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Landslide susceptibility maps (LSM) are commonly used by local authorities for land usemanagement and plan-
ning activities, representing a valuable tool used to support decision makers in urban and infrastructural plan-
ning. The accuracy of a landslide susceptibility map is affected by false negative and false positive errors which
can decrease the reliability of this useful product. In particular, false negative errors, are generally worse in
terms of social and economic losses with respect to the losses associated with false positives. In this paper, we
present a new technique to improve the accuracy of landslide susceptibility maps using Permanent Scatterer In-
terferometric Synthetic Aperture Radar (PSInSAR) data. The proposed approach uses two different data sets ac-
quired in ascending and descending geometry. The PS velocity measured along the line of sight is re-projected
into a new velocity along the steepest slope direction (VSlope). Integration between the LSM and the ground
deformation velocity map along the slope was performed using an empirical contingency matrix, which takes
into account the average VSlope and the susceptibility degree obtained using the Random Forests algorithm.
The Results show that the susceptibility degree increased in 56.41 km2 of the study area. The combination of
PSInSARdata and the landslide susceptibilitymap (LSM) improved the prediction reliability of slowmoving land-
slides, which particularly affect urbanized areas. The use of this procedure can be easily applied in different areas
where PSI data sets are available. This approach will help planning and decision-making authorities produce
reliable landslide susceptibility maps, correcting some of the LSM errors.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Landslide
Susceptibility
SAR interferometry
SqueeSAR
Sicily
1. Introduction

Landslide susceptibility is defined as the likelihood of a landslide oc-
curring in an area based on local terrain conditions (Brabb, 1984) and
represents the degree to which an area can be affected by future slope
failure (Rossi et al., 2010). From a quantitative point of view, landslide
susceptibility is the relative probability of the spatial occurrence of
slope failure, considering different geological, topographical and envi-
ronmental conditions in a study area (Chung and Fabbri, 1999;
Guzzetti et al., 2005, 2006). The temporal probability of a landslide is
not included in susceptibility models. Several papers devoted to the
concepts, principles, techniques and methods associated with landslide
susceptibility have been published over the past 30 years (Carrara,
1983; Brabb, 1984; Hansen, 1984; Varnes and IAEG Commission on
Landslides and Other Mass-Movements, 1984; van Westen, 1994;
Soeters and van Westen, 1996; van Westen et al., 1997; Aleotti and
Chowdhury, 1999; Chung and Fabbri, 1999; Guzzetti et al., 1999;
Vandine et al., 2004; Catani et al., 2005; Crozier and Glade, 2005;
Ermini et al., 2005; Guzzetti et al., 2006; Rossi et al., 2010; Catani et
al., 2013; Jebur et al., 2014). Landslide susceptibility maps are essential
for effective land use management and planning activities and are
lini).
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valuable tools that can support decision makers' urban and infrastruc-
tural plans. There is an increasing interest in producing helpfulmethod-
ologies for local authorities who then choose the best management
strategies, including minimizing impacts from land use activities in
landslide-prone areas (Gorsevski et al., 2006). Landslide susceptibility
maps can be produced using several methods and techniques available
in the literature, often using geographic information systems (GIS) (van
Westen et al., 2006; Chacon et al., 2006). Among the available methods
to map landslide susceptibility, statistical- and landslide inventory-
based probabilistic techniques (Carrara et al., 1995; Guzzetti et al.,
1999; Chacon et al., 2006) can be used. These methods are generally
used in combination. For example, landslide-conditioning parameter
maps, bivariate statistical methods, multivariate statistical methods
and machine learning techniques such as artificial neural networks
and fuzzy logic approaches can be combined to create landslide suscep-
tibilitymaps (Chacon et al., 2006; Lee et al., 2007). Landslide parameters
(slope angle, lithology, aspect, elevation, etc.) have been combined
using bivariate statistical methods (i.e., Yalcın, 2008; Regmi et al.,
2010; Oh et al., 2010; Sterlacchini et al., 2011), multivariate statistical
methods (i.e., Ohlmacher and Davis, 2003; Ayalew and Yamagishi,
2005; Duman et al., 2006; Kıncal et al., 2009; Van Den Eeckhaut et al.,
2010; Rossi et al., 2010; Bai et al., 2010; Atkinson and Massari, 2011),
machine learning methods (Catani et al., 2005; Ermini et al., 2005;
Yesilnacar and Topal, 2005; Wu and Chen, 2009; Nefeslioglu et al.,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Location of the study area, its morphology (from a 20 m resolution DEM) and the available landslide inventory map.
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2010; Pradhan et al., 2010; Melchiorre et al., 2011), conditional proba-
bility or Bayesian methods (Catani et al., 2013) and landslide invento-
ry-based probabilistic methods (Casagli et al., 2004; Lee, 2005; Lee
and Pradhan, 2007; Akgun et al., 2008). The classification of a certain
terrain affects its economic value. From an economic point of view,
the value of a stable area will be higher than that of an unstable area.
Thus, an appropriate susceptibilitymodelmust reduce themisclassifica-
tion of terrains and minimize economic and non-economic costs. The
techniques used to evaluate the accuracy of landslide susceptibility
models generally do not include misclassification costs. This is a rele-
vant problem in landslide susceptibility analysis. Themost common er-
rors in susceptibility models can be summarized into two different
groups (Frattini et al., 2010):

