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Abstract. We are concerned with the well-posedness of a model of granular
flow that consists of a hyperbolic system of two balance laws in one-space
dimension, which is linearly degenerate along two straight lines in the phase
plane and genuinely nonlinear in the subdomains confined by such lines. This
note provides a survey of recent results [3] on the Lipschitz L1-continuous
dependence of the entropy weak solutions on the initial data, with a Lipschitz
constant that grows exponentially in time. Our analysis relies on the extension
of a Lyapunov like functional and provide the first construction of a Lipschitz
semigroup of entropy weak solutions to the regime of hyperbolic systems of
balance laws (i) with characteristic families that are neither genuinely nonlinear
nor linearly degenerate and (ii) initial data of arbitrarily large total variation.

1. Introduction. We consider the system of balance laws

ht � (hp)x = (p� 1)h,

pt + ((p� 1)h)x = 0,
(1)

with h � 0 and p � 0. System (1) represents the model in the one space dimensional
setting proposed by Hadeler and Kuttler [12] for the flow of granular material and
describes he evolution of a moving layer on top and of a resting layer at the bottom.
Here, the unknown h = h(x, t) and p(x, t) represent, respectively, the thickness of
the rolling layer and the slope of the standing layer, while t � 0 and x 2 R are
the time and space variables. The evolution equations (1) show that the moving
layer slides downhill with speed proportional to the slope of the standing layer in
the direction of steepest descent. The model (1) is written in normalised form,
assuming that the critical slope is p = 1. This means that, if p > 1, then grains
initially at rest are hit by rolling matter of the moving layer and hence they start
moving too; thus, the moving layer gets thicker. On the other hand, if p < 1,
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then rolling grains can be deposited on the standing bed and, hence, the moving
layer becomes thinner. Typical examples of granular material whose dynamics are
described by such models are dry sand and gravel in dunes and heaps, or snow in
avalanches.

This article serves as a survey of the analysis in [3] on the well-posedness of
the Cauchy problem for (1). More precisely, in [3], the authors obtain a Lipschitz
continuous semigroup of entropy weak solutions to the nonlinear system of balance
laws (1) via a Lyapunov type functional with large initial data. Besides the moti-
vation of this analysis in the setting of the granular flow model, the results provide
the first construction of a semigroup for

(i) systems with characteristic families that are neither genuine nonlinear (GNL)
nor linear degenerate (LD) (nor of Temple class), and

(ii) initial data with arbitrary large total variation.

The aim here is to provide a short exposition on the analysis of [3] pointing out
the challenges that arise by these features and comparing the Lyapunov functional
introduced in [3] with the classical one of Bressan et al [9].

Since, in general, global smooth solutions to hyperbolic systems do not exist, we
consider weak solutions in the sense of distributions and in particular, an entropy-
admissible weak solution of (1), that means a weak solution, admissible in the sense
of Lax. Global existence of classical smooth solutions to (1) were established for a
special class of initial data by Shen [14]. In the case of more general initial data with
bounded but possibly large total variation, the existence of entropy weak solutions
globally defined in time was proved by Amadori and Shen [2].

For systems without source term and small BV data, the Lipschitz L1-continuous
dependence of solutions on the initial data, was first established by Bressan and
collaborators in [7, 8] under the assumptions that all characteristic families are gen-
uinely nonlinear (GNL) or linearly degenerate (LD), relying on a homotopy method
that is lengthy and involves several technical points. An extension of these results
is established in [4] to a class of 2 ⇥ 2 systems with non GNL characteristic fields
that does not comprise the convective part of system (1). A di↵erent proof of the
L1-stability of solutions for conservation laws with GNL or LD characteristic fields
that is less technical and more transparent was later achieved by a technique intro-
duced by Liu and Yang in [13] and then developed by Bressan et al [9]. Extensions
of L1-stability results to the setting of large BV data was obtained for systems of
conservation laws with Temple type characteristic fields and other special systems
and also for balance laws with small data. A rich bibliography on these references
can be found in [3] as well as further ones on other models of granular flow.

