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KEYWORDS Abstract Objectives: To identify the predictive value on time to onset of heart
Heart; failure (HF) or cardiac death of clinical, radiographic, and echocardiographic vari-
Dog; ables, as well as cardiac biomarkers N-terminal pro brain natriuretic peptide (NT-
Valve; proBNP) and cardiac troponin | in dogs with preclinical myxomatous mitral valve dis-
Cardiac ultrasound; ease (MMVD).

NT-proBNP Animals: One hundred sixty-eight dogs with preclinical MMVD and left atrium to

aortic root ratio >1.6 (LA:Ao) and normalized left ventricular end-diastolic dia-
meter >1.7 were included.

Methods: Prospective, randomized, multicenter, single-blinded, placebo-con-
trolled study. Clinical, radiographic, echocardiographic variables and plasma cardi-
ac biomarkers concentrations were compared at different time points. Using
receiving operating curves analysis, best cutoff for selected variables was identified
and the risk to develop the study endpoint at six-month intervals was calculated.
Results: Left atrial to aortic root ratio >2.1 (hazard ratio [HR] 3.2, 95% confidence
interval [95% CI] 1.9—5.6), normalized left ventricular end-diastolic diameter > 1.9
(HR: 6.3; 95% Cl: 3.3—11.8), early transmitral peak velocity (E peak) > 1 m/sec (HR:
3.9; 95% Cl: 2.3—6.7), and NT-proBNP > 1500 pmol/L (HR: 5.7; 95% Cl: 3.3—9.5)
were associated with increased risk of HF or cardiac death. The best fit model to
predict the risk to reach the endpoint was represented by the plasma NT-proBNP
concentrations adjusted for LA:Ao and E peak.

Conclusions: Logistic and survival models including echocardiographic variables and
NT-proBNP can be used to identify dogs with preclinical MMVD at higher risk to de-
velop HF or cardiac death.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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List of abbreviations

95% Cl  confidence interval

DELAY DELay of Appearance of sYmptoms of
canine degenerative mitral valve
disease treated with spironolactone
and benazepril

E peak early transmitral peak velocity

HF heart Failure

HR hazard ratio

LA:Ao  left atrium to aortic root ratio

LVEDDn normalized left ventricular end dia-
stolic diameter

MMVD  mxomatous mitral valve disease

NT-proBNP N-terminal pro brain natriuretic
peptide
ROC receiver operating characteristic

Introduction

Dogs affected by mitral regurgitation caused by
preclinical myxomatous mitral valve disease
(MMVD) represent a heterogeneous group of
patients with different degree of cardiac remod-
eling and variable prognosis [1]. Several studies
have reported the value of clinical, radiographic,
and echocardiographic variables in identifying
MMVD dogs at higher risk to develop heart failure
(HF) or cardiac death [1—5]. Cardiac biomarkers,
such as N-terminal pro brain natriuretic peptide
(NT-proBNP) and cardiac troponin I, have also been
associated with disease severity and increased risk
of developing HF in dogs with MMVD [6—12].
However, there are only a few controlled studies
that have prospectively investigated the prog-
nostic values of clinical, radiographic, and echo-
cardiographic variables and cardiac biomarker
concentrations in identifying the risk for dogs
affected by preclinical MMVD to develop HF or
cardiac death [5]. The ‘DELay of Appearance of
sYmptoms of canine degenerative mitral valve
disease treated with spironolactone and benaze-
pril (DELAY) study’ was a prospective, multicenter,
single-blinded, randomized, placebo-controlled
study aimed to assess the efficacy of the com-
bined treatment on delaying onset of HF or cardiac
death in dogs with preclinical MMVD and car-
diomegaly [13]. Dogs enrolled in the DELAY study
had to be rechecked at established time points
after initial enrollment, and for this reason, this
population was ideal to assess the prognostic value
of clinical and diagnostic variables in identifying
dogs with higher risk to die of cardiac disease or to

progress into HF. The aim of this study was to
investigate the prognostic value of clinical, radio-
graphic, and echocardiographic variables, as well
as NT-proBNP and cardiac troponin | concen-
trations to identify the risk to the development of
HF or experience cardiac death at 6, 12, 18, 24, 30,
36, and 42 months after enrollment in this pop-
ulation of dogs with preclinical MMVD and
cardiomegaly.