Error Type I (false positive): terrains not affected by landslides are
classified as unstable. Thus, that their economic value is incorrectly de-
creased by restricting to their use. In this case, themisclassification leads
to a social cost equal to the loss of economic value of the terrain plus in-
direct costs related to the consequences of forcing landowners to move
or acquire new land parcels.

Error Type II (false negative): terrains affected by ground deforma-
tion are classified as stable and incorrectly used without restrictions.
In this case, the cost of the misclassification may be higher because of
the underestimation of the possible losses of elements at risk (live,
buildings, etc.) that can be involved in a landslide event. Compared to
false positives, false negative errors are usually worse in terms of social
and economic losses.

Reducing both error types is a priority in operational landslide risk
management and a current issue. To achieve this goal Permanent Scat-
terer Interferometric Synthetic Aperture Radar (PSInSAR) data can be
effectively used, especially in case studies of slow or very slow moving
landslides (Ferretti et al., 2000, 2001). Ground displacement measure-
ments can be obtained using the SqueeSAR technique (Ferretti et al.,
Table 1
Details of the available CSK SAR data from 2011 to 2012.

Ascending Descending

Temporal range 01/05/2011–03/05/2012 16/05/2011–02/05/2012
No. of images 51 64
No. of PS-DS 453,331 793,725
PS-DS/km2 288.31 729.94
Mean VLos (mm/year) −0.49 −0.43
Min. VLos (mm/year) −78.90 −73.97
Max. VLos (mm/year) 29.29 33.26
Stability threshold
(mm/year)

±3.5 ±4.5
2011) developed by Tele-Rilevamento Europa (T.R.E.). By combining a
landslide susceptibility map with PSInSAR data, the degree of landslide
susceptibility in those areas affected by ground deformation can be up-
dated and corrected, reducing the number of false negatives and in-
creasing the reliability of the landslide susceptibility map (Oliveira et
al., 2015; Piacentini et al., 2015). This work focuses on the reduction of
false negatives. It is not possible to correct false positives because
ground deformation detection using PSInSAR is related to a precise
time interval. Thus, a terrain susceptible to landslides can be stable in
that period but remain prone to hillslope processes. In this paper, we
test this approach in Messina Province (southern Italy), which is an
area strongly affected by slow-moving landslides.

2. Study area

Messina Province is located in the northeastern portion of Sicily Is-
land (southern Italy, Fig. 1). It is part of the Sicilian fold-and-thrust oro-
genic belt formed during the Africa-Europe plate collision. NE Sicily is
divided into three tectonic domains (Pavano et al., 2015): (i) the
Peloritani Ridge, (ii) the Nebrodi-Peloritani Transition zone and (iii)
theNebrodiMountains. The Peloritani Ridge is located along the eastern
coast of Sicily (Ionian coast) and comprises a basement represented by
Aspromonte andMandanaci Units (Lentini et al., 2000). The basement is
made up of high-grade crystalline rocks and low-grade metapelites
(Pavano et al., 2015; Mineo et al., 2015). Along the coast, overlying
metamorphic rocks, Late Miocene to Middle Pleistocene marine de-
posits crop out (Lentini et al., 2000; Del Ventisette et al., 2012). The
Nebrodi-Peloritani Transition zone is represented by a narrow belt
bounded by the Taormina Line (Ghisetti and Vezzani, 1982) to the
southwest and by Tindari-Capo S. Alessio Alignment (Catalano et al.,
1996) to the northeast. This area is characterized by the presence of
epimetamorphic rocks, with a few relics of Mesozoic sedimentary suc-
cession. These lithologies are covered bywell-developedOligo-Miocene
terrigenous deposits. The western sector is constituted by the Nebrodi
Mountains, which represent the culmination of Paleogene Tethyan
Table 2
Statistics of the PS data set after the projection along the steepest slope (ST = stability
threshold; max VSlope, mean VSlope and ST are expressed in mm/year).

Geometry No. of
PS/DS

PS-DS/km2 Discarded
PS

Max
VSlope

Mean
VSlope

ST

Ascending 100,870 82 352,461
Descending 182,609 148.46 611,116
Asc + Desc 283,479 230 965,577 −168.4 −6.91 0 to

−7



Fig. 2. Flow chart illustrating the adopted methodology.
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accretionary wedge terrains. The morphology of the study area is
strongly influenced by this geological framework. Both coastal seg-
ments (Ionian and Tyrrhenian) are characterized by the presence of
coastalmountain ridges (Peloritani andNebrodi)with steep slopes, nar-
row valleys perpendicular to the coast and high relief energies
(Ciampalini et al., 2015a).