However, our system (1) does not fulfill these classical assumptions and in ad-
dition, its special source terms do not belong within a class for which L1 stability
results are available in the literature. The heart of the matter in [3] is to con-
struct a Lyapunov-like nonlinear functional �, equivalent to the L1-distance, which
is decreasing in time along any pair of solutions. In this review article, we state
some preliminary results in Section 2, and then present the stability functional �
in Section 3 comparing it with the classical one of Bressan et al [9] and providing
the motivation of our construction. In Section 4, we conclude stating our main
theorems and refering to [3] for the proofs and further analysis.
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2. Preliminaries. It is easy to verify that system (1) is strictly hyperbolic on the
domain

⌦
.
=
�
(h, p) : h � 0, p > 0

 
(2)

and weakly linearly degenerate at the point (h, p) = (0, 1). We observe that the line
p = 1 separates the domain ⌦ into two invariant regions for solutions of the Riemann
problem: the quarter {h � 0, p > 1} and the half-strip {h � 0, 0 < p < 1}. Indeed,
the rarefaction and Hugoniot curves of the first family through a point (h`, p`), with
p` 6= 1, never meets the line p = 1, while the rarefaction and Hugoniot curves of
the second family through a point (h`, p`), with h` > 0, never meets the line h = 0.
On the the other hand, the lines p = 1 and h = 0 are also invariant regions for
solutions of the Riemann problem since they coincide with the rarefaction and
Hugoniot curves of the first and second family, respectively, passing through any of
their points. Notice that, although the characteristic field of the first family does
not satisfy the classical GNL assumption, no composite waves are present in the
solution of a Riemann problem for

ht � (hp)x = 0,

pt + ((p� 1)h)x = 0,
(3)

since in each invariant region {p > 1}, {p < 1} the field is GNL. In fact, the general
solution of a Riemann problem for (3) consists of at most one simple wave for
each family which can be either a rarefaction or a compressive shock or a contact
discontinuity.

Let u = u(x, t)
.
= (hs,", ps,")(x, t) be a piecewise constant s-"-approximate solu-

tion converging to an entropy weak solutions to (1) with initial data

h(x, 0) = h(x) , p(x, 0) = p(x) for a.e. x 2 R . (4)

constructed as in [2] by the usual operator splitting scheme as " ! 0+ and s ! 0+.
Here, s = �t > 0 stands for the time step and a parameter " > 0 a small positive
parameter of the front tracking algorithm. We refer to [11] and [1] for the early
works on this subject and also point out that the source term (1) does not belong
in the class of the so-called “dissipative” terms exploited in [11, 1, 10]. As usual,
a-priori bounds on the total variation of u(t)

.
= u(·, t) outside the time steps are

obtained in [2] by analyzing suitable wave strength and wave interaction potential
that are defined as follows.

First, the sizes of wave fronts of approximate solutions of (1) are defined as
the jumps between the left and right states either measured with the original vari-
ables (h, p) or with the corresponding Riemann coordinates (H,P ) associated to
system (1). So given a wave front with left and right states (h`, p`) and (hr, pr),
respectively, let (H`, P`) and (Hr, Pr) be the corresponding Riemann coordinates.
Then, the wave size of the jump

�
(h`, p`), (hr, pr)

�
can be defined in two coordinate

systems as follows:

• the size of a 1-wave (h-wave) is measured by ⇢h = Hr �H` or �h = hr �h` in
Riemann or original coordinates, respectively.

• the size of a 2-wave (p-wave) is measured by ⇢p = Pr � P` or �p = pr � p` in
Riemann or original coordinates, respectively.

Next, at any time t > 0 where no interaction occurs and away from time steps,
let Ji

�
u(t)

�
denote a set of indexes ↵ associated to the jumps of the i-th family of

u(t) located at x↵ and let p`↵
.
= P (x↵�). Also, set J

�
u(t)

� .
= J1

�
u(t)

�S
J2

�
u(t)

�

to denote the collection of indexes associated to all jumps of u(t) and k↵ 2 {1, 2}
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the characteristic family of the jump ↵ 2 J
�
u(t)

�
, so that, in particular, one has

↵ 2 Jk↵

�
u(t)

�
. Then, we define the total strength of waves in u(t) as:

Vi

�
u(t)

� .
=

X

↵2Ji((u(t))

|⇢↵|, i = 1, 2,

V
�
u(t)

�
= V1

�
u(t)

�
+ V2

�
u(t)

� .
=

X

↵2J (u(t))

|⇢↵| ,
(5)

and the interaction potential as:

Q
�
u(t)