Animals, material, and methods
Study design

The DELAY study was a prospective, multicenter,
single-blinded, randomized, placebo-controlled
study [13]. Complete and detailed description of
the study design is reported in the published article
[13]. Briefly, dogs with MMVD and left atrial to
aortic root ratio (LA:Ao) > 1.6 and normalized left
ventricular end diastolic diameter (LVEDDn) > 1.7
were included. Dogs were excluded if they had
cardiovascular disease other than MMVD, significant
concurrent disease, systemic or pulmonary hyper-
tension, atrial fibrillation, previous treatment with
cardiovascular drugs lasting more than 2 weeks or in
the 2 weeks before inclusion. Dogs with hemody-
namically insignificant tricuspid regurgitation were
eligible for enrollment in the study. Eight man-
datory visits were scheduled every 6 months from
day 0 to 42 months. Additional visits were allowed
for individual medical concerns. At each visit, dogs
underwent a complete clinical evaluation and
thoracic radiographs. In addition, a urine sample for
measurement of urinary aldosterone-creatinine
ratio and a blood sample were collected for
assessment of creatinine, NT-proBNP, and cardiac
troponin. An echocardiographic examination was
mandatory for visit 1, 3, 5, 7, and 8. However, the
investigators had the option to perform an addi-
tional examination at the other visits, and most
dogs included in the study had these additional
examinations performed. The population of this
study included animals that were enrolled in both
the treatment and placebo group of the DELAY
study, as there was no significant difference iden-
tified on the primary endpoint between groups.

Clinical evaluation

At inclusion, dogs’ characteristics (breed, age,
sex, body weight, and body condition score) were
recorded. Clinical history and physical findings
were documented at each visit.
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Thoracic radiographs

Thoracic radiographs were performed for assessing
cardiac size by the vertebral heart scale method
[14]. They were also taken, whenever possible, for
confirming the presence of pulmonary edema at the
time dogs presented onset of clinical signs. Radio-
graphic evidence of cardiogenic pulmonary edema
was defined by the presence of pulmonary venous
congestion and unstructured interstitial pattern or
alveolar pattern that could not be explained by
other medical conditions (e.g. pneumonia).

Echocardiography

Echocardiographic examinations were performed
on unsedated dogs as per the established standard
for veterinary cardiology [15]. All measurements
were taken from at least three consecutive cardiac
cycles, and the mean was recorded. The following
measurements were taken from the right para-
sternal short-axis view: LA:Ao obtained in two-
dimensional view as described by Hanson et al.
2002 [16], and left ventricular diameter measured
in M-mode from the short axis with the leading
edge to inner edge method at the level of the tips
of papillary muscles. Left ventricular normalized
dimensions were calculated as described in the
study by Cornell et al. [17]. Early (E peak) and late
A transmitral inflow velocities were assessed by
spectral pulsed-wave Doppler from the left four-
chamber apical view with the Doppler gate posi-
tioned at the tip of the mitral valve leaflets.

Endpoint

The endpoint was the time to cardiac death or first
occurrence of HF defined by the presence of either
dyspnea and/or tachypnea (>36 breaths/min at
rest) that could not be explained by another dis-
ease based on clinical judgment by the inves-
tigator [18]. Radiographs were performed at the
last visit if the dog was presented at the inves-
tigator clinic and if its health condition allowed it.
They were used as a basis to either confirm pul-
monary edema or to exclude any other reason
associated with the observed clinical signs. To
confirm the first onset of HF, radiographs were first
evaluated by the investigator, and in case of
detection of pulmonary edema, this had to be
confirmed by the lead investigator (M.B.) within 7
days. In case of discrepancy between the two
evaluators (investigator and M.B.), a third opinion
from a certified boarded radiologist, blinded to
dog clinical status, had to be requested.