The coastal V-shaped river basins are reducedwatercourse networks
with regular and parallel paths that significantly transport solid
materials during the wet season (September–April). Along the
Tyrrhenian coast, small alluvial plains are present. The rivers crossing
both mountain chains are called “fiumare”. They are usually straight,
with steep courses and gravel beds (Raspini et al., 2015). The climate
of the region is a typical Mediterranean climate, characterized by prom-
inent seasonality; therefore, the river regime is irregular (Ciampalini et
al., 2015a). Exceptional rainfall events combined with the presence of
steep slopes on fractured rocks represent the main landslide-triggering



Table 3
Contingency matrix applied to the LSM considering the average VSlope in each cell.

VSlope(mm/year)

Su
sc

ep
t. 

de
gr

ee

0–7 7–14 14–21 > 21

1 0 +1 +2 +3

2 0 0 +1 +2

3 0 0 0 +1

4 0 0 0 0
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factor (Ardizzone et al., 2012). In the case of exceptional rainfall, debris
flows are the most common hillslope processes that occur in the
Peloritani ridge, whereas rotational, translational and complex land-
slides are more common within both the Nebrodi Mountains and the
Nebrodi-Peloritani Transition zone (Del Ventisette et al., 2012; Bardi
et al., 2014). Between autumn2009 andwinter 2010, several exception-
al rainfall events occurred in Messina Province. During October 2009,
the Ionian coast was affected by N600 landslides (Ardizzone et al.,
2012; Cama et al., 2015). Several small settlements were considerably
damaged, 37 people died (Ciampalini et al., 2015a) and 122 people
were injured. At the beginning of 2010, prolonged andwidespread rain-
fall caused hundreds of complex landslides along the Tyrrhenian coast
(Del Ventisette et al., 2013; Bianchini et al., 2014; Ciampalini et al.,
2014; Bardi et al., 2014; Raspini et al., 2015) where buildings and infra-
structures located in several municipalities were damaged. Overall,
8978 hillslope processes aremapped in the available Landslide Invento-
ryMap (LIM, Piano di Assetto Idrogeologico, 2012, PAI) ofMessina Prov-
ince. They consist of: 1259 rock falls or topples (14.02%), 508 rapidflows
(5.66%), 1531 slides (17.05%), 1546 complex slides (17.22%), 355 flows
(3.95%), 962 superficial instability events (10.72%), 764 creep or soli-
fluctions (8.51%) and 2053 rapid erosion events (22.87%). From a litho-
logical viewpoint, the lithologies involved in thehillslopeprocesses vary
depending on the area. For example, within the Peloritani Mountains,
most landslides involve rocks belonging to the crystalline basement
Fig. 3. Landslide susceptibility map of Messi
and its Meso-Cenozoic sedimentary cover (Messina et al., 2004).
On the contrary, the hillslope processes in the Nebrodi Mountains
mostly involve Oligocene to Pleistocene deposits because Flysch and
wedge-top deposits extensively crop out in this area (Di Paolo et al.,
2014).

3. Methodology

3.1. Landslide Susceptibility Map

The landslide susceptibilitymap (LSM) ofMessina Provincewaspro-
duced by implementing a Random Forests (RF) algorithm in Matlab
(Catani et al., 2013). This technique is a machine learning algorithm
for non-parametric multivariate classification that was developed by
Breiman (2001) based on classification trees, providing high classifica-
tion accuracy without overfitting (Diaz-Uriarte and de Andres, 2006).
RF is commonly used to classify remote sensing data (Duro et al.,
2012; Lawrence et al., 2006; Watts et al., 2009; Chen et al., 2014), but
it has been rarely used in landslide susceptibility evaluation (Catani et
al., 2013; Segoni et al., 2014; Triglia et al., 2015). The variables consid-
ered for the LSMofMessina Provincewere extracted from the following
availablemaps anddata layers: a geologicalmap (scale 1:50,000), a land
covermap (2000 Corine Land Cover, scale 1:100,000), the existing land-
slide inventory map (PAI – Piano di Assetto Idrogeologico, 2012) and
DEM-derived products (DEM from the Istituto Geografico Militare,
IGM). To avoid subjectivity in the choice of explanatory variables, sever-
al parameters were considered among the DEM-derived products: As-
pect, Planar Curvature, Profile Curvature, Curvature s.s., Elevation,
Flow Accumulation, Topographic Wetness Index (TWI), Log Flow Accu-
mulation and Slope. The choice of parameters depends on themap unit
resolution (MUR) (Catani et al., 2013). Among the possible parameters,
we used those suggested for a map unit resolution of 100 m. Using this
MUR, the expected Area Under the Curve (AUC) value is 0.81. A training
set was created by randomly selecting 10% of the landslide database.
Using this percentage, the expected AUC value is 0.88 (Catani et al.,
2013). Furthermore, the standard deviation and variancewere calculat-
ed for each numerical variable categorical variable, respectively, using a
moving window of 100 by 100 m (Lagomarsino et al., 2014). The DEM
had a 20 by 20m spatial resolution. In the LSM, the average value inside
a 100 by 100 m cell was calculated. Each pixel was classified using four
susceptibility classes: (i) low to null (0–0.3); (ii) moderate (0.3–0.55);
(iii) high (0.55–0.75) and (iv) very high (0.75–1). Although the choice
of cutoff values for the definition of susceptibility classes is arbitrary
na Province and the related ROC curve.