� .
= Qhh +Qhp +Qpp . (6)

where

Qhh
.
=

X

k↵=k�=1

x↵<x�

!↵,� |⇢↵||⇢� | , Qhp
.
=

X

k↵=2,k�=1

x↵<x�

|⇢↵⇢� |, Qpp
.
=

X

(↵,�)2Appr2

|⇢↵⇢� |

(7)
with the weights !↵,� := � ·min{|p`↵�1|, |p`� �1|} if ⇢↵, ⇢� are 1-shocks lying on the

same side of p = 1, otherwise !↵,� := 0, for a suitable constant � > 0 su�ciently
small. Also, Appr2 denotes the set of pairs of indexes of approaching p-waves. Note
that Qhh is the modified interaction potential of waves of the first family (h-waves)
introduced in [2] and the others are defined the usual way. Relying on the interaction
estimates established in [2], the Glimm functional

G
�
u(t)

� .
= V

�
u(t)

�
+Q

�
u(t)

�
(8)

is nonincreasing in any time interval ]tk, tk+1[ between two consecutive time steps.
Instead, the estimates derived in [2] on the variation of the strength of waves when
the solution is updated with the source term, imply that at any time step tk =
k�t = k s there holds

G
�
u(tk+)

�

�
1 +O(1)�t

�
· G��u(tk�)

�
, (9)

i.e. G is increasing across tk.

3. Stability Functional. Let u and v : R+⇥R ! Rn be two approximate solutions
to (1) and consider any piecewice constant function z with the property that for
fixed t, z(t, ·) : R ! R2 is a L1 function of small total variation. In addition, z(t, x)
has finitely many discontinuities that are polygonal lines and the slope of such a
line is bounded in absolute value by a fixed number �̂. Also, there exists a constant
� > 0 such that Tot.V ar.z(t)  �, for all t > 0. We clarify that z is an arbitrary
function with the aforementioned properties and is not related to the system (1).
Next, consider the i-shock curve Si(·; ·) and the scalar functions ⌘i i = 1, 2 defined
implicitly by

w(t, x) = S2(⌘2(t, x); ·) � S1(⌘1(t, x);u(t, x)) , (10)

where w
.
= v+z. According to this definition, the parameter ⌘i denotes the strength

in the original coordinates along the i-shock curves connecting u and w = v + z.
We clearly have

1

C0
|u(x)� w(x)| 

X

i

|⌘i(x)|  C0|u(x)� w(x)| (11)
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for some constant C0 > 0. We can now define the stability functional

�z(u(t), v(t))
.
=

2X

i=1

Z 1

�1
|⌘i(x, t)|Wi(x, t) dx (12)

with weights Wi of be

Wi(x, t)
.
= 1 + 1Ai(x, t) + 2

⇥
G(u(t)) + G(v(t))

⇤
, (13)

for suitable positive constants 1 < 2 to be specified. Here G is the Glimm func-
tional defined in (5)-(8), and Ai(t;x) measures the total amount of waves in u(t)
and v(t) which approach the i-wave ⌘i located at x defined as follows:

A1(t;x)
.
=

X

↵2J (u)[J (v)

k↵=2, x↵<x

|⇢↵|

+

8
>>><

>>>:

h X

↵2Zneg(u)

+
X

↵2Zneg(v)

i
|p`↵ � 1||⇢↵| if ⌘1(t, x) < 0

h X

↵2Zpos(u)

+
X

↵2Zpos(v)

i
|p`↵ � 1||⇢↵| if ⌘1(t, x) > 0

(14)

and

A2(t;x)
.
=

X

↵2J (u)[J (v)

k↵=1, x↵>x

|⇢↵|+

8
>>>><

>>>>:

h X

↵2J (u),k↵=2
x↵>x

+
X

↵2J (v),k↵=2
x↵<x

i
|⇢↵| if ⌘2(t, x) < 0

h X

↵2J (v),k↵=2
x↵>x

+
X

↵2J (u),k↵=2
x↵<x

i
|⇢↵| if ⌘2(t, x) > 0

(15)
where Z denotes the set of selected 1-waves ↵ chosen as follows
Zneg(u) := {↵ 2 J1(u) : either [u2(x↵�) > 1, x↵ < x] or [u2(x↵�) < 1, x↵ > x]}
Zneg(v) := {↵ 2 J1(v) : either [v2(x↵�) > 1, x↵ > x] or [v2(x↵�) < 1, x↵ < x]}
for ⌘1 < 0, and

