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Abstract: One of the most rapidly advancing areas of deep learning research aims at creating models
that learn to disentangle the latent factors of variation from a data distribution. However, modeling
joint probability mass functions is usually prohibitive, which motivates the use of conditional models
assuming that some information is given as input. In the domain of numerical cognition, deep
learning architectures have successfully demonstrated that approximate numerosity representations
can emerge in multi-layer networks that build latent representations of a set of images with a varying
number of items. However, existing models have focused on tasks requiring to conditionally estimate
numerosity information from a given image. Here, we focus on a set of much more challenging tasks,
which require to conditionally generate synthetic images containing a given number of items. We
show that attention-based architectures operating at the pixel level can learn to produce well-formed
images approximately containing a specific number of items, even when the target numerosity was
not present in the training distribution.

Keywords: deep neural networks; attention mechanisms; density estimation; numerosity perception;
cognitive modeling

1. Introduction

In recent years, there has been a growing interest in the challenging problem of
unsupervised representation learning [1]. Compared to the first wave of supervised deep
learning success [2], unsupervised learning has great potential to further improve the
capability of artificial intelligence systems, since it would allow building high-level, flexible
representations without the need of explicit human supervision. Unsupervised deep
learning models are also plausible from a cognitive [3] and biological [4] perspective,
because they suggest how the brain could extract multiple levels of representations from
the sensory signal by learning a hierarchical generative model of the environment [5–8].

Early approaches based on deep belief networks [9] already established that unsuper-
vised representation learning leads to the discovery of high-level visual features, such as
object parts [10] or written shapes [11,12]. However, the full potential of deep generative
models was revealed by the introduction of variational autoencoders (VAE) [13] and gener-
ative adversarial networks (GAN) [14], which can discover and factorize extremely abstract
attributes from the data [15,16]. These architectures can be further extended to promote
the emergence of even more disentangled representations, such as in beta-VAE [17] and
InfoGAN [18], or can exploit attention mechanisms to produce meaningful decompositions
of complex visual scenes [19].

An interesting case study to investigate the representational capability of deep learn-
ing models is that of numerosity perception, which consists of rapidly estimating the number
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of objects in a visual scene without resorting to sequential counting procedures [20]. Com-
pared to other high-level visual features, numerosity information is particularly challenging
to extract because it refers to a global property of the visual scene, which co-varies with
many other non-numerical visual features such as cumulative area, density and item
size [21]. The emergence of numerosity representations has been successfully simulated
using deep belief networks [22–24], which can approximately estimate the number of items
in a given image (matching human-level performance) and partially disentangle it from
non-numerical magnitudes [25]. However, learning fully disentangled representations of
numerosity seems to be still out of reach even for state-of-the-art generative models, such
as the InfoGAN [26].

In this paper, we investigate whether the deployment of self-attention mechanisms al-
lows more precisely encoding numerosity information as a disentangled factor of variation.
Attention mechanisms [27] were first introduced in the context of machine translation
to overcome the limitations of sequence-to-sequence architectures [28], which aimed at
compressing the information contained in temporal sequences into fixed-length latent
vectors. Shortly after, a novel architecture based solely on attention called Transformer [29]
achieved new heights by completely dropping recurrence and convolutions. In analogy
with the dynamics of associative memories [30], the power of this approach lies in the
possibility of using a global attention mechanism to precisely and adaptively weight the
contribution of each input element during processing. Transformers are starting to also be
applied outside the language domain, with notable success in challenging computer vision
tasks [31–33].

These promising results motivated the present work, whose main goal is to demon-
strate that attention mechanisms can be successfully exploited to learn disentangled rep-
resentations of numerosity, which can be used to generate novel synthetic images ap-
proximately containing a given number of items. Inspired by recent approaches that
evaluated the capability of deep generative models to create novel attributes and their
combinations [34], the Transformer was probed in different generative scenarios requiring
to produce specific numerosities that were never encountered during training. The internal
structure of the representational code was also analyzed, in order to investigate whether
numerosity information could be mapped into a lower dimensional space that preserves
the semantics of cardinal numbers [35].