Fig. 4. Example plot illustrating the variation of parameter relative importance (expressed
as rank using the colour ramp on the right) with parameter space (no. of parameters used
LCV#).
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(Frattini et al., 2010), the adopted ranges have been determined based
on the best ROC (Receiver Operating Characteristic) curve.

3.2. PSInSAR

Permanent Scatterer Interferometry is an advanced multi-interfero-
metric SAR technique used in ground deformation studies and canmea-
sure ground displacement with millimetre accuracy (Ferretti et al.,
2000, 2001; Hanssen, 2005; Crosetto et al., 2010). PSInSAR techniques
are extensively used to study soil subsidence (Herrera et al., 2010;
Raspini et al., 2014), earthquakes (Tronin, 2006; Sousa et al., 2010;
Lagios et al., 2012), volcanic activity (Peltier et al., 2010; Branca et al.,
2014; Parker et al., 2014) and landslides (Bianchini et al., 2012;
Ciampalini et al., 2014; Bardi et al., 2014). The PSInSAR method relies
on the analysis of a backscattered signal from co-registered, multi tem-
poral synthetic aperture radar (SAR) images (at least 15) to identify
highly reflective ground elements, which are stable fromanelectromag-
netic point of view, called Permanent Scatterers (PS) (Ferretti et al.,
2000, 2001; Werner et al., 2003). The SqueeSAR™ algorithm (Ferretti
et al., 2011) is an evolution of the PSInSAR technique that measures
ground displacements using both PS and the Distributed Scatterers
(DS), which correspond to homogeneous areas spread across a group
of pixels in a SAR image (e.g., rangeland, pasture, shrubs and bare
soils). The SqueeSAR technique considerably increases the point target
density compared to that of the traditional PSInSAR technique, especial-
ly in sparsely vegetated landscapes (Bellotti et al., 2014; Notti et al.,
2014). Both the PSInSAR and SqueeSAR™ techniques can measure the
movements of each PS/DS along the satellite LineOf Sight (LOS)with re-
spect to an assumed stable point (Massironi et al., 2009). Point targets
correspond to anthropogenic (e.g., buildings and metallic structures)
or natural objects (e.g., rock outcrops) with stable radar signatures
(Ferretti et al., 2000). Thus, urbanized areas have high numbers of PS.
On the contrary, the SqueeSAR approach is more useful in rural, agricul-
tural and rocky areas. Ground displacement measurements were ob-
tained for a part of Messina Province using the SqueeSAR™ technique
(Ciampalini et al., 2015a) by processing SAR images acquired by X-
band COSMO-SkyMed (CSK) in Stripmap mode (40 × 40 km in the
range and azimuthdirections and 3×3mground resolution) in both as-
cending and descending geometry (Table 1).

The PS/DS located outsideMessina Province were removed from the
total PS/DS in each data set. For each PS/DS, ground deformation veloc-
ities aremeasured in the direction of the satellite Line of Sight (LOS) and
do not correspond to the real velocity, which occurs in three dimensions
(Cascini et al., 2009). To compare and handle both PSI data sets acquired
in ascending and descending geometry, a post-processing step is
needed. By projecting the VLos velocity (mean yearly velocities mea-
sured along the LOS) vectors in the direction of the steepest slope, in
combination with a DEM, the two data sets can be combined into a sin-
gle data set, in which each PS/DS is linked to its VSlope velocity, which is
now an along-slope vector. Themost reliable displacement can bemea-
sured in the direction of the local maximum slope gradient, which is
considered the most probable direction of real movement associated
with a potential slope failure (Cascini et al., 2010; Notti et al., 2010;
Plank et al., 2012; Bianchini et al., 2013; Herrera et al., 2013;
Ciampalini et al., 2016). The projection of VLos along the steepest slope
was performed using the formula proposed by Bianchini et al. (2013)
and Notti et al. (2014). This approach requires knowledge of the follow-
ing factors: (i) the slope and aspect derived from the DEM; and (ii) the
satellite acquisition parameters (i.e., the azimuth, the incidence angle,
the directional cosines: nlos, hlos, and elos of the LOS). This method is
useful when SAR images are acquired by different satellite sensors
(with different LOSs) and/or different acquisition orbits (i.e., ascending
and descending). It can easily interpret and compare displacements
projected in a common direction (steepest slope direction). This proce-
dure significantly reduces the PS/DS population because all PS/DS with
positive velocities (i.e., upslope directions, reflecting terrain uplift)
were discarded (Notti et al., 2010) (Table 2). Furthermore, because
PSInSAR also detects terrain subsidence, PS/DS located in areas charac-
terized by slope gradients lower than 5° were discarded. In total,
283,479 PS/DS were available after the discarding phase over an area
of 1230 km2, resulting in a final density of 230 PS-DS/km2.