In case where it was impossible to obtain
radiographs because of critical health conditions
or refusal by the owner to perform this exami-
nation, or if the dog was not directly seen by
the investigator because of a sudden clinical
deterioration (death at home, visit to their

general practitioner), diagnosis of HF was
determined by the investigator based on
observed clinical signs and/or information

reported by the owner or by other veterinarians.
Details about validation of the primary endpoint
were previously published [13].

Statistical methods

The statistical analyses were composed of four
main components carried out in order, with one
building on the previous model. These are briefly
described as (1) ordinary Cox model, (2) extended
longitudinal Cox model with interval censoring, (3)
receiver operating characteristic (ROC) curve
analysis to define categorical variable cutoffs
based on continuous variables used in the longi-
tudinal Cox model, and (4) the longitudinal Cox
model retaining the full follow-up survival time in
the study for all time intervals, but right censoring
events at 6-month intervals, providing event-free
survival analysis after a specified time period.
Analyses were performed with statistical softwar-
e®, where a p < 0.05 was deemed significant.

Conventional Cox model

The conventional Cox model time-to-event analy-
ses were carried out exclusively in univariable by
way of Kaplan—Meier product limit estimates and
Cox semiparametric regression models used to
generate unadjusted survival curves and hazard
ratios (HRs). In this approach, the date of study
entry was the time of the enrollment visit on a
single visit as previously published [13], and data
obtained at this time were evaluated in what is
referred to as baseline analyses. The extended
longitudinal Cox model was built on the ordinary
Cox model. While continuing to use the existing
endpoints from the ordinary Cox model, the
approach was extended to control for individual
change of variables over time by the way of
interval censoring. The surveillance time (survival)
was the time between the entrance of the study to
the composite endpoint (HF or cardiac death) or
censoring.

ab pl AN procedure in SAS, SAS Institute, Cary NC, 2016.
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Extended Cox model

Because some patients were examined at times
between scheduled clinic visits, neither the con-
ventional Cox model nor a series of logistic
regressions could address varying intervals; hence,
an extended Cox model with interval censoring
was used. This model allows for the most up-to-
date variable value, while still using instantaneous
risk of the same composite endpoint associated
with the Cox model approach. For example, in
contrast to the fixed variable (e.g. the variable NT-
proBNP), in the baseline analysis, the value of the
variable may change over the course of the study
at different visits which may not be measured at
consistent times (e.g. repeated measurements of
the variable NT-proBNP). Specifically, although in
most cases ‘visit 2’ may be at 12 months exactly
for most patients, there could be some deviation
or missed visits. The extended Cox model (interval
censoring) was used to accommodate possible
deviation and congruency of visit number to time.
To address this nuance of time-varying covariates,
two models were constructed, one evaluating
hazards of baseline values (baseline HR) based on a
single visit (previously described) and the currently
described longitudinal approach assessing the HR
with change in time and measured values of
respective variables (longitudinal HR) for both
univariable and multivariable in terms of selec-
tion, as well as goodness of fit, as described by
Eriksson [19]. The multiple visits with refreshed or
updated data are hereafter referred to as the
longitudinal analyses, where the covariates are the
same throughout the longitudinal analysis, but the
HR takes into account the changes in serially
measured covariates and ultimately analyzes the
most up-to-date value. In summary, the baseline
analysis only considers the initial baseline visit for
survival time, whereas the longitudinal considers
multiple visits and associates the survival time
with the respective covariate value. Notably, the
baseline analysis is only measured and presented
in univariable, whereas the longitudinal analysis is
presented as both univariable and multivariable.
Covariates found significant in longitudinal uni-
variable were used in conjunction with treatment
(spironolactone and benazepril) and other candi-
date variables for multivariable models. The mul-
tivariable models were analyzed using main effect
and interaction terms preceded by an iterative
enter method of selection to avoid over-
specification of the model which may be a risk in
certain stepwise approaches when observations
and events are limited. Models being evaluated
were subsequently compared with each other by
Chi-squared goodness of fit 1 degree of freedom