Zpos(v) := {↵ 2 J1(v) : either [v2(x↵�) > 1, x↵ < x] or [v2(x↵�) < 1, x↵ > x]}
Zpos(u) := {↵ 2 J1(u) : either [u2(x↵�) > 1, x↵ > x] or [u2(x↵�) < 1, x↵ < x]}

for ⌘1 > 0 and p`↵ denotes the left state of the jump located at x↵ and by ⇢↵ the
corresponding strength of the jump in Riemann coordinates.

Notice that the main novelty of our functional is encoded in the weight W1 and
in particular in A1, whereas W2 has almost the same expression of the weight given
in [9] for GNL and LD characteristic fields. In fact, the only di↵erence between the
definition of the weight W2 here and the one given in [9] relies in the presence of the
whole Glimm functional G of u and v in Wi, instead of their interaction potential
Q. Indeed, in comparison to the weights Wi used in [6, § 8], here the terms of
the Glimm functionals G and not only the interaction potential Q are needed in
the definition of Wi to control the change Ai across an interaction time. This is
due to the fact that, since the first characteristic family is not GNL, we adopt as
in [2] a wave interaction potential Q, suited to (1), that is in general not decreasing
in presence of interactions of 1-waves of di↵erent sign (1-shocks with 1-rarefaction
waves). Therefore, one needs to exploit the decrease of the total strength V of
waves due to cancellation in order to control the possible increase of the potential
interaction Q occurring at such interactions.
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Figure 1. Approaching waves in v towards ⌘1(x) > 0 are indicated by
the jumps marked with bolded lines. Also, regions p < 1, p > 1 can only
be connected by 2�waves crossing the line p = 1. The selected 1�waves
that are located at x↵ with x↵ < x correspond to � ! �1(�; ·) strictly
increasing, i.e. {p > 1}. On the other hand, the selected 1�waves
that are located at x↵ with x↵ > x correspond to � ! �1(�; ·) strictly
decreasing, i.e. {p < 1}.

Instead, because of the properties of the non GNL first characteristic family, the
definition of 1-waves approaching ⌘1 varies if the left state of such waves lies on the
left or on the right of {p = 1} (see Figure 1). The key ingredient in the definition
of A1 is the appropriate formulation of approaching wave of the first family for a
given wave ⌘1(x) in the jump (u(x), v(x)), which extends to our case the definition
given in [9] for GNL characteristic fields. Observe that, letting � 7! S1(�; h0, p0)
be the Rankine-Hugoniot curve of right states of the first family issuing from a
given state (h0, p0) 2 ⌦, and denoting �1(�; h0, p0) the Rankine-Hugoniot speed of
the jump connecting (h0, p0) with S1(�; h0, p0), by the properties of system (1) it
follows that � 7! �1(�; h0, p0) is strictly increasing on {p > 1}, strictly decreasing
on {0 < p < 1}, and constant along {p = 1}. Therefore, if the size ⌘1(x) is positive,
we shall regard as approaching all the 1-waves present in v which either have left
state in the region {p > 1} and are located on the left of ⌘1(x), or have left state
in the region {0 < p < 1} and are located on the right of ⌘1(x). On the contrary,
we regard as approaching to ⌘1(x) > 0 all the 1-waves present in u which either
have left state in the region {p > 1} and are located on the right of ⌘1(x), or have
left state in the region {0 < p < 1} and are located on the left of ⌘1(x). Similar
definition is given in the case where ⌘1(x) < 0.