The PS/DS density reduction was offset by the more reliable evalua-
tion of ground deformation obtained using VSlope instead of VLos and by
combining different PSI data sets acquired at the same time. Moreover,
thefinal PS/DS density is still acceptable. For example, 96 PS/km2 is con-
sidered high density in geological studies at the regional scale (Meisina
et al., 2008). The PSI data sets are now comparable and they can be
merged into a single PSI data set, where each PS/DS is linked to its relat-
ed VSlope.

3.3. Integration

To combine the LSM and PSI data set, the former was reclassified by
assigning a numerical value to each classes as follows: low to null sus-
ceptibility = 1; moderate susceptibility = 2; high susceptibility = 3;
very high susceptibility = 4. Furthermore, a grid with a 100 m resolu-
tion was created. A single cell in the grid corresponds to a single cell
in the LSM. The integration relies on coupling the degree of susceptibil-
ity in each cell (100 by 100 m) with an average VSlope value based on
the PS/DS velocity in the area (Fig. 2).

The aim of the integration procedure is to increase the susceptibility
degree of those cells characterized by ground deformation, reducing
missed alerts. On the contrary, cells characterized by high susceptibility
degrees that are stable according to SAR interferometry were not mod-
ified. In fact, the absence of detectable movements in the PSInSAR time
frame does not necessarily imply that the susceptible area is actually
stable. Based on the data sets, susceptibility updating was applied ac-
cording to an empirical contingency matrix (Table 3). The matrix
takes into account the average VSlope module and the susceptibility de-
gree obtained using the Random Forests algorithm.

The VSlope intervals were determined based on the standard devia-
tion (σ=7mm/year) of VSlope for the whole PSI data set after merging
the ascending and descending data sets. Thematrix in Table 3 shows the
correction factors for each considered case. The velocity intervals were
determined to increase the susceptibility degree from level 1 to 4. For
example, an area characterized by a susceptibility degree of 1 will in-
crease by 1 degree if its VSlope falls within 1 σ to 2 σ of the stability
threshold (7–14 in this case), 2 degrees if the VSlope is between 2 σ
and 3 σ and so on. The higher the ground deformation velocity, the
higher the susceptibility degree. A cell characterized by the maximum
susceptibility degree cannot increase further. To determine how



Fig. 5. Example of false negatives (cells classified in the low susceptibility class but included within a landslide boundary).
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may PS/DS could be used to update the susceptibility degree of a
100× 100 m cell, the areas of all the landslides included in the available
LIM were considered. The smallest landslide was 25 m2. Thus, we used
the average velocity based on at least four PS/DS to update the suscep-
tibility degree of a single cell. Cells containing less than three PS/DS
were not updated.
4. Results

4.1. The LSM of the Messina Province

The LSM ofMessina Province (Fig. 3) was classified using four differ-
ent classes: (i) low to null susceptibility; (ii) moderate susceptibility;



Fig. 6. Ground deformation velocity maps obtained using the VLos ascending data set (a) and VLos descending data set (b).
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(iii) high susceptibility and (iv) very high susceptibility. The perfor-
mance of the model was evaluated by building an ROC curve (Deleo,
1993; Beguería, 2006; Gorsevski et al., 2006). The AUC value of 0.73 rep-
resents a fairly good result for an LSM at the regional scale (Catani et al.,
2013). This result is lower than the expected value (between 0.81 and
0.88), considering the selected MUR and the size of the training set.
Fig. 7. Ground deformation velocity map obtained for
Because the target of the proposed approach is the refinement of the
LSM, the accuracy of the produced LSM, with an AUC value of 0.73,
can be improved.

The LSM suggests that a consistent part of Messina Province is char-
acterized by amoderate to very high landslide susceptibility. In particu-
lar, a brief statistical analysis shows that the 51.52% ofMessina Province
the investigated area using the VSlope velocities.



Fig. 8. Ground deformation velocity map of each cell in the study area considering the average VSlope velocity of the PS/DS included in the single cell.
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is classified as low susceptibility, 29.10% as moderate, 17.31% as high
and 2.07% as very high. Most of the areas affected by low susceptibility
are located along the coast, corresponding to narrow coastal alluvial
plains. If we consider the study area covered by the SAR data (see
Section 4.2), the percentages are as follows: 45.61% low to null suscep-
tibility, 30.51% moderate susceptibility, 20.62% high susceptibility and
3.26% very high susceptibility. The ranking and significance of landslide
conditioning variables (LCV) can be used to identify the predisposing
landslide factors in the province (Fig. 4).
Fig. 9. Comparison between the LSM obtained by applying the RF algorithm
The most influential LCVs are mainly related to Slope Curvature,
Flow Accumulation and Slope Angle, suggesting that the landslide
susceptibility of the area is driven by erosion and runoff processes
(Zeverbergen and Thorne, 1987). Furthermore, the importance of
Slope Curvature is enhanced in this area because it represents a signa-
ture of landslide presence, as it is potentially related to the typical con-
cave to convex pattern of the landslide profile (Catani et al., 2010). Plan
Curvature and Flow Accumulation rankings suggest that water flux and
soil saturation (Catani et al., 2005; Xu et al., 2013) may affect the
(a) and the new LSM after the application of the correction matrix (b).



Table 4
Overview of the results obtained by comparing the old and new LSMs.

Suscept. degree Old LSM New LSM Increase

Class No. cells % No. cells % Class No. cells

1 54,052 45.61 48,849 42.06 0 112,856
2 36,151 30.51 37,895 31.98 +1 3776
3 24,435 20.62 25,441 21.47 +2 1236
4 3859 3.26 5320 4.49 +3 629
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landslide susceptibility of Messina Province more than other factors.
The importance of slope angle is expected, as it usually represents one
of the most important predisposing factors (Guzzetti et al., 1999). In
particular, its standard deviation can be considered an indicator of the
potential energy associated with erosion and mass wasting (Catani et
al., 2013) or a measure of relief energy. To evaluate the accuracy of the
LSM, the numbers of cells classified into the lowest susceptibility class
included within landslide polygons of the landslide inventory map
were counted (Fig. 5).

These cells can be considered false negatives that are part of land-
slides but classified as not susceptible to mass movements. In this
case, the percentage of false negatives is 25.23%. This percentage must
be added to the possible false negatives corresponding to areas that
are notmapped in the LIM but are affected by slope instability phenom-
ena. This result stresses the importance of defining a new method to
compensate for such errors.
4.2. PSInSAR

A PSInSAR analysis was only performed in the central part of
Messina Province covered by the satellite acquisitions (Fig. 6). A brief
visual inspection of the ground deformation velocity maps obtained
through the VLos velocity confirmed that the study area is particularly
affected by ground deformation phenomena (landslides and coastal
Fig. 10.Difference between the original LSM and the new LSM considering the susceptibility deg
Militello Rosmarino village.
subsidence). This area is 1230 km2 and was used to test the procedure
by combining PSI data and the LSM to refine the latter.

The ground deformation velocitymap depicting theVSlope velocity is
reported in Fig. 7. The stability threshold (0–7.00mm/year) was chosen
considering the standard deviation of the velocity of the PSI data set
(ascending and descending). In this area, 65% of the PS/DS population
is characterized by stability. The obtained ground deformation velocity
map highlights the presence of several clusters of moving PS/DS that
do not always correspond to landslides mapped in the available LIM.
4.3. Integration

The first result of the integration procedure is the production of a
new ground deformation velocitymapwhere VSlope is no longer related
to a single PS/DS but to a 100 by 100 m cell (Fig. 8). Notably, cells in
which PS/DS are absent cannot be classified. In this case, the average
VSlope can be measured based on 28,279 (23.85%) of the total 118,497
cells. The number of cells in which the average ground deformation ve-
locity can be measured is strongly affected by the vegetation cover,
which reduces the usefulness of the SqueeSAR™ technique. After pro-
ducing the ground deformation velocity map for each cell, the correc-
tion matrix can be applied to refine the landslide susceptibility map.

The new LSM (Fig. 9) is characterized by a decrease in the percent-
age of the low susceptibility class. In particular, in the new map, class
1 (low to null susceptibility) includes 42.06% of the total number of
cells, class 2 (moderate susceptibility) includes 31.98%, class 3 (high
susceptibility) includes 21.47% and class 4 includes 4.49% (Table 4).