based on the Akaike information criterion when a
variable was added or removed from the model
returning the probability of difference between
the models as determined from the central Chi-
squared distribution. The Chi-square probability
function P(x, df) suggests that an observation
from a Chi-square distribution, with degrees of
freedom df, is less than or equal to x. In our case, x
is defined as a numeric constant, variable, or
expression that specifies the value of a random
variable; df is a numeric constant, which is defined
as the Akaike information criterion difference
between the model variable while df defines the
degrees of freedom parameter which in this case is
1 as there are only two models (n-1) being
compared.

Significant covariates from the multivariable
Cox model were used to generate adjusted survival
curves presented in concert with unadjusted sur-
vival curves for presentation. Specifically, regard-
ing adjusted survival curves, the longitudinal
population mean value of the significant covariate
was imputed (held constant) over both strata of
the respective survival curve (e.g. stratified NT-
proBNP of >1500 pmol/L vs. <1500 pmol/L incor-
porated population mean LA:Ao and E peak
velocity, both statistically significant in multi-
variable, to the Cox model generating the adjusted
survival probability).

Multicollinearity was assessed by variance
inflation factor analysis and deemed acceptable.
Covariates for the multivariable model were pre-
sented as both continuous and categorical. Tests
for proportionality were carried out by visual
inspection of Schoenfeld residuals, negative log
estimated survival distribution function, and for-
mal hypothesis testing of covariate by log (time)
interactions followed by Wald Chi-squared sta-
tistics and deemed proportional. Statistical dif-
ferences between groups for time to event were
analyzed by survival time analyses. Time to event
represented the time from the first day of enroll-
ment in the study to the end date. Cases lost to
follow-up or remaining alive were censored. The
effect of time-to-event and change in HR with a
given variable was modeled using the spline
approach as previously described.®¢

Receiver operating characteristic

Continuous demographic and echocardiographic
variables were categorized into two discrete
(dichotomized) values by the way of a generalized

2 Allignol A, Latouche A. CRAN task view: survival analysis,
http://cran.r-project.org/web/views/Survival.html; 2012.).
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linear logistic model using ROC curve analysis and
by inspection of HR change in the value of a given
variable exhibited by the spline approach. The
ROC curve analysis was based on the interval-
censored data set used by the extended Cox model
where the last known value before congestive HF
or right censoring was used as the value of the
given variable analyzed for the ROC curve calcu-
lation. The optimal cut point was assigned by a
Youden statistic as previously described [19].
Specifically, a variable such as NT-proBNP, which
may have demonstrated a range of 200—1700
pmol/L, may have been found to have an optimal
cut point associated with congestive HF calculated
to be 1500 pmol/L. The same ROC approach was
applied to remaining echocardiographic and
radiographic variables. Dichotomized covariates
defined by ROC analysis were subject to further
analysis in univariable and multivariable in con-
junction with other categorized and continuous
variables.

The longitudinal Cox model with right censoring
The longitudinal analysis with updated covariate
values was explored further by retaining each
patient’s time in the study in place but investigat-
ing a modified calculation of survivorship at 6-
month intervals. This univariable analysis was right
censored for both time and composite endpoint
events at months 6, 12, 18, 24, 30, 36, and 42.
Briefly, the full population is analyzed, but frozen
in ‘snapshots’ of 6-month intervals building on each
other. Specifically, a given variable was analyzed
(e.g. LA:Ao) with survival time followed for the
duration of the study. Seven right censored evalu-
ation periods were constructed (months 6, 12, 18,
24, 30, 36, and 42), whereas subsequent Cox mod-
els independent of each other were carried out
based on each window, for each variables eval-
uated, by right censoring events at 6-month inter-
vals to determine the effect of full follow-up
coupled with serially censored events. For exam-
ple, in the 6-month censored analysis, if a patient
were to have survival time and corresponding HF
event date of 6 months and 1 day, this event would
be censored for the 6-month analysis because that
event occurs after 6 months and the survival time
would have a maximum time of 6 months. In this 6-
month example, while all patients’ comprehensive
time in the study is considered, only events occur-
ring in this 6-month window are considered. In
contrast, using the 12-month window analysis, this
same patient’s full follow-up and event of 6 months
and 1 day would be recorded for the 12-month
window. Extending further with the example for
the purpose of completeness, this patient would