Moreover, in [9], the weights Wi are expressed only in terms of the strength of
the approaching waves. Instead here the terms of A1 related to the approaching
waves of the first family have the form of the product of the strength of the waves
|⇢↵| times the distance from {p = 1} of the left state of the waves |p↵ � 1|. The
presence of the factor |p↵ � 1| is crucial to guarantee the decreasing property of
�z(u(t, ·), v(t, ·)) at times of interactions involving a 1-wave, say of strength |⇢↵|,
and a 2-wave crossing {p = 1} (i.e. connecting two states lying on opposite sides
of {p = 1}), say of strength |⇢� |. In fact, in this case the possible increase of
A1 turns out to be of order |p� � 1||⇢↵| ⇡ |⇢↵⇢� |, and thus it can be controlled
by the decrease of G determined by the corresponding decrease of the interaction
potential. Unfortunately, because of the presence of these quadratic terms in the
weight W1, we are forced to establish sharp fourth order interaction estimates in
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order to carry on the analysis of the variation of �z(u(t, ·), v(t, ·)). This is achieved
deriving accurate Taylor expansions of the Hugoniot and rarefaction curves of each
famiy, which rely on the specific geometric features of system (1). Namely, the
rarefaction and Hugoniot curves through the same point are “almost” straight lines
and have “almost” third order tangency at their issuing point near {p = 1} for the
first family and near {h = 0} for the second family. We say that the characteristic
fields of (1) are “almost Temple class”.

4. Main Theorems. It should be noted that for fixed 1 and 2, the functional
Wi is locally bounded. Hence, the functional �z is equivalent to the L1 distance
between u(t) and w(t) = v(t) + z(t):

1

C0

��u(t)�w(t)
��
L1  �z(u(t), v(t))  C0 ·W ⇤ ·

��u(t)�w(t)
��
L1 8 t > 0 . (16)

In the same spirit of [9], we prove that �z is “almost decreasing” in time if the only
e↵ect of the convective part of (1), otherwise it is exponentially increasing in time
with the increase to be estimated using the operator splitting scheme. To prove this,
we clarify that the functional �z(u, v) in (12) is employed in two ways: either when
both u and v are approximate solutions to the non-homogeneous system (1) and
z ⌘ 0 or when u and v are approximate solutions to the homogeneous system (3)
and z 6= 0 is arbitrary.

First, consider domains D of the form

D(M0, p0, �0) =cl
�
(h, p) 2 L1(R;R2) : h, p are piecewise constant,

0  h(x)  �0, p(x) � p0 for a.e. x,

and TotVar{(h, p)}  M0, khkL1 + kp� 1kL1  M0

 
,

(17)

where cl denotes the L1-closure, TotVar{(h, p)} .
= TotVar{h} + TotVar{p}, and

M0, p0, �0 are positive constants. Given M0, p0 > 0, we prove in [3] that there exist
constants �0, �⇤0 , p

⇤
0, p

⇤
1,1,2,�, C1, C2 > 0, so that, letting �z be the functional

defined in (12)-(15), the followings hold true.

(i) Let u and v : R⇥R+ ! R2 be two "-front tracking approximate solution to (3)
with initial data u( ·, 0), v( ·, 0) 2 D(M0, p0, �0) and with values in [0, �⇤0 ] ⇥
[p⇤0, p

⇤
1]. Let z be a piecewise constant function as in Section 3, then

�z

�
u(⌧2), v(⌧2)

�
 �z

�
u(⌧1), v(⌧1)

�
+C1 ·

�
"+ �

�
(⌧2 � ⌧1) 8 ⌧2 > ⌧1 > 0 . (18)

(ii) Let u and v : R⇥R+ ! R2 be two s-"-approximate solution of (1) with initial
data u( ·, 0), v( ·, 0) 2 D(M0, p0, �0) and with values in [0, �⇤0 ]⇥ [p⇤0, p

⇤
1]. Then,

letting tk
.
= k�t = k s, (k 2 N) be the time steps, there holds

�0

�
u(⌧2), v(⌧2)

�
 �0

�
u(⌧1), v(⌧1)

�
+C1 ·"(⌧2�⌧1) 8 tk < ⌧1 < ⌧2 < tk+1 , (19)

and

�0

�
u(tk+), v(tk+)

�
 �0

�
u(th+), v(th+)

��
1 + C2 ·�t

�(k�h)
+

+ C1 · "�t
k�hX

i=1

�
1 + C2 ·�t

�i 8 0  h < k,
(20)

for all k 2 N.
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The proofs of (i) and (ii) above can be found in [3, §4]. By estimate (18), the
front tracking approximate solutions to the homogeneous system (3) converge to a
unique limit, depending Lipschitz continuously on the initial data in the L1 norm,
that defines a semigroup solution operator St, t � 0, on the domains D defined
above. In other words, for any given initial data u