To evaluate the magnitude of the difference between the original
LSM and the new LSM, the difference between them was calculated
based on the values of the susceptibility degree of each cell (Fig. 10).
The difference suggests that 5641 cells increase their susceptibility de-
gree (56.41 km2): 3776 cells (37.76 km2) show an increase of 1 degree,
1236 (12.36 km2) increase by 2 degrees and 629 (6.29 km2) increase by
3 degrees (Table 4).
ree of each cell. Circle 1 corresponds to Castell'Umberto village and circle 2 corresponds to



Fig. 11. (a) Original LSM of the Castell'Umberto municipality area; (b) VSlope ground deformation velocity map; (c) new LSM obtained after the application of the correction matrix; (d)
difference between the original LSM and the new LSM.
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4.3.1. Results of specific case studies
We will briefly discuss the details of two specific cases in which the

map in Fig. 10 highlights the existence of areas where very severe neg-
ative errors were noted, exhibiting a 3-degree increase in susceptibility
after PSInSAR refinement. The first case is represented by the area of the
Castell'Umbertomunicipality. Castell'Umberto is a small town located at
660 m a.s.l., and it is strongly affected by landslide. In particular, the
townwas rebuilt in 1865 after a large landslide almost destroyed its his-
torical section. In the available landslide inventory map, several land-
slides are mapped along the slope of Castell'Umberto (Fig. 11).

In detail, two complex landslides were reported in an area where
several residential buildings and strategic roads are located. Most of
the LSM cells located in the area affected by the largest landslide show
a high and very high susceptibility, as predicted using the Random For-
ests algorithm (Fig. 11a). On the upper part of the slope, where no land-
slides are mapped, the susceptibility degree is lower. Most of the cells
are characterized by a low to null susceptibility degree. However, the
PSI data set highlights a different scenario (Fig. 11b). The PS/DS velocity
field confirms that the biggest complex landslide is still active and
shows VSlope values higher than 21 mm/year. Additionally, the velocity
field shows thatmost of the slope above the landslide boundary is clear-
ly affected by ground deformation that is not correctly predicted by the
RF method. In this case, use of the correction matrix to update the LSM
can be beneficially applied. The new LSM (Fig. 11c) assigns the highest
susceptibility degree to a wider part of the slope considering those
areas affected by ground deformation highlighted in the PSI map.
After this step, updating the landslide inventory map and extending
the boundary of the biggest landslide is recommended.

The area close to Militello Rosmarinowas chosen as the second case
(Fig. 12). Militello Rosmarino is a small village located within the
Nebrodi Mountains and in the Rosmarino valley, at an elevation of
450 a.s.l. Its southeastern slope is strongly affected by hillslope process-
es. In particular, two large rock falls involving the hill where the village
is located and several complex landslides to the southwere recently de-
tected (Raspini et al., 2015). This area was chosen to test the proposed
approach because in the available LIM (PAI) few landslides are mapped.



Fig. 12. (a) Original LSM of Militello Rosmarino municipality area; (b) VSlope ground deformation velocity map; (c) new LSM obtained after the application of the correction matrix; (d)
difference between the original LSM and the new LSM.
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On the contrary, PSI data show the presence of spreading ground defor-
mation on several parts of the slope located southeast of Militello
Rosmarino. Furthermore, in this area, a geomorphological field survey
was performed to validate PSI data and update the LIM (Raspini et al.,
2015).

PSI data allowed the detection of ground deformation phenomena
located southeast of Militello Rosmarino, which were confirmed
through a geomorphological field survey that mapped several large
complex landslides. These landslides were not included in the old LIM.
In fact, the susceptibility degree evaluated using the Random Forest
Algorithm (Fig. 12a) underestimates the real susceptibility of the
area, which is characterized by high ground deformation velocities
(Fig. 12b). The map of the difference between the classic LSM and the
updated LSM (Fig. 12c) shows that several landslides are not mapped
in the LIMused to create the LSM (Fig. 12d). In this case, the negative er-
rors in the LSM are likely due to the missing objects in the original LIM
used to calibrate the RF technique and not due to the susceptibility pro-
cedure itself. Nonetheless, the use of the refinementmatrix in Table 3 is
very important when applied to update the LIM or when used in post-
processing to correct LSM classification. A new LIM (Raspini et al.,
2015) has been created based on the new evidence. This updated prod-
uct can beused to produce anupdated LSMat the local scale considering
some previously undetected phenomena (Fig. 13).

5. Discussion

The comparison between the original LSMobtained through a classic
approach and the refined LSM created using SqueeSAR™ data shows
that the methodology described in this work may lead to an improve-
ment in the susceptibility ranking of a portion of the study area (about
a quarter). This limitation is due to the intrinsic limitation of the SAR
technique, which systematically fails in the case of vegetated areas.
Wide and mountainous areas such as Messina Province are character-
ized by the presence of diffuse vegetation. To improve the PS/DS
detection, L-band SAR sensors can be used because their wavelength
(30–15 cm) is more suitable to investigate densely vegetated areas.
The use of L-band data reduces temporal decorrelation effects induced
by vegetation coverage (Strozzi et al., 2005) improving the penetration



Fig. 13. Comparison between the available LIM (PAI) and the new LIM updated using both PSI data and a field survey.
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capacity of the radar signal. The component of the decorrelation due to
the vegetation in the L-band SAR images pairs is lower with respect to
C-band andX-band components because of its higher signalwavelength
and lower signal frequency (Wei and Sandwell, 2010).

Another important limitation of this approach is represented by the
displacement rate of the investigated phenomena. The applicability of
the PSI techniques is limited to extremely slow and very slow move-
ments (vel. b 16 mm/year and 16 mm/year ≤ vel. b 1.6 m/year, respec-
tively). This limitation, which is related to the radar wavelength, the
revisiting time of the platform and the spatial density of measurement
points prevent the use of PSI data when updating LSMs considering all
hillslope processes, especially fast phenomena (e.g., rock falls, topples,
and debris flows).

Although SAR images acquired in the X-band exhibit greater acquisi-
tion difficulties in vegetated areas with respect to those in L-band or
C-band, their reduced revisiting times in the same area, shorterλ values,
and reduced temporal decorrelation allow the detection of ground mo-
tions characterized by higher velocities.

The use of X-band images processed using the SqueeSAR approach
lead to a significant improvement in the PS/DS density. Considering
the loss of information (in terms of PS/DS density) after the merger of
ascending and the descending data sets, a high PS/DS density in the
original data is recommended. However, LSM is a fundamental tool in
landscapemanagement and can be used to evaluate the risks for people
and infrastructures threatened by landslides. Therefore, the need for a
very accurate LSM is of primary importance in urbanized areas where
PSI data exhibit their maximum density. Generally, PS/DS are used to
update the available landslide inventorymap (LIM). After the LIM is up-
dated, it can be used to produce a more reliable LSM. This approach is
often time consuming, especially in broad areas where each landslide
must be checked, added, enlarged ormodifiedbased on thePS/DS distri-
bution and velocity. To produce anaccurate LSMusing SqueeSAR™ data,
the describedmethodology is faster and highlights areaswhere clusters
ofmoving PS/DS suggest that new landslides should be added to the LIM
or that a boundary of a preexisting landslide requiresmodification. Both
the landslide susceptibility map and the ground deformation velocity
map can be used in different ways to forecast landslide occurrence in
a selected area. Combining themmay improve the reliability associated
with predicting these types of phenomena, particularly for slowmoving
landslides. The high standard deviation, which affects the detected
ground deformation velocity of the used data set, is due to the short
period of acquisition (1 year), and it should be reduced by increasing
the number of processed images. Although the PSI data set is a dynamic
data set, when compared to the parameters used for the LSM, it is still a
sort of picture of the ground deformation acquired in a specific time in-
terval that can change over time. To update the LSM using PSI data and
reduce the standard deviation of the velocity, we suggest that a set of
SAR images acquired over the previous two years is used or that the
PSI data set is continuously updated. The latter can be an expensive op-
tion, but the launch of the new European satellites (Sentinel-1) may
considerably reduce the cost.

6. Conclusion

In this paper, a new approach is presented to improve the accuracy
of landslide susceptibility maps using PSI data. The methodology aims
to reduce the number of false negatives (terrains affected by ground de-
formation but classified as stable). The importance of the reduction of
false negative is due to threats to people and infrastructure located in
areas affected by hillslope phenomena. These areas must be considered
in LSMs which can be used to plan remediation actions and urban
growth.

An LSM of Messina Province (Sicily, Italy) with a 100 by 100 m cell
resolution was produced using a Random Forests (RF) algorithm in
Matlab considering several static parameters. The accuracy of the
resultingmapwas evaluated using the ROC curve. Themethod produced
a fairly good AUC value (0.73), suggesting that the LSM accuracy van be
improved. An estimation of false negatives was performed considering
cells classified as stable and located inside landslide boundaries.

Two PSI X-band data sets (ascending and descending) acquired be-
tween 2011 and 2012 were merged after projecting of the PS/DS veloc-
ity along the steepest slope. The new ground deformation velocity map
was used to calculate themean ground deformation velocity of each cell
in the LSM.

A contingency matrix based on both the susceptibility classification
and the ground deformation velocity map was created. This matrix
was used to increase the susceptibility degrees of cells characterized
by a low susceptibility degree but high ground deformation velocity de-
tected by the PSI data.

The new LSM shows a decrease in the areas classified in the low to
null susceptibility class. In particular, the susceptibility degree increased
in 112.82 km2 of 1230 km2.
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The use of this procedure can be easily applied in different areas
where PSI data sets are available. This approach will help planning
and decision-making authorities produce reliable landslide susceptibil-
ity maps, especially in urbanized areas. Additionally, the approach can
also be used to detect areas that require updated landslide inventory
maps.
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