR(t,Ht, ξ(t)) andσRR), and frequency
domain (i.e. LF, HF, and LF/HF) along with higher order
nonlinear features, i.e. LL, LH, and HH, were extracted from
the processed RR series. The NARI model was used to
characterize the mean of an IG distribution representing the
inter-beat probability function. Such an approach allows for
the instantaneous estimation of all HRV measures without any
interpolation method [39]. The method is also personalized,
fully parametric, and able to improve nonstationary identifica-
tion [46].

All of the mentioned features coming from the NARI
representation of the heartbeat dynamics were investigated
by using statistical inference and pattern recognition methods
in intra- and inter-subject analyses, respectively.Multivariate
statistical analysis by using an npMANOVA approach on
patients undergoing the affective elicitation protocol revealed
significant within subject differences among different mood
states, whereas monovariate analyses pointed out that onlythe
LF/HF is statistically similar between two depressive phases.
Pattern recognition algorithms (MLP) were then applied to the
estimated features to classify the mood state of the patients
(i.e., “euthymia” or “depression”), and two feature sets were
compared. The first set,α, was comprised of only the standard
feature set, whereas the nonlinear indices were added to the
second set,β. We performed a comparative classification anal-
ysis in order to evaluate the role of the nonlinear dynamics on
the inter-subject variability.Considering the dataset comprised
of data coming from the five patients emotionally elicited, a
classification accuracy of up to about74% for the α (linear)
set, and up to about 99% for theα+ β (linear and nonlinear)
set was achieved for the euthymic class (see Table V). There-
fore it is clear that the high inter-subject variability strongly
affects the information given by the linear contribution (set
α) of the model whereas it does not affect the nonlinear one
(set α + β). A further comparison analysis using traditional
signal processing techniques revealed that non-instantaneous
information was not sufficient for a reliable assessment (see
Table VI). The crucial role of nonlinear dynamics for the
characterization of depressive states in bipolar patientswas
also confirmed when testing the capability of the proposed
methodology with data gathered from unstructured activities
(see Tables VII and VIII).

Our results demonstrate that a common pattern of instan-
taneous heartbeat features can be found despite the inter-
subject variability and experimental protocol undertaken. Our
results also show that the inclusion of nonlinear indices gives
improved results and smaller variance with respect to the
classification performed by only using the standard features.
The results obtained using data gathered during the affective
elicitation protocol (99.56% accuracy) went beyond expec-
tations, also considering that the few misclassified samples
can be easily interpreted as either algorithmic/mathematical

artifacts or physiological outliers, i.e. events not related to
mood markers for whatever reason. On the other hand, we
expected a lower classification accuracy using data coming
from unstructured activity. Moreover, it is possible to hypoth-
esize that the altered ANS dynamics related to pathological
mental states, modulated by the central functional structures
of the brain, can be revealed without particular experimental
conditions and using NARI point-process models. However,
structured emotional relevant experimental conditions can
contribute in increasing the accuracy of the system.It is
worthwhile mentioning that the chosen affective elicitation
protocol does not strictly require a wearable monitoring system
to acquire ANS data. However, a comfortable monitoring
system dramatically increases the patient’s compliance and im-
proves the reliability of the physiological variations, which are
instantaneously detected by the proposed NARI model. Such
an experimental procedure is part of a more comprehensive
study involving long-term monitoring of bipolar patients in
naturalistic environments [15]–[18], [78], i.e., the unstructured
activity analysis.

The presented point-process nonlinear analysis represents a
pioneering study in the field of mood assessment in bipolar
patients. In our approach we consider the acquisition paradigm
(including high and low arousing IAPS and TAT) as a whole,
without subdividing the protocol in separate epochs. More than
a limitation, we consider that the overall results give additional
strength to our approach. Indeed, it is not a matter of specific
emotional response but, more in general, the central issue is
the reactivity of the ANS to be affected in bipolar disorders.
The fact that we were able to detect changes in ANS during
the protocol as compared to a resting state baseline is enough
to say that we are studying ANS reactions despite subjective
measurements of emotional arousal or valence related to the
cues we used. Future studies will progress to increasing the
number of patients enrolled in order to confirm the reliability
of the proposed approach. We will also explore additional
aspects of the linear and nonlinear identification as related to
depression and other pathological states of the bipolar disorder.
Moreover, we will carefully explore the physiological meaning
of the dynamic autonomic signatures both in the context of the
underlying mood state and as a result of the different stimuli
administered within the dedicated protocol. Our approach will
be also further extended within the PSYCHE project, including
several other available variables (e.g voice, activity index,
sleep pattern alteration, electrodermal response, biochemical
markers).
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