2. Methods
2.1. Problem Formulation

Let D = {(x1, n1), . . . , (xm, nm) s.t. (x, n) ∼ p(x, n), n ∈ N} be a training dataset
consisting of images paired with their respective numerosity (i.e., the number of items
contained in each image). The generic (x, n) tuple is sampled i.i.d. from the p(x, n) joint
probability mass function (PMF), with N ⊂ N. The goal is to model the p(x|n) conditional
PMF, exploiting a density estimation algorithm which relies solely on global attention
applied to the raw input images. Modeling such density by disentangling numerosity from
other factors of variation should ideally allow generating images with a controlled number
of objects, which could be specified by manipulating the initial state of the generative
process (although the generative model does not receive explicit knowledge about cardinal
numbers during training, the initial state of the generative process is the same for all
training images featuring the same numerosity, as explained in Section 2.2). Crucially, the
generative model might even learn to produce out-of-distribution samples belonging to
areas of the p(x, n) support that are not represented in D, that is, images containing a
number of objects that was never experienced during training.

Practically, one could focus on an equivalent representation of the target density, which
exploits the chain rule to allow the density estimation algorithm to work autoregressively:

p(x|n) =
r

∏
i=1

p(xi|x1, . . . , xi−1, n); (1)
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where x = (x1, . . . , xr) represents a flattened image x made by r pixels. Let q(x|n, θ?) be
the approximated conditional PMF produced by the density estimation algorithm, with
θ? denoting the optimal model parameters; it originates from the minimization of the
following negative log-likelihood:

L(θ) = E(x,n)∼D
[
− log q(x|n, θ)

]
(2)

= E(x,n)∼D

[
− log

r

∏
i=1

q(xi|x1, . . . , xi−1, n, θ)

]
(3)

= E(x,n)∼D

[
−

r

∑
i=1

log q(xi|x1, . . . , xi−1, n, θ)

]
. (4)

Step (4) suggests that the Transformer can be straightforwardly trained by computing the
CrossEntropyLoss criterion on the model output logits exploiting PyTorch [36].

2.2. Model Architecture

The model investigated in this work is an encoder-only Transformer capable of dealing
with data characterized by spatial relationships (e.g., images); its backbone, indeed, is
built from the self-attention layers devised in [29]. Overall, the following mapping is
implemented: (x, n) 7→ P ∈ Rq×p, where x = (x1, . . . , xq) denotes the categorical input
intensities, q ≤ r and pT

i (i.e., the ith row of P) represents the conditional PMF associated
to xi (the density support, of cardinality p, coincides with the set of input intensities).

Input frames are not directly fed into the Transformer encoder: pixel intensities are
first scanned following the raster order, and then transformed into learnable embeddings
to which the position information is added. Being the positional encodings also learned,
it is important to highlight that the model is invariant with respect to the order in which
inputs are supplied; however, once the order is fixed, it must be maintained. During the last
processing stage, the encoder output goes through a linear layer. Hence, the conditional
probability mass functions (PMFs) are computed by applying a softmax function to the
produced logits.

The deployed encoder only accepts sequences of real-valued d-dimensional vectors.
As a consequence, the supplied dataset entries undergo careful processing. Firstly, the
(x1, . . . , xq−1) intensities are mapped into q− 1 embeddings (pixel xq is never consumed
by autoregression), X ∈ R(q−1)×d. Then, the encoder input is computed as:

H0 =
[
s, XT]T

+ E; (5)

where s ∈ Rd encodes the equivalence class to which the considered image belongs (i.e.,
the numerosity n) while E ∈ Rq×d stores information about the pixel positions. Borrowing
the machine translation nomenclature, we call s the Start of String (SoS). Input embeddings,
SoSs and positional encodings are obtained in the same way: the discrete starting values
(i.e., intensities, numerosities and positions) trivially become indexes capable of selecting
the corresponding rows in one of the W X ∈ Rp×d, W s ∈ R|N |×d and W E ∈ Rr×d matrices,
learned through backpropagation [31–33]. We emphasize that the learned embeddings
minimize the introduction of explicit inductive biases: the untrained model, indeed, is
completely unaware of the distances between gray levels, the ordering on N and the
correlations of pixels. As a side effect, W E constrains the input image resolution.

