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Abstract
The paper proposes a multi-domain approach to the optimization of the dynamic response of an underactuated vibrating linear
system through eigenstructure assignment, by exploiting the concurrent design of the mechanical properties, the regulator and
state observers. The approach relies on handling simultaneously mechanical design and controller synthesis in order to enlarge
the set of the achievable performances. The underlying novel idea is that structural properties of controlled mechanical systems
should be designed considering the presence of the controller through a concurrent approach: this can considerably improve the
optimization possibilities. The method is, first, developed theoretically. Starting from the definition of the set of feasible system
responses, defined through the feasible mode shapes, an original formulation of the optimality criterion is proposed to properly
shape the allowable subspace through the optimal modification of the design variables. A proper choice of the modifications of
the elastic and inertial parameters, indeed, changes the space of the allowable eigenvectors that can be achieved through active
control and allows obtaining the desired performances. The problem is then solved through a rank-minimization with constraints
on the design variables: a convex optimization problem is formulated through the “semidefinite embedding lemma” and the
“trace heuristics”. Finally, experimental validation is provided through the assignment of a mode shape and of the related
eigenfrequency to a cantilever beam controlled by a piezoelectric actuator, in order to obtain a region of the beamwith negligible
oscillations and the other one with large oscillations. The results prove the effectiveness of the proposed approach that outper-
forms active control and mechanical design when used alone.

Keywords Optimal design . Eigenstructure assignment . Structural modification . Active control . Rankminimization

1 Introduction

1.1 Performance optimization through concurrent
mechanical and control design

Dynamic structural optimization in mechanisms and struc-
tures, often denoted as dynamic response topology optimi-
zation, aims at finding the optimal mass and stiffness

distribution for obtaining the desired dynamic perfor-
mances, by optimizing a cost function while satisfying
constraints on the feasible parameters. The crux is defining
such a cost function, or performance index, that properly
represents the physical problem and its relationship with
the desired performances and should be easily solvable
(Yan and Wang 2020). Other features, such as convexity
to ensure that global optimal solutions can be found re-
gardless of the initial guess (Belotti et al. 2016), are also
valuable to ensure meaningful results and actual optimal
results. A reliable definition of the cost function imposes
considering the presence of the controller too, whenever
the structure operates with closed-loop controllers.
Indeed, the ever-growing integration between mechanical
systems and active devices, such as actuators, imposes a
new multidisciplinary and control-oriented design ap-
proach. Design choices must handle the tight interactions
between the mechanical design (e.g. the mass and stiffness
properties) and the synthesis of its controller, which also
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comprises the definition of the actuated and sensed vari-
ables and the development of state observers. In practice,
choices should be made with respect to the mechanical
parameters needed to achieve the desired performances of
the controlled system and the cost function adopted in the
optimization should therefore represent this relation. The
use of sequential, or even worse, decoupled design ap-
proaches that separately consider the mechanical and the
control domains, does not tackle effectively these critical
interactions and imposes trial-and-error iterations that
might converge to less effective solutions. The recent lit-
erature on design of actuated mechanical systems has, in
contrast, highlighted the need for concurrent and multi-
domain approaches (Hehenberger et al. 2013), since the
knowledge of the controller limits and achievable perfor-
mances allows for optimizing mechanical constructions
and obtaining cost effective solutions. The idea of concur-
rent design exploiting both active and passive design var-
iables has been recently proved to be very effective in other
field of multi-objective optimization for engineering, such
as in building engineering (Lee 2019) and control of sound
radiation (Zhai et al. 2017). There is, however, still a lack
of methods to be used in control-oriented design of
underactuated mechanical systems, especially when flexi-
ble components are employed either to exploit their reso-
nance features (e.g. resonators) or to reduce the overall
mass, at the expense of a stiffness reduction.

Most of the approaches proposed so-far are “direct
methods” that evaluate different solutions obtained by chang-
ing some system parameters. For example, these methods of-
ten rely on co-simulation–based integrated optimization
methods, which iterate by simulating different solutions and
by predicting the effect of the imposed modifications or the
selected controller. An opposite strategy is the one of “in-
verse” methods whose aim is to compute the modifications
necessary to obtain the prescribed dynamic behaviour by solv-
ing some mathematical problems, such as inverse eigenvalue
problems. The development of inverse, concurrent approaches
for the design of actuated mechanical systems requires the
explicit definition of the performance targets, e.g. through
some metrics of measurable properties, and of numerical
methods for achieving such performances.

Among the different approaches, a common and effective
approach for defining the desired dynamic properties in vi-
brating systems is through the shapes, natural frequencies
and damping of their vibrat ional modes, i .e . the
eigenstructure. A less investigated field is the assignment of
antiresonances (see e.g. Belotti et al. 2020; Richiedei et al.
2019) or antiresonances together with natural frequencies
(Richiedei et al. 2020). Natural frequencies and damping,
i.e. the eigenvalues of the eigenvalue problem, set stability
and speed of response, while the mode shapes, i.e. the eigen-
vectors, define the spatial shape of the vibration and set the

sensitivities of the corresponding eigenvalues to model pa-
rameters. Even though the control theory is usually focused
on just the assignment of eigenvalues, as proved by the several
approaches developed in the recent literature, assigning the
eigenvectors too can be more advantageous (Moore 1976).
Hence, several approaches have been proposed to solve the
task of eigenstructure assignment (EA), by exploiting either
passive modifications of the system parameters (such as
masses or stiffnesses) through dynamic structural modifica-
tion (see e.g. Jihong and Weihong 2006; Hernandes and
Suleman 2014; Belotti et al. 2016; Belotti et al. 2018b;
Thomas et al. 2020), or active control (see e.g. Schulz and
Inman 1994, Triller and Kammer 1997, Kim et al. 1999,
Zhang et al. 2014). The ever-growing integration between
mechanical systems and active devices, such as actuators, im-
poses however a more integrated approach that takes advan-
tage of the features of both active and passive approaches to
boost the achievable performances. Hence, design choices
must handle the tight interactions between the mechanical
design of a system and the synthesis of its controller, which
also comprises the development of state observers (Caracciolo
et al. 2008).

In the light of this need, the use of “hybrid design ap-
proaches” (i.e. combined active and passive approaches) to
eigenstructure assignment is very promising, as it has been
already proved in other similar applications, such as pole
placement in asymmetric systems (Ouyang 2011) or vibra-
tion damping through mechanical (Corr and Clark 2002) or
piezoelectric dampers (Tang and Wang 2004). The idea of
applying hybrid approaches to assign eigenvalues and the
related eigenvectors has been originally proposed in
Richiedei and Trevisani (2017) and then extended in
Belotti and Richiedei (2018) to overcome the limitations of
using either passive modifications or active control alone in
the challenging task of EA. On the one hand, the perfor-
mances achievable through dynamic structural modification
are limited by the symmetric nature of the modifications and
by the constraints on their feasible values. On the other hand,
the set of eigenvectors that can be achieved through state-
feedback active control is severely restricted: system con-
trollability does not allow assigning any arbitrary eigenvec-
tor, unless the system is fully actuated. Indeed, all the
achievable eigenvectors lie in a subspace which depends
on the “mechanical properties” of the system (i.e. stiffness,
mass and damping matrices) and of the topology of the ac-
tuation system (Moore 1976). Hence, EA is very challeng-
ing for underactuated systems, and especially in the pres-
ence of rank-one control (i.e. in the presence of just one
independent control force). As previously mentioned, hy-
brid control allows achieving better results in EA: the mod-
ification of inertial and elastic parameters is exploited to
change the allowable subspace in such a way that the desired
eigenpairs can be assigned through closed-loop control.
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1.2 Objectives and contributions of the paper

By taking advantage of the theoretical formulation introduced
by Belotti and Richiedei (2018), this paper proposes an inte-
grated approach to EA for a cantilever beam controlled
through a piezoelectr ic actuator and validates i t
experimentally. Beams are widely used as structural
elements in many engineering problems, and the optimal
design of these systems is still investigated in the very recent
literature in the field of structural optimization, such as for
example in Aydin et al. (2020) or Hauser and Wang (2018).
A different goal is investigated in this paper, and a new design
method is proposed through a concurrent and multi-domain
approach. The target of the design assumed in this work to
show the need of a concurrent optimization approach is to
modify both the shape and the frequency of a vibrational mode
of the beam to reduce vibrations near the clamped end, while
magnifying the oscillations near the free end. This is an ex-
ample of vibration confinement, i.e. shaping vibrations so that
they have much smaller amplitude in concerned area than in
the remaining part of the structure, which is an application
where EA is very attractive (see e.g. Tang and Wang 2004;
Andry et al. 1983). Such a beam optimization might be useful,
for example, for designing compliant mechanisms which of-
ten are based on cantilever beams. Despite its apparent sim-
plicity, such a task is difficult to solve if passive control or
active control are used alone. Indeed, the presence of rank-one
control in a multi-dimensional system does not allow the con-
trol specifications to be achieved. The analysis of this limita-
tion through the definition of an “allowable subspace” leads to
the formulation of a new optimality criterion for the structural
optimization. The problem is then solved as a rank-
minimization with constraints on the design variables. A ben-
efit of this formulation is that a convex problem is obtained,
and there is no need to perform repetitious solution of the
generalized eigen-problem, which is usually recognized as a
cumbersome calculation in topology optimizations (see e.g.
the discussion provided in Zheng et al. 2017).

The application of the method to a real device introduces
another critical issue: since no direct measurement of the
whole state vector is possible, a state observer must be imple-
mented for the real-time estimation of the state to be fed back.
The control and observation spillover (Caracciolo et al. 2008)
and the perturbation of the mode shapes due to the use of
reduced-order observers are therefore handled in the paper,
and an approach to evaluate their impact is proposed. Hence,
the observer synthesis can be also included in this improved
integrated approach, since the separation principle between
controller and observer does not hold anymore in cases like
the one discussed here. Some preliminary results of this re-
search have been presented in the conference paper (Belotti
et al. 2017). Here, both an improved theory and a new exper-
imental campaign are proposed, to include the observer

synthesis within the design process in a more integrated way
and hence extend the idea of concurrent and multidisciplinary
design to the observer synthesis. A more effective approach
for the numerical optimization through the rank-minimization
is exploited too.

The paper develops the theory with reference to the men-
tioned cantilever beam controlled through a piezoelectric ac-
tuator: the models (Section 2), the EAmethod (Sections 3 and
4) and the issues related to the observer (Section 5) will be
discussed with reference to such a system, which can be as-
sumed as a meaningful example and for which detailed exper-
imental results are reported in Section 6. However, all the
methods and models can be extended and applied to other
underactuated vibrating systems, with an arbitrary number of
control forces and in the presence of damping too.

2 System model

2.1 Model of the beam

Let us assume that the cantilever beam is modelled through a
suitable number of finite elements, such as beam elements,
leading to a model with N degrees of freedom (DOFs), col-
lected in vector q. The finite element model of the beam is
represented by the beam mass (M ∈ℝN ×N), stiffness (K ∈
ℝN ×N) and damping (C ∈ℝN ×N) matrices, where fC(t) is the
vector of the external control forces (or torques), B the distri-
bution matrix of the control forces, fD(t) the vector of the
external disturbance forces (or torques) and BD the distribu-
tion matrix of the disturbance forces. Finally, t is the time.
Hence, the system is represented through the following linear,
time-invariant model:

M
::
q tð Þ þ Cq̇ tð Þ þKq tð Þ ¼ B f C tð Þ þ BD f D tð Þ ð1Þ

Two obvious assumptions are made on B: it is a full rank
matrix, withNB being its rank, and it ensures that the system is
fully controllable, i.e. rank([Mλi

2 +Cλi +K B]) =N for any
open-loop eigenfrequencies λi. The latter requirements ensure
that any set of desired eigenfrequencies can be obtained, and it
is a necessary (but not sufficient) requirement in the case of
active control. Additionally, since underactuated systems are
discussed here, NB <N.

In the case of lightly damped systems, it is a common
practice in the literature to represent the system through an
undamped model and then to formulate the structural modifi-
cation problem with real eigenvectors and eigenvalues. This
assumption, which is assumed in the following of the paper,
drastically simplifies the design problem and improves its nu-
merical conditioning since real functions are obtained.
Nonetheless, the theory proposed can be extended to
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dissipative systems where damping cannot be neglected, as
shown in Belotti and Richiedei (2018).

2.2 Model of the piezoelectric actuator

The control force fC(t) is assumed to be exerted by one or
more piezoelectric actuators, which are here modelled through
linear theory proposed by Gaudenzi et al. (2000).
Nonlinearities, such as hysteresis or gain variability, are nei-
ther modelled nor accounted for, and hence are just regarded
as uncertainties that cause minor deviations from the theoret-
ical results.

The force distribution vector for each actuated finite ele-
ment (denoted Bactuated), which is assumed to be actuated by
just one actuator, is computed by integrating the shape func-
tion of the Euler-Bernoulli beam over the length l of the finite
element, which equals the length of the piezoelectric patch:

Bactuated ¼ ∫l0 −
6

l2
þ 12s

l3
−
4

l
þ 6s

l2
6

l2
−
12s

l3
−
2

l
þ 6s

l2

� �T

ds

ð2Þ

The remaining entries of B are zero.
By integrating (2), each actuator is modelled as two oppo-

site torques of magnitude FC applied at both ends of the pie-
zoelectric patch, as represented in Fig. 1. These torques are, in
turn, modelled as proportional to the applied voltage
(Preumont 2011), with a gain whose value can be identified
through experimental analysis or through data provided by the
patch manufacturer.

Finally, the inertial and elastic contributions of the actuator
have been also represented through additive mass and
stiffness matrices Gaudenzi et al. (2000) based on the Euler-
Bernoulli linear theory, named MPZ and KPZ, respectively:

MPZ ¼ mpz

420

156 22l 54 −13l
22l 4l2 13l −3l2
54
−13l

13l
−3l2

156
−22l

−22l
4l2

2664
3775

KPZ ¼ Epz
h3eq
3

12=l3 6=l2 −12=l3 6=l2

6=l2 4=l −6=l2 2=l
−12=l3

6=l2
−6=l
2=l

12=l3

−6=l2
−6=l2

4=l

2664
3775

ð3Þ

The following properties of the piezoelectric patch have
been introduced: mpz is the overall mass, Epz is the Young

modulus, hpz is the thickness, and heq has been defined as
follows:

heq3 ¼ hpz3 þ 3δ2hpz−3δhbhpz−3δhpz2 þ 3

4
hb2hpz þ 3

2
hbhpz2

ð4Þ

In (4), δ denotes the perturbation of the neutral axis due to
the presence of the actuator bonded to the beam, compared
with the one of the beam without piezoelectric patch.

3 Mode shape assignment
through state-feedback control

The aim of EA through state-feedback control is to calculate
the gain matrices F and G leading to the desired eigenpairs,

henceforth denoted as eλ; eu� �
i
:

f C tð Þ ¼ − FTq̇ tð Þ þGTq tð Þ
� �

ð5Þ

State-feedback, as well as sometimes state derivative feed-
back (see e.g. Araújo et al. 2016), are widely adopted in
assigning the system poles whenever the system is controlla-
ble. The controllability assumption is, in contrast, not suffi-
cient for EA, since the necessary condition for obtaining an
arbitrary mode shape is more restrictive. Indeed, the paireλ; eu� �

i
is an eigenpair of the controlled system if and only

if it satisfies the following eigenvalue problem:

Meλi

2
þ Ceλi þK

� �eui þ B eλiF
T þGT

h ieui ¼ 0 ð6Þ

By defining vector ϕi ¼ eλiFT þGT
h ieui, (6) is equivalent

to the following condition:

Meλi

2
þ Ceλi þK B

� � eui
ϕi

" #
¼ 0 ð7Þ

ϕi∈ℂ
Nb is an arbitrary vector, since the gain matrices are

arbitrary. Hence eui is an assignable eigenvector if and only ifeui½ ϕi� belongs to the null-space (represented through the

operator N ) of Meλi
2 þ Ceλi þK B

h i
:

Fig. 1 Model of the experimental
setup (cantilever beam and slip-
table)
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eui
ϕi

" #
∈N Meλi

2
þ Ceλi þK B

� �� 	
ð8Þ

Th e s p a c e Ψ eλi

� �
¼ N Meλi

2 þ Ceλi þK B
h i� �

i s

named the allowable subspace and spans all the eigenvectors,

associated to eλi, that can be achieved through active control
for the system under investigation.

If the system is controllable, then dimΨ eλi

� �
¼ rank Bð Þ.

Hence, the number of arbitrary terms of the eigenvectors is
equal to the number of independent control forces. Hence, any
arbitrary eigenvector cannot be usually obtained through ac-
tive control in the case of underactuated systems (i.e. rank(B)
<N). In contrast, any arbitrary eigenvector can be obtained in
the case of fully-actuated system (i.e. rank(B) =N). Equation
(8) clearly corroborates that the achievable performances of
the controlled system are constrained by the features of the
mechanical construction, as stated in Section 1. Hence, this
limitation should be accounted in the stages of the mechanical
design.

4 Dynamic structural modification oriented
to state-feedback control

In the following developments, velocity feedback and
damping matrix are not considered, to represent the case in
which it is not desired to damp a lightly-damped system.
Hence, real eigenvectors and eigenvalues are adopted.
However, the theory can be also extended in the case of
damped systems, as shown by Belotti and Richiedei (2018).

Let us assign a set of Ne eigenpairs eλ; eu� �
i
. Hybrid control

consists in modifying the allowable subspace Ψ eλi

� �
through

ΔM and ΔK to obtain a new subspace bΨ eλi

� �
to which the

desired eigenvector belongs:

eui
ϕi

" #
∈N MþΔMð Þeλi

2
þ K þΔKð Þ B

� �� 	
¼ bΨ eλi

� �
ð9Þ

for some arbitrary ϕi∈ℂ
Nb .

The calculation of ΔM and ΔK satisfying (9) can be
solved as a rank-minimization problem. This formulation is
advantageous since several effective numerical algorithms
problems have been recently developed. Additionally, it is
not necessary to compute the allowable subspace.

In order to adopt the rank-minimization formulation, the
eigenvalue problem of the modified system is written as the
following linear system:

Bϕi ¼ MþΔMð Þeλi

2
þ K þΔKð Þ

� �eui ð10Þ

that can be expressed in the following form, with the obvious
meaning of di:

Bϕi ¼ di ð11Þ

Equation (11) has a solution if and only if the following
condition holds:

rank Bjdi½ �ð Þ ¼ rank Bð Þ ð12Þ

By introducing matrix D ¼ d1j…jdNe½ �∈ℝN�Ne , the sys-
tem in (11) can be solved for any i = 1, …, Ne if and only if:

rank BjD½ �ð Þ ¼ NB: ð13Þ

Since rank([B|D]) = rank(B) + rank([I − BB+]D), such a
rank condition, in turn, holds if and only if

rank I−BBþ½ �Dð Þ ¼ 0: ð14Þ
where B+ is the pseudoinverse of matrix B. The unique exact
solution of (14) is [I −BB+]D = 0. However, given the pres-
ence of several requirements on the desired eigenvectors,
which are not ensured to be achievable especially when highly
underactuated systems are handled, an approximate solution
of (14) should be sought. The difficulties in achieving an exact
solution are exacerbated by the presence of constraints on the
topologies of ΔM and ΔK and on the allowable system
modifications, due to constraints. Hence, it is proposed to
transform the exact problem to an optimization-based formu-
lation aimed at findingΔM andΔK that solve the following
rank-minimization problem:

minimize rank I−BBþ½ �Dð Þ
subject to ΔM;ΔKð Þ∈Γ ð15Þ

Γ is the set of the allowable modifications of the mass and
stiffness parameters in ΔM and ΔK. In this way, the exis-
tence of a solution that optimally approximates the desired
eigenvectors is assured for any non-empty Γ. The modifica-
tion problem of the allowable subspaces can therefore be
thought as finding the modification matrices, such that (15)
holds.

The solution of the rank-minimization problem (15) can be
performed through some heuristic algorithms for rank-mini-
mization. In particular, the semidefinite embedding lemma
proposed by Fazel et al. (2003) can be adopted to solve the
problem, by taking advantage of the so-called trace heuristics
which replaces the rankwith the trace, as often done in solving
several optimization problem (see e.g. Fazel et al. (2001)).
This formulation leads to a convex minimization problem.
Following such a theoretical result, problem in (15) is further
recast as follows:
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minimize trace diag Y;Zð Þð Þ

subject to
Y I−BBþ½ �D

DT I−BBþ½ �T Z

� �
≽0

ΔM;ΔKð Þ∈Γ:

8<: ð16Þ

for two arbitrary symmetric matrices Y ∈ℝm×m and Z∈ℝn× n.
The inequality ≽0 denotes that the matrix on the left-hand side
should be positive semidefinite. The optimization problem obtain-
ed is convex if the feasibility constraint setΓ is chosen as a convex
set. This is a very important feature of the proposed problem.

Once the modifications matrices have been computed by
solving numerically the rank-minimization problem in (16),
the gains of the controller should be calculated through one of
the several methods for eigenstructure assignment. If the desired
eigenvector eui does not belong to the allowable subspace of the
modified system, it should be replaced with its orthogonal pro-
jection onto the allowable subspace of the modified system
(Richiedei and Trevisani 2017–Andry et al. 1983), named euip:euip ¼ Ψi ΨT

i Ψi

 �−1

ΨT
i eui ð17Þ

Ψi (for any index i) is a matrix whose columns span the
allowable subspace of the modified system. euip is the allow-
able eigenvector that provides the tightest approximation of
the desired one eui, whenever eui is unfeasible. The projection
of the desired eigenvector onto the allowable subspace of the
modified system provides a better approximation than the
projection onto the allowable subspace of the original system,
thanks to the clever synthesis of ΔM and ΔK.

5 Introduction of a state-observer

In the implementation of state-feedback control, it is a common

need to replace the measured, actual state (q̇ and q) with the
estimated one (Caracciolo et al. 2008). Indeed, measurement of
all the state variables in structures or in multibody systems is
usually very difficult (Palomba et al. 2017; Sanjurjo et al.
2018). Estimation is provided by a state observer (or state
estimator), which reconstructs missing state variables by merg-
ing themodel, expressed as a first-order state-space model, and
a meaningful set of measurements with a prediction-correction
logic (Palomba et al. 2017). In the light of a concurrent design,
the effect of the state observer should be included in the overall
approach too, and the limitations due to the computational
effort required for real time estimation should be investigated.

To develop a state observer, a first-order formulation of the
system model in (1) is needed, by writing it in the following
form:

::
q tð Þ
q
:
tð Þ

� �
¼ −M−1C −M−1K

I 0

� �
q
:
tð Þ

q tð Þ
� �

þ M−1B
0

� �
f C tð Þ þ M−1BD

0

� �
f D tð Þ ð18Þ

The state-space model in (18) can be written in the more
compact form of (19), with the obvious definition of matrices

Aχ, BCχ, BDχ and Cχ and of the state vector χ ¼ q
⋅

q

� �
:

χ̇ tð Þ ¼ Aχχ tð Þ þ BCχ f C tð Þ þ BDχ f D tð Þ
y tð Þ ¼ Cχχ tð Þ

�
ð19Þ

An effective approach to the synthesis of state observers for
linear vibrating systems is the use of a linear Luenberger ob-
server, such as the Kalman filter, based on a reduced-order
model on a modal base. Such a choice is motivated by the
need of reducing the computational effort for the real-time
solution of the observer differential equations, by reducing
the number of the equations, i.e. the size of the model adopted
for state estimation. The use of reduced model is widely pro-
posed in the literature for simplifying both the model-based
design (Palomba et al. 2015; Xiao et al. 2020; Delissen et al.
2020) and the control synthesis (Caracciolo et al. 2008). The
model in (19) is therefore recast in the modal canonical form
by using the linear transformation

z tð Þ ¼ Tχ tð Þ; ð20Þ
where vector z denotes the modal coordinates of the first-order
model and T ∈ℝ2N × 2N is the transformation matrix, leading
to the following linear system:

z
:
tð Þ ¼ AZz tð Þ þ BCZ f C tð Þ þ BDZ f D tð Þ

y tð Þ ¼ CZz tð Þ
�

ð21Þ

The new model matrices are obtained as follows: AZ =
TAχT

−1, BCZ =TBCχ, BDZ =TBDχ and CZ =CχT
−1.

Reduction consists in partitioning the modal base z into
a set of less relevant modes zN, that are usually the highest
frequency ones, and a set of dominant ones zR, that are
usually the lowest frequency ones or those with the
greatest contribution to the system response (Palomba
et al. 2015):

z
:
R tð Þ
z
:
N tð Þ

� �
¼ AR 0

0 AN

� �
zR tð Þ
zN tð Þ

� �
þ BCR

BCN

� �
f C tð Þ þ BDR

BDN

� �
f D tð Þ

y tð Þ ¼ CR CN½ � zR tð Þ
zN tð Þ

� �
8>>><>>>: ð22Þ

The matrices in (22) are partitions of matrices in
(21). The reduced order model is obtained by discarding
zN (the so-called “neglected modes”) and hence by just
considering the subsystem made by states zR (the so-
called “retained modes”):

z
:
R tð Þ ¼ ARzR tð Þ þ BCR f C tð Þ þ BDR f D tð Þ
y tð Þ≃CRzR tð Þ

�
ð23Þ

The neglected modes are those with the lowest observabil-
ity and controllability, that are in practice weakly excited in
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the range of frequency of interest. Additionally, the low-pass
filtering of the sensor measurements and the actuator band-
width further reduce their contribution in the system response.
Hence, their time trajectory can be effectively approximated
as equal to zero and they can be discarded in the state observer
(Caracciolo et al. 2008). The impact of such a choice can be
evaluated through the relations proposed in Section 5.1.

Starting from the reduced model in (23), the following
scheme of continuous-time state observer can be implemented
for estimating zR and hence χ (the hat is adopted to mark the
estimated quantities):

z
:bR tð Þ ¼ ARbzR tð Þ þ BCR f C tð Þ þ BDR f D tð Þ þ L y tð Þ−by tð Þ

� �
by tð Þ ¼ CRbzR tð Þ

(
ð24Þ

Matrix L is the observer gain, that can be for example
computed through the Kalman’s theory, and aims at optimally
trading between the prediction (i.e. AR bzR tð Þ þ BCR f C tð Þ
þBDR f D tð Þ ) and the correction (i.e. y tð Þ−by tð Þ ).

Finally, the estimated values of the physical coordinates
are computed through the inverse of the transformation
matrix:

bχ tð Þ ¼ T−1bz tð Þ ¼ T−1 bzR tð ÞbzN tð Þ

( )
¼ T−1 bzR tð Þ

0

( )
ð25Þ

Since the neglected modes are those that do not significant-
ly participate in the system response, they are, in practice,

estimated as zero: bzN tð Þ ¼ 0 and bz:N tð Þ ¼ 0∀t (Caracciolo
et al. 2008). Hence, the following relation is established for
the control force, where GR denotes the control gain matrix
expressed in the modal base z:

f C tð Þ ¼ − FT GT
� bχ tð Þ

¼ − FT GT
� 

T−1 bzR tð ÞbzN tð Þ

( )
¼ −GT

RbzR tð Þ: ð26Þ

5.1 Evaluation of the spillover due to the observer

A correct tuning of the observer gain matrix L and a wise
selection of the number of retained modes have a crucial role
in ensuring the achievement of the desired eigenpair. Indeed,
the presence of neglected modes, whose amplitude is not neg-
ligible, causes control and observation spillover of the closed-
loop system poles and perturbates the associatedmode shapes.
The impact of model truncation on the overall solution can be
evaluated through the analysis of the perturbation on the ei-
genvalues and eigenvectors of interest due to the reduced
order observer. These effects can be evaluated by defining
the estimation error e(t) on the modes retained in the state

observer:

e tð Þ ¼ zR tð Þ−bzR tð Þ ð27Þ
and then by evaluating the eigenstructure of the augmented
system. Themodel of the closed-loop system, with augmented
state to include e(t), is the following one:

z
:
R tð Þ
e
:
tð Þ

z
:
N tð Þ

8<:
9=; ¼

AR−BCRGR BCRGR 0
0 AR−LCR LCN

−BCNGR BCNGR AN

24 35 zR tð Þ
e tð Þ
zN tð Þ

8<:
9=;þ

BDR

0
BDN

8<:
9=; f D tð Þ

ð28Þ

As a first effect, it can be noticed that separation principle
between the poles of the observer and of the controller system
does not hold anymore since the transition matrix in (28) is a
not block triangular matrix because of the control spillover
(−BCNGR, BCNGR) and observation spillover (LCN) terms.
These terms depend on both the contribution of the residual
modes in the system response (represented through BCN and
CN) and on the gains of the controller and the observer. It
should be noticed that the separation principle, that is usually
formulated with reference to the eigenvalues (Franklin et al.
2015), has a counterpart also for the eigenvectors. If the set of
neglected vibrational modes zN is assumed empty, for simplic-
ity, then a block triangular matrix is obtained:

AR−BCRGR BCRGR

0 AR−LCR

� �
Ucontr ψ
0 Uobs

� �
¼ Ucontr ψ

0 Uobs

� �
Ωcontr 0
0 Ωobs

� �
ð29Þ

Ωcontr and Ucontr are the eigenvalue and eigenvector matri-
ces of the system controlled through state feedback, obtained
by solving the eigenvalue problem for the controlled system
alone, usually denoted as “the control roots” (Franklin et al.
2015):

AR−BCRGRð ÞUcontr ¼ ΩcontrUcontr ð30Þ

Ωobs and Uobs are the eigenvalue and eigenvector matrices
of the observer eigenvalue problem, usually denoted as “the
observer roots” (Franklin et al. 2015):

AR−LCRð ÞUobs ¼ ΩobsUobs ð31Þ

Finally, ψ is defined as follows:

AR−BCRGR−Ωobsð Þψ ¼ −BCRGRUobs ð32Þ

The eigenvectors of the “control roots” are Ucontrf 0g,
despite the presence of the (full-order) observer. Therefore,
the observer would not perturbate the mode shape of the vi-
brational modes under these hypotheses.

The effect of the spillover terms (LCN and BCNGR) is to
perturbate all the entries of such vectors, whose upper part will
differ fromUcontr andUobs, and to introduce non-zero entries in
the lower part of the eigenvectors of the “control roots”. This
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results in a perturbation of the mode shape of the vibrational
modes. Hence, an accurate selection of the retained modes is of
primary importance to ensure the achievement of the theoretical
expectations with negligible perturbation of both the natural
frequencies and of the mode shapes. This evaluation should
be done in accordance with the gain matrices. As far as obser-
vation spillover is concerned, it can be reduced also through a
careful selection of a low-pass filter that partially removes the
contribution of the neglected modes in the sensed output, with-
out delaying the measurements in the observer bandwidth.
Secondly, sensor placement has also a meaningful contribution
in observation spillover because of the presence of matrix CN:
good locations of the sensors used for the filter correction are
those ensuring large displacements for the retained modes and
smaller contributions of the neglected ones. As far as control
spillover is concerned, the presence of high gains makes the
termBNGRmore severe. Hence, the suitable number of retained
modes is also affected by the control gains.

All the above-mentioned statements corroborate that the
achievable performances can be maximized only if all the
mutual relations between the mechanical system, the control-
ler and the observer are accounted for.

6 Experimental application

6.1 Description of the experimental setup

The experimental application of the hybrid control is proposed
through the cantilever beam shown in Fig. 2 whose main phys-
ical parameters are sketched in Fig. 1. The beam is clamped on
a slip-table actuated by an electrodynamic shaker to provide
external base excitation for the identification of the system dy-
namic model and of the experimental modal analysis. The base
excitation behaves as the disturbance force fD of (1). The con-
trol force fC is exerted by an off-the-shelf piezoelectric actuator
PI DuraAct Patch Transducer (with size 61 × 35 × 0.8 mm,
blocking force 775 N, and minimum bending radius 70 mm).
The actuator patch fits the sixth finite element from the free end
of the finite element model of the beam, as shown in Fig. 1.
Indeed, this position ensures high controllability for the vibra-
tional modes of interest. A PI E-413.D2 power amplifier has
been used to supply power to the actuator. Off-the-shelf com-
ponents have been chosen to demonstrate the ease of imple-
mentation of the proposed method, while the optimization of
the features of the actuators is out of the scope of this paper.

The control scheme, which includes the controller and the
observer, has been implemented on a PC where a real-time
kernel interfacing with the operating system is installed
through the MathWorks Real-Time Windows Target.

As for the allowable modifications, it is assumed that only
two additional lumped masses can be placed in the 2nd and
7th nodes of the FE model (see Fig. 1), since other nodes are

not accessible because of the presence of the actuator and the
sensors. These masses are the design variables of the dynamic
structural modification whose values should be computed
through the method proposed in Section 4. The values of the
feasible modifications are constrained by tight lower and up-
per bounds, i.e. (0, 200 g). Clearly, the larger the constraints,
the better the allowable eigenvector is. However, setting tight
constraints is common in design practices.

6.2 Dynamic model

Eight Euler-Bernoulli beam elements have been adopted to
model the clamped beam, leading to 14 DOFs collected in
vector q:

q ¼ x1;ϑ1; x2;ϑ2;…; x7;ϑ7f gT ð33Þ

The obvious meaning of the variables introduced in (33)
can be inferred from Fig. 1.

The damping matrixC is modelled as a linear combination
of M and K, in accordance with the Rayleigh model and has
been adopted just for the state observer. In contrast, it has been
neglected in the synthesis of both the active control and the
parameter modifications.

The model of the complete experimental setup, which also
includes the slip-table exploited for the identification of the
vibrational mode of interest, requires an additional coordinate,
that is the position of the slip-table. Such a coordinate, denoted
as xs, can be notionally thought of as the “rigid-body DOF”
and defines a moving reference from which small elastic dis-
placements are defined (Belotti et al. 2018a). In Fig. 1, the
roller constraints represent the translation of the slip-table
adopted for modal analysis and this is the model adopted for
the observer too, to account for the external shaker excitation.
Since the beam is clamped on the slip-table, the vibrational
modes of the cantilever beam with clamped constraint are the
same of those of the beamwith roller constraint (except for the
one at the zero frequency, that represents the “rigid-body mo-
tion” of the roller, which is however not of interest). Hence,
the motion of the whole experimental setup is modelled by the
N + 1-dimensional system of linear differential equations:

M MS
STM STMSþMC

� � ::
q
::
xs

� �
þ Cq̇

0

� �
þ Kq

0

� �
¼ 0

1

� �
f A þ B

0

� �
f C ð34Þ

S is the vector of the nodal sensitivity coefficients with
respect to xs:

S½ �i ¼ ∂qi=∂xs ¼ ∂xi=∂xs ¼ 1
∂ϑi=∂xs ¼ 0

�
i ¼ 1;…;N ð35Þ
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The scalar variable fA is the force exerted by the actuator
that drives the slip-table, whose mass isMC, on the electrody-
namic shaker. The scalar variable fC is the nodal torque
exerted by the piezoelectric actuator, i.e. the control force.

6.3 Statement of the control specifications

It is wanted to control the beam in such a way that it features a
vibrational mode at 50 Hz whose shape is pictured in Fig. 3,
where it is also compared with the closest mode of the original
system design (i.e. the second one). Such a value of the desired
frequency has been selected as a sample, while the requirement
on the mode shape aims at confining the oscillations of this
vibrational mode to the parts of the beam near the free end,
while isolating the parts of the beam near the clamped end. This
is an ambitious target, which can be easily achievedwith a large
number of independent actuators that lead to a multi-
dimensional allowable subspace. In contrast, it is very difficult
to obtain with just one actuator since the desired eigenvector
does not belong to the allowable subspace of the original sys-
tem. The projection of the desired mode shape onto such a
subspace approximates the target very roughly, as shown in
Fig. 4: the cosine of the angle between the desired eigenvector
and the one obtained is just 0.524. Thus, it fairly misses the
target value 1. This cosine is worse than the one of the uncon-
trolled (open-loop) original system, whose mode shape ensures
a cosine between the desired eigenvector and the actual one that
is 0.867. As for the eigenfrequency, since the system is con-
trollable, the closed-loop pole at 50 Hz can be obtained exactly,
by modifying the original eigenfrequency that is 79.9 Hz.

If dynamic structural modification is applied alone, the
result obtained is, again, far from being satisfactory. Indeed,
the very small set of allowable modifications leads to a mode
shape that differs significantly from the desired one, as cor-
roborated by Fig. 5 and by the cosine between the desired

eigenvector and the one obtained that is just 0.865, while the
natural frequency is 60.8 Hz.

Since both state-feedback control and dynamic structural
modification significantly miss the control specifications when
used alone, the use of the proposed hybrid control is a reason-
able way to boost the achievement of the desired performances.

6.4 Numerical solution

The application of dynamic structural modification shapes
effectively the allowable subspace by means of the two addi-
tional lumped masses stated in Table 1. If the actual state is
supposed to be fed back, the closed-loop pole at 50 Hz can be
exactly obtained, because of controllability, and the projection
of the desired eigenvector onto the new allowable subspace
provides a significantly better approximation of the target. The
achievable mode shape is almost parallel to the desired one, as

Fig. 3 Comparison between the desired mode (50 Hz) and the original
one (cosine between the two vectors: 0.867)

Fig. 2 Picture of the experimental
setup
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depicted in Fig. 6, and the cosine reaches 0.997. The overall
improvement can be also inferred from Table 2, which com-
pares the mode shapes, the natural frequencies and the cosines
in the cases of original system, passive modifications alone,
active control alone and hybrid control.

6.5 Experimental implementation of the passive
modifications

Two masses made of steel have been manufactured to approx-
imate the optimal masses computed by solving the constrained
rank-minimization problem. Since lumped masses do not pro-
vide a true representation of the actual construction, it has
been chosen to include in the model the nodal rotational mo-
ment of inertia of the two masses (see Table 1), even if

moments of inertia have not been included among the design
variables. Hence, they can be seen as perturbations of the ideal
model. By accounting for the actual features of the mass mod-
ifications, the best assignable eigenvector slightly worsens, as
shown in Fig. 7, and the cosine with the desired one is 0.995.
This value is clearly still very satisfactory, and the improve-
ment compared with the sole active control is meaningful. A
different design of the two masses, e.g. with high-density ma-
terials, might allow the actual system to better fit the theoret-
ical expectations. However, the result obtained is accurate
enough for the goals of this experimental validation.

6.6 Synthesis of the state observer

Given the difficulties in measuring all the 14 variables of the
displacement vector, the control force is computed as

f C ¼ −GTbq ð36Þ
in lieu of the theoretical relation fC = −GTq, where bq is the
estimated value of the actual displacement vector q. The speed
gain F is set to zero since it is not wanted to modify the mode
damping.

The two following measurements have been chosen as the
sensed output, to ensure adequate observability and hence the

Fig. 6 Comparison of the desired mode and the one obtained with hybrid
control and nominal value of the system model (cosine between the two
vectors: 0.997)

Fig. 5 Comparison between the desired mode and the one obtained with
dynamic structural modification alone (cosine between the two vectors:
0.865)

Fig. 4 Comparison between the desired mode (50 Hz) and the one
obtained with active control (cosine between the two vectors: 0.524)

Table 1 Structural modifications of hybrid control

Mass Constraints (g) Optimal values (g) Experimental values

Mass (g) Inertia (kg m2)

m1 [0, 200] 70.4 68.1 1.25e−5
m2 [0, 200] 200.0 200.8 6.85e−5
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existence of reliable estimates even in the presence of model-
ling errors and measurement noises:

& a pair of resistive strain gauges, in a half-bridge con-
figuration, to measure the local strain. The strain ε is
defined through the shape function of the Euler-
Bernoulli beam and is a linear combination of the dis-
placements of the nodes of the finite element where the
strain gauges are placed (whose length is denoted as l),
as depicted in Fig. 8:

ε ¼ −
6

l2
þ 12s

l3
−
4

l
þ 6s

l2
6

l2
−
12s

l3
−
2

l
þ 6s

l2

� � xi
ϑi

xiþ1

ϑiþ1

8>><>>:
9>>=>>; ð37Þ

The two strain gauges have been placed at 175 mm from
the free-end of the beam since this location ensures a good
observability and a good signal-to-noise ratio, in particular for
the vibrational mode of interest.

& a laser doppler vibrometer to get direct measurement of
the velocity of a point near the free end of the beam, which
is the part of the system that vibrates the most.

Other sensor configurations could be adopted provided that
they ensure adequate system observability.

In the light of all the critical issues discussed in Section 5,
an accurate tuning of the state observer has been performed in
this experimental campaign both through a wise synthesis of
the system model and the tuning of the state observer gain.

Since the beam has negligible effect on the slip-table, the
table acceleration

::
xs has been assumed as the exogenous input

for the model of the state observer, rather than force fA driving
the slip-table (which is also difficult to measure).

::
xs has been

measured through an ICP accelerometer placed on the moving
table (see Fig. 1). Hence, the state-space model for the observ-
er synthesis, that fits the one in (18) is the following one:

::
q
q
:

� �
¼ −M−1C −M−1K

I 0

� �
q
:

q

� �
þ M−1B

0

� �
f C þ −S

0

� �
::
xs ð38Þ

Model reduction has been then performed by retaining the
2 lowest-frequency vibrational modes (i.e. retaining 4

Fig. 7 Comparison between the desired mode and the one obtained with
hybrid control and actual value of the system model (cosine between the
two vectors: 0.995)

Table 2 Summary of the results of the numerical application: comparison of the mode shape (u = {x1, ϑ1, x2, ϑ2,…, x7, ϑ7}
T), the cosines and the

natural frequencies

Desired Original
uncontrolled system

Uncontrolled system
with passive modifications

Numerical with
active control

Numerical with
hybrid control

Mode shape 0.0699 0.1025 0.0750 0.0405 0.0699
− 1.0000 − 1.0000 − 1.0000 − 0.5346 − 1.0000
0.0028 0.0332 0.0070 0.0032 0.0028
− 0.8723 − 0.9591 − 0.9098 − 0.5295 − 0.8723
− 0.0459 − 0.0274 − 0.0479 − 0.0331 − 0.0459
− 0.4763 − 0.7388 − 0.6288 − 0.5060 − 0.4763
− 0.0581 − 0.0657 − 0.0768 − 0.0675 − 0.0581
0.1668 − 0.3307 − 0.1702 − 0.4788 0.1667
− 0.0224 − 0.0725 − 0.0724 − 0.1012 − 0.0224
0.8181 0.1304 0.2621 − 0.4972 0.8178
0.0000 − 0.0509 − 0.0457 − 0.0826 0.0014
0.0000 0.4449 0.4566 1.0000 − 0.1740
0.0000 − 0.0178 − 0.0149 − 0.0239 − 0.0023
0.0000 0.4346 0.3756 0.6352 0.0281

cos u; euð Þ 1 0.867 0.865 0.524 0.997
ω (Hz) 50 79.9 60.8 50 50

Fig. 8 Definition of the sensed strain
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coordinates in the reduced order model), while discarding the
5 higher frequency ones. A first-order, low-pass filter with a
cut-off frequency at 350 Hz has been also adopted to further
reduce observation spillover.

As for the observer gain matrix L (see (24)), it has been
computed through the Kalman’s theory as follows:

L ¼ PCR
TR−1 ð39Þ

Matrix P is the solution of the time-infinite Riccati’s equa-
tion, matricesQ andR are parameters representing the expect-
ed measurement and process noise covariance matrices:

AR
TPþ PAR−PCR

TR−1CRPþQ ¼ 0 ð40Þ

The sampling time adopted is 1 ms, for trading-off between
the needs of high-rate control and estimation, numerical stabil-
ity and low computational effort, while the numerical integra-
tion of the differential equations of the state observer has been
done by means of the explicit 4th order Runge-Kutta scheme.

An example of the effectiveness of the estimator is shown
in Fig. 9, which compares the estimated and the actual values
measured by the vibrometer (upper figure) and the strain (low-
er figure) during a frequency sweep (only an excerpt is shown
to provide a clearer representation). The measured and the
estimated signals are almost overlapped, and the estimation
error is negligible. Additionally, it can be noticed that the state
observer filters measurement noise, such as for example the
spike recorded in the speed measurement at about time 1.3 s,
thanks to the model used in the prediction phase.

All these choices lead to an expected natural frequency of
the desired mode that is 49.9 Hz, as computed through the
model in (28). The same model reveals that the cosine be-
tween the theoretical expected eigenvector (i.e. the one assum-
ing feedback of the actual and full state vector, computed
through the corrected model that includes moment of inertia
of the added masses) and the one perturbed by the observer
(i.e. the one computed through the dynamic matrix in (28)) is
higher than 0.9999 for both the real and the imaginary part.
The differences with respect to the target values (i.e. without
observer and with the full order model) are clearly negligible
and therefore the choice of the reduced model has negligible
impact on the overall solution. Hence, the proposed method-
ology is an effective approach for the integrated design and for
forecasting the effect of the state observer.

6.6.1 Experimental assessment of the eigenstructure
assignment

The control gains have been computed through the method
proposed by Ram and Mottershead (2007), and subsequently
extended in Ouyang (2011) and Ouyang et al. (2013) for
asymmetric systems, which provides an effective and reliable
solution for the case of rank-one control. However, any meth-
od could be used.

The experimental results obtained show that the control
scheme employed succeeded in boosting the achievement of
the control specifications. Indeed, the desired mode shape of
the closed-loop pole at 50 Hz is very close to the desired one.

Fig. 9 Comparison of actual and
estimated quantities
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Figure 10 shows the mode shape identified experimentally (only
the translational components of the eigenvector has been identi-
fied, and hence it is represented with a linear interpolation) and
compares it with the desired one. The cosine of the angle be-
tween the obtained mode and the desired one is 0.966. This is an
excellent result that approximates very tightly the theoretical ex-
pectations. The difference is mainly due to the approximation of
the lumped masses through two masses with finite moment of
inertia (as already discussed and shown in Fig. 7) and to the
unavoidable presence of unmodeled and uncertain dynamics (es-
pecially because of the piezoelectric actuator and his nonlinear-
ities and deviation from the ideal model). Indeed, the cosine of
the angle between the experimental mode and the best achievable
eigenvector, i.e. the “numerical with actual model” depicted
through a black line in Fig. 11, is 0.997. This result fits very
closely the theoretical expectations since the cosine between
the best achievable eigenvector and the one computed from the
augmented model in (28), which included the controlled system
and the observer, is 0.999. Hence, just a negligible downgrade of
the result (i.e. from 1 to 0.999) is due to the observer because of a
wise design of the observer itself, that has allowed reducing
spillover. Again, this result proves that the observer and the re-
ducedmodel has negligible impact on the overall solution, due to
a wise synthesis of the observer in accordance with the theory
proposed in Section 5.1.

Table 3 summarizes the cosine improvement due to the
proposed hybrid control, by comparing the main results of
the numerical and experimental investigation. Overall, a great
improvement has been obtained, by proving the effectiveness
of theory developed and of the comprehensive method pro-
posed, that includes the synthesis of the controller, of the
observer and of the physical modifications.

7 Conclusions

This paper introduced a hybrid method for structural optimiza-
tion through eigenstructure assignment in an active cantilever
beam by exploiting the concurrent design of the physical modi-
fications of the system elastic and inertial parameters, and the
synthesis of the state-feedback controller. The optimal physical
modifications shape the allowable subspace in such a way that it
spans a closer approximation of the desired eigenvector com-
pared with the one achievable by the original system. The meth-
od is suitable for underactuated systems, such as the studied one,
where the size of the set of achievable eigenvectors makes EA
challenging: the concurrent use of both the techniques overcome
the limitations of the use of either passive modifications or active
control alone, by enlarging the set of assignable eigenpairs.

The optimal solution is computed by solving a rank-
minimization problem with constraints on the design vari-
ables, that arises from the definition of the allowable subspace.
A convex optimization problem is formulated through the
semidefinite embedding lemma and the so-called trace heuris-
tics, and reliable numerical solution can be performed.

The paper covers all the issues for the implementation of this
control approach in a real system, including the synthesis of a
state observer for replacing the actual state with the estimated
one. The use of a reduced-order observer, to allow for real time
computation, causes spillover of the closed-loop poles and per-
turbation of the mode shapes that might severely downgrade the
achievable performances. A model to cope with this issue is
therefore presented and the couplingwith the controller is shown.

The experimental results obtained are very satisfactory.
First of all, the proposed method succeeded in achieving a
tight approximation of the desired performances both in terms

Fig. 11 Analysis of the spillover effects with hybrid control: comparison
between the theoretical expected eigenvector (with actual state feedback)
and the one obtained experimentally (cosine between the two vectors:
0.997)

Fig. 10 Comparison between the desired mode and the one obtained
experimentally (cosine between the two vectors: 0.966)
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of mode shape and natural frequency: the cosine between the
desired mode shape and the achieved one is 0.966, while
active control alone leads to 0.524. Secondly, the theoretical
expectations closely fit the experimental results, thanks to a
careful design of the state observer introducing negligible per-
turbation of the desired eigenpair: the perturbation due to the
observer is small and the cosine between the expected eigen-
vector and the one obtained in the testbed is 0.997.
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Appendix

Table 3 Summary of the results: cosines between the desired and the obtained eigenvectors and frequency of the obtained vibrational mode

Original
uncontrolled system

Uncontrolled system
with passive
modifications

Numerical with
active control

Numerical with
hybrid control and
nominal model

Numerical with
hybrid control
and actual model

Experimental
with hybrid control

cos u; euð Þ 0.867 0.865 0.524 0.997 0.995 0.966

ω [Hz] 79.9 60.8 50 50 50 49.9
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