not be included for the 18, 30, 36, 42, and full
follow-up because the patient would be censored
with event at 6 months and 1 day. In summary,
seven different censored windows (months 6, 12,
18, 24, 30, 36, and 42) were constructed with the
respective set limit of survival time but censoring
potential events if the event occurred after that
given period. Pointedly, the 42-month analysis
would be nearly the same as the full follow-up of
the study because the study was only three years
(48 months) long. This approach is hereafter
referred to as the longitudinal right censored
analysis. The ROC curve dichotomized variables
which remained statistically significant in the lon-
gitudinal multivariable models were further ana-
lyzed for survivorship at the specified 6-month
intervals in this longitudinal right censored analysis.

Results

One hundred and sixty-eight dogs constitute the
per protocol population and were used for analysis
in this study. The median age of patients enrolled
per investigator was 7.5 years (range 5—13 years).
Eighteen different breeds were included, with
mixed-breeds being the most represented (n = 72;
40%), followed by Cavalier King Charles spaniels
(n = 34; 19%), poodles (n = 12; 7%), dachshunds
(n = 12; 7%), Chihuahuas (n = 7; 4%), Jack Russell
terriers (n = 5; 3%), and bichon frise (n = 5; 3%).
No differences were observed between the two
groups at inclusion.

The median time in the study was 561 days (95%
confidence interval [95% ClI]: 142—977 days), and
75 dogs (44.9%) reached the composite endpoint.
Forty-seven dogs developed HF, and 28 died of a
cardiac cause. The median survival time based on
the Kaplan—Meier product limit estimate consid-
ering censored events, in the study of dogs
reaching the composite endpoint, was 1045 days
(95% Cl: 766 days—not available). Ninety-three
dogs were censored from the analysis of end-
point, including 36 dogs that were still asympto-
matic at the end of the study.

In the univariable Cox proportional hazard analysis
that included the baseline (single visit) values of
covariates, four variables were associated with an
increased hazard to reach the composite endpoint at
the baseline (Fig. 1). Covariates found significant
were used in conjunction with treatment (spi-
ronolactone and benazepril) for multivariable mod-
els. However, treatment remained non-significant. In
the univariable longitudinal Cox proportional analy-
sis, seven variables, using the most up-to-date
covariate value associated with a given time interval,
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Age > 11 years (P = 0.850) —¢
Weight > 9.4 kg (P = 0.247) =
HR > 130 bpm (P = 0.069)
VHS > 11.3 (P = 0.006)

LA: Ao > 2.1 (P = 0.005)
LVEDDn > 1.9 (P <0.0001) [ o

LVESDN > 1.09 (P = 0.817)|  (=gh=if

E peak > 1 m/sec (P = 0.094)
NT-proBNP > 1.500 (P = 0.022)
cTnl > 0.035 ng/mL (P = 0.096)
UA > 658 pg/mL (P = 0.077)

U A:C > 0.5 ug/g (P = 0.096)
Creatinine > 1.93 (P = 0.815)

0o 1
Fig. 1

5 10

Hazard ratios and 95% confidence intervals obtained from univariate Cox proportional hazard analysis at the

baseline. BPM: beats per minute; cTnl: cardiac troponin |; E peak: early transmitral peak velocity; HR: heart rate;
LA:Ao: left atrium to aortic root ratio; LVEDDn: normalized left ventricle end-diastolic diameter; LVESDn: normalized
left ventricular end-systolic diameter; NT-proBNP: N-terminal pro brain natriuretic peptide; SB treatment: spi-
ronolactone and benazepril treatment; U A: urine aldosterone; U A:C: urinary aldosterone-creatinine ratio; VHS:

vertebral heart score.

were associated with an increased risk for reaching
one of the composite endpoints (Table 1, Fig. 2). The
ROC curve analysis demonstrated optimal Youden
statistic cut points of LA:Ao > 2.1, LVEDDn > 1.9, E
peak > 1 m/sec, and NT-proBNP > 1.500 pmol/L.
Based on the longitudinal data univariable analysis,
the risk of reaching the composite endpoint based
solely on NT-proBNP + 1500 pmol/L (parameter
estimate: 1.717, HR: 5.57, 95% Cl: 3.3-9.5,
p < 0.001) was greater than the risk of reaching the
composite endpoint for NT-proBNP + 1500 pmol/L
(parameter estimate: 0.999, HR: 2.71, 95% CI:
1.45—5.1, p = 0.0018) when in the presence of con-
tinuous variables LA:Ao*10 (parameter estimate:

Table 1 Probability to reach the primary endpoint
in Cox longitudinal proportional univariate analysis.

95% CI

Hazard ratio p value

HR > 130 bpm 2.289 1.43—3.66 <0.001
VHS > 11.3 2.566 1.57—4.19 <0.001
LA:Ao > 2.1 3.253 1.88—5.64 <0.001
LVEDDn > 1.9 6.272  3.34-11.76 <0.001
E peak > 1 m/sec 3.909 2.27—6.73 <0.001
NT-proBNP > 5.567 3.26—9.51 <0.001
1.500 (pmol/L)
cTnl > 0.35 (ng/mL) 3.371 1.92-5.91 <0.001

bpm: beats per minute; cTnl: cardiac troponin I; E peak:
early transmitral peak velocity; HR: heart rate; LA:Ao: left
atrium to aortic root ratio; LVEDDn: normalized left ven-
tricle end-diastolic diameter; NT-proBNP: N-terminal pro
brain natriuretic peptide; VHS: vertebral heart score.

0.105, HR: 1.1, 95% CI: 1.01—-1.2, p = 0.02) and E
peak*10 (parameter estimate: 0.168, HR: 1.18, 95%
Cl: 1.06—1.3, p = 0.0026). On the aforementioned
parameter estimates, the following equation was
used to generate the adjusted survival curves: NT-
proBNP + 1500 pmol/L (parameter estimate:
0.999) + LA:A0*10 * (parameter estimate: 0.105) + E
peak*10 (parameter estimate: 0.168). Specifically,
the adjusted survival curves were generated based
on the significant variables in multivariable in the
presence of NT-proBNP £ 1500 pmol/L stratifying on
NT-proBNP + 1500 pmol/L coupled with imputing or
holding constant the mean longitudinal population
value for LA:Ao and E peak. For purposes of mean-
ingful clinical parameterization, both LA:Ao and E
peak were multiplied by ten to present a 0.1-unit
increase. Specifically, the actual longitudinal pop-
ulation means of LA:Ao and E peak were 1.91 and
1.01, respectively, but they were parameterized on
values of 19.1 and 10.1, to allow for a meaningful
clinical 1-unit increase for the regression when
applying the model in a clinical setting.

The adjusted model suggests that the risk of
reaching the endpoint for dogs with [NT-proBNP]
pmol/L > 1500 pmol/L is 2.71 times higher than
the risk of dogs with the lower NT-proBNP. In the
presence of the dichotomized NT-proBNP pmol/
L > 1500 pmol/L variable, the risk of achieving
the combined endpoint increases by 11% per 0.1-
unit increase of LA:Ao and 18.4% per 0.1-unit
increase of E peak. The mentioned unadjusted
and adjusted survival curves based on this
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Age > 11 years (P = 0.806) I-L—I

Weight > 9.4 kg (P = 0.177) H——
HR > 130 bpm (P = 0.001) —e—
VHS > 11.3 (P <0.0001) —
LA: Ao > 2.1 (P <0.0001) ; ® {
LVEDDn > 1.9 (P <0.0001) [} @ {
LVESDn > 1.09 (P = 0.271) H-o—
E peak > 1 m/sec (P <0.0001) ; < i
NT-proBNP > 1.500 (P <0.0001) [, @ i
cTnl > 0.035 ng/mL (P <0.0001) [ < ]
UA > 658 pg/mL (P = 0.909)] i}
UA:C>05pglg (P=0.629)]  |ref@my
Creatinine > 1.93 (P = 0.197) H—e—9
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Fig. 2 Hazard ratios and 95% confidence intervals obtained from longitudinal univariate Cox proportional hazard
analysis. BPM: beats per minute; cTnl: cardiac troponin I; E peak: early transmitral peak velocity; HR: heart rate;
LA:Ao: left atrium to aortic root ratio; LVEDDn: normalized left ventricle end-diastolic diameter; LVESDn: normalized
left ventricular end-systolic diameter; NT-proBNP: N-terminal pro brain natriuretic peptide; SB treatment: spi-
ronolactone and benazepril treatment; U A: urine aldosterone; U A:C: urinary aldosterone-creatinine ratio; VHS:
vertebral heart score.

longitudinal analysis are presented in Fig. 3. In  was not able to be estimated. However, the 25th
observing the unadjusted survival in Fig. 3, percentile can be found in Fig. 3 to be 10 and 36
median survival of NT-proBNP > 1500 pmol/L was months. In observing the effect of the population
16 months, whereas NT-proBNP < 1.500 pmol/L  mean value being imputed for LA:Ao and E peak

1.0

0.8
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Survivor Function Estimate
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NT-proBNP < 1.500 Adjusted — — — - NT-proBNP >= 1.500 Adjusted
s N T-proBNP < 1.500 Unadjusted == = == + NT-proBNP >= 1.500 Unadjusted

Fig. 3 Unadjusted and adjusted Kaplan—Meier survival curves as per N-terminal pro brain natriuretic peptide
plasma concentration (NT-proBNP). The survivor function of NT-proBNP in univariate (NT-proBNP + 1500 pmol/L
unadjusted) by definition does not include the effect of LA/Ao and peak transmitral E wave velocity. By adjusting for
these values (NT-proBNP + 1500 pmol/L adjusted), a truer survival fit is achieved.
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for the adjusted model survival curves, the
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[7] reported that NT-proBNP plasma
concentrations < 965 pmol/L 7—30 days after ini-
tiating treatment of HF were associated with a
higher survival time in a population of dogs with
clinical MMVD. Furthermore, Mattin et al. (2019)
[20] reported that plasma NT-proBNP > 1.800
pmol/L was strongly associated with the higher risk
for clinical progression in dogs affected by pre-
clinical MMVD. In this study, NT-proBNP plasma
concentrations > 1.500 pmol/L represented the
best predictor for reaching the predefined com-
posite endpoint. Reynolds et al. (2012) [11]
reported that the same cutoff for NT-proBNP was
an independent predictor of onset of HF in a
population of preclinical MMVD with an
LA:Ao > 1.6. In the same study, they also reported
that, similar to our study, the best predictive
model included the NT-proBNP concentration and
the left atrial dimension.

In this study, in addition to NT-proBNP concen-
tration, left atrial and ventricular dimensions and
E peak of transmitral flow were identified as useful
independent predictors for reaching the endpoint.
The prognostic value of echocardiographic varia-
bles in preclinical MMVD has been previously
reported in several studies. Left atrial enlarge-
ment assessed by different methods, or LA:Ao
increment by 0.1 unit, represented the most
common identified echocardiographic predictor
for the progression of the preclinical disease
[1,4,13,21]. An LVEDDn > 1.7 and the rate of
change of left ventricular end-diastolic dimensions
were reported to be associated with an increased
hazard for dogs with preclinical MMVD [3,4,13,21].
In our study, the optimal cutoff values to identify
dogs with an increased risk for progression of the
disease were 2.1 for LA:Ao and 1.9 for LVEDDn.
These cutoff values are higher than those pre-
viously reported [1,3,4,6]. Left atrial to left aortic
ratio values > 1.6 are generally accepted for
identifying dogs with left atrial enlargement [22].
However, a recent study has reported that normal
dogs may present an LA:Ao up to 1.9 [23]. Nor-
malized end-diastolic left ventricular diameter
>1.7 has been found to be a predictor of outcomes
[6], and this cutoff is used to identify dogs with
left ventricular enlargement [17,24]. However, it
should be noted that LVEDDn = 1.73 represents the
upper 95% percentile for normal dogs in the study
from Cornell et al. (2004) [17], whereas the upper
97.5% for normal dogs is 1.85. Therefore, the
cutoff values reported in this present study iden-
tify dogs with significant cardiac enlargement and
therefore that may have a higher risk of develop-
ing HF or die for their cardiac disease.

In the present study, transmitral inflow E peak
velocity higher than 1 m/sec was an independent
predictor for progression to a primary endpoint.
This cutoff value was higher than normal values
observed in normal dogs of similar age [25]. A
possible explanation for this finding is the associa-
tion between increased E peak velocity and
increased left atrial pressure [26]. However, in
patients with volume overload and normal systolic
function, such as dogs with preclinical MMVD,
increased E peak velocity may also reflect left
ventricular volume overload and not necessarily a
sole increased atrial pressure [27]. Regardless of
the cause of its increased value, E peak velocity can
still be considered as an indirect indicator of the
severity of the disease, and it has been reported
being independently associated with an increased
hazard in both preclinical and clinical dogs [1,3,28].

In this study, the best predictor model for iden-
tifying dogs with increased risk of reaching the
composite endpoint was a composite of NT-proBNP
concentrations, LA:Ao ratio, and E peak velocity.
Normalized left ventricular end-diastolic diameter
was not included in this statistical model because
of its strong correlation to the left atrial enlarge-
ment. However, it is of interest to notice that
LVEDDn was a variable associated with an increased
hazard at 6 months after inclusion in the study.

All echocardiographic variables that were found
to be associated with clinical outcomes and the
NT-proBNP showed an increased hazard over time.
This result is not unexpected considering the long
duration of the preclinical phase of MMVD in dogs
[1,13,21]. This finding suggests that monitoring the
progression of the disease by echocardiographic
variables and NT-proBNP may represent an effec-
tive way to make appropriate therapeutic deci-
sions and to assess the risk for a preclinical dog to
develop HF or to die for the underlying cardiac
disease.

Limitations

The major limitation for this study is represented
by the fact that the onset of HF was not con-
firmed in all dogs by documenting the presence of
cardiogenic pulmonary edema on thoracic radio-
graphs. However, although thoracic radiography
is often considered the gold standard for diag-
nosing left-sided congestive HF, interpretation is
mostly subjective. Indeed, it is now generally
accepted that combination of history and clinical
assessment in association with response to
treatment represents an acceptable way to
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identify onset of HF in dogs with preclinical MMVD
[20,22]. Another limitation of this study is rep-
resented by the presence of a treatment and a
placebo group, which were combined and ana-
lyzed as a single population. Because the treat-
ment in this study had no effect on primary
endpoints, it is unlikely that combining the two
groups into a single population affected the
results of this study.

Conclusions

This study reports reliable echocardiographic and
plasma NT-proBNP cutoff values that can be used
to identify dogs with preclinical MMVD that are at
higher risk of developing HF or experiencing car-
diac death. Furthermore, the results of this study
may also be useful for designing future studies to
evaluate the effect of various interventions aimed
at delaying the progression of MMVD.
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