.
= (h, p ) 2 D(M0, p0, �0), the

map u(t, x)
.
= Stu(x) provides an entropy weak solution of the Cauchy problem

for (3)–(4). The statement is the following:

Theorem 4.1. Given M0, p0 > 0, there exist �0, �⇤0 ,M
⇤
0 , p

⇤
0, L > 0 and a unique

(up to the domain) semigroup map

S : [0,+1)⇥D0 ! D⇤
0 , (⌧, u) 7! S⌧u , (21)

with D0
.
= D(M0, p0, �0), D⇤

0
.
= D(M⇤

0 , p
⇤
0, �

⇤
0) domains defined as in (17), which

enjoys the following properties:
(i) S⌧2

�
S⌧1 u

�
2 D⇤

0 8 u 2 D0, 8 ⌧1, ⌧2 � 0;
(ii) S0 u = u, S⌧1+⌧2 u = S⌧2

�
S⌧1 u

�
8 u 2 D0, 8 ⌧1, ⌧2 � 0;

(iii)
��S⌧2u� S⌧1v

��
L1  L · (|⌧1 � ⌧2|+ ku� vkL1) 8 u, v 2 D0, 8 ⌧1, ⌧2 � 0;

(iv) For any u
.
= (h, p) 2 D0, the map

�
h(x, ⌧), p(x, ⌧)

� .
= S⌧ u(x) provides an

entropy weak solution of the Cauchy problem (3), (4). Moreover, S⌧ u(x)
coincides with the unique limit of front tracking approximations.

(v) If u 2 D0 is piecewise constant, then for ⌧ su�ciently small u( · , ⌧) .
= S⌧ u

coincides wtth the solution of the Cauchy problem (3), (4) obtained by piecing
together the entropy solutions of the Riemann problems determined by the
jumps of u.

It should be noted that the image of the map St in (21) is the same for every
t > 0, but the domain D0 is not positively invariant under the action of S. Indeed,
it turns out that the L1, L1- norms as well as the total variation of the solution
(that appear in the definition of the domain (17)) may well increase in presence of
interactions (see the analysis in [2, Section 5]).

Moreover, relying on (19)–(20) and on Theorem 4.1, we prove that approximate
solutions of (1) generated by a front-tracking algorithm combined with an operator
splitting scheme, in turn, converge to a map that defines a Lipschitz continuous
semigroup operator Pt, t � 0, on domains as (17), with a Lipschitz constant that
grows exponentially in time and the trajectories u(t) = Ptū are entropy weak solu-
tion of the Cauchy problem (1), (4). Let us point out that, although the source term
of system (1) is not dissipative, relying on the global existence result established
in [2], we construct a semigroup map whose image D⇤

0 is the same for every time
t > 0. Also, the uniqueness of the limit of approximate solutions to (1) and of the
semigroup operator P, is achieved as in [1] deriving the key estimate

��P✓u� S✓u� ✓ ·
�
(p� 1)h

���
L1 = O(1) · ✓2 as ✓ ! 0 , (22)

relating the solutions operators of the homogeneous and nonhomogeneous systems,
and invoking a general uniqueness result for quasidi↵erential equations in metric
spaces [5]. Here is our theorem:

Theorem 4.2. Given M0, p0 > 0, there exist �0, �⇤0 ,M
⇤
0 , p

⇤
0, L

0, C > 0 so that the
conclusions of Theorem 4.1 hold together with the following. There exist a map

P : [0,+1)⇥D0 ! D⇤
0 , (⌧, u) 7! P⌧u , (23)

(with D0,D⇤
0 domains as in (17)), which enjoys the properties:
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(i) P⌧1

�
P⌧2 u

�
2 D⇤

0 8 u 2 D0, 8 ⌧1, ⌧2 � 0;
(ii) P0u = u, P⌧1+⌧2u = P⌧2

�
P⌧1u

�
8 u 2 D0, 8⌧1, ⌧2 � 0;

(iii)
��P⌧1u�P⌧2v

��
L1  L0�eC4·⌧2 · ku� vkL1 +(⌧2 � ⌧1)

�
8 u, v 2 D0, 8 ⌧2 >

⌧1 > 0 ,
(iv) For any u

.
= (h, p) 2 D0, the map

�
h(x, ⌧), p(x, ⌧)

� .
= P⌧u(x) provides an

entropy weak solution of the Cauchy problem (1), (4).
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