The encoder consists of 2L properly stacked multi-head scaled dot-product attention
(mha(•)) and point-wise fully connected (fc(•)) sub-layers. Residual connections and layer
normalizations (norm(•)) complete the architecture. Resuming from (5),

Al = norm(H l−1 + mha(H l−1)) (6)

H l = norm(Al + fc(Al)) (7)
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describe the encoder pipeline, with the l ∈ [1, L] subscript denoting the considered layer.
The detailed implementations of mha(•), fc(•) and norm(•) can be found in [29]. Fi-
nally, the linear(•) and softmax(•) functions are assembled to produce the target condi-
tional densities:

P = softmax(linear(HL)). (8)

The attention graphs [37] shown in Figure 1 help us in explaining how the encoder
autoregression is achieved. Directed edges identify the allowed attention flows; the missing
ones (with respect to the respective fully connected, bipartite sub-graphs) are masked to
prevent queries from attending to illegal positions. Solid edges denote the active attention
flows involved in the generation of the considered gray level. The generative loop starts as
in the left graph, where the represented forward pass results in the sampling of the first
intensity, x̃1. In the middle and right graphs, the gray level obtained during the previous
pass is appended to the input sequence, and the process is repeated. Further details about
the model architecture and training hyperparameters are reported in Appendix A.

Figure 1. Example attention graphs (L = 2, r = 3) describing the spontaneous generation (see
Section 2.4) of a novel image. Teal, pink and orange nodes represent the input, hidden and output
positions, respectively. For each query node, the outgoing connections indicate which positions can
be adaptively weighted.

2.3. Datasets

The Transformer was trained on two different datasets containing images of size
32× 32 pixels with a varying number of objects (white dots) placed on a black background.
Numerosities were uniformly sampled from the set {1, . . . , 8}. Each dataset was split into
training, validation and test subsets containing, respectively, 16,000, 3200 and 3200 images.
We verified that the size of the training set was properly calibrated by plotting the validation
loss as a function of the number of training patterns (see Figure A2).

The first dataset, which we call Uniform Dots, contained images featuring objects of
uniform size (see samples in the top row of Figure 2). In this dataset, the numerosity
information is perfectly correlated with the total number of active pixels, which does
not allow assessing to what extent the Transformer can disentangle numerosity from
cumulative area. We thus also introduced a second dataset, which we call Non-Uniform Dots,
containing images featuring objects of different size and constant (on average) cumulative
area (see samples in bottom row of Figure 2). Let Adot ∼ N(µdot, σ2

dot) be the random
variable quantifying the individual area covered by a dot. The total area covered in a frame
characterized by n dots can be expressed as:

A f rame =
n

∑
i=1

Adot (9)

= nAdot (10)

∼ N(nµdot, n2σ2
dot). (11)
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Setting µdot =
µ f rame

n implies that A f rame ∼ N(µ f rame, n2σ2
dot), thus making the expected

cumulative area E[A f rame] = µ f rame independent from n (in our case, these parameters
were set to µ f rame = 150 and σdot = 8).

Figure 2. Sample images from the two datasets considered. Stimuli with increasing numerosity (i.e.,
N = {1, . . . , 8}) are progressively shown from left to right. The top row contains samples from
the Uniform Dots dataset, where the rendered dots have the same radius. The bottom row contains
samples from the Non-Uniform Dots, where the area of each dot is sampled from N(µ f rame/n, σ2

dot).

2.4. Generative Tasks

To investigate the emergence of numerosity representations, we designed a variety
of generation tasks. The objective of these experiments was twofold: on the one hand,
they allowed establishing whether the learned representations could be used to produce
synthetic images with controlled properties (i.e., featuring a specific numerosity); on the
other hand, they allowed studying the internal structure of the Transformer’s latent space,
in order to investigate whether it could embed the semantics of cardinal numbers.

As an initial assessment, the Transformer was evaluated in a straightforward condi-
tional generation task: given the ground-truth (x, n) tuple, the goal is to approximate x
through the modeled q(x|n, θ?), incrementally building the image x̃ according to:

x̃i = arg max
x

q(x|x1, . . . , xi−1, n, θ?), ∀i ∈ [1, r]. (12)

In other words, each pixel is determined by those preceding it in the fixed scan order, and
the current ground-truth pixel values are provided as input at each time step. This task
was only used to monitor learning progress, since it is well-known that one-step-ahead
prediction is much easier than autoregressive self-generation [38].

In the more challenging spontaneous generation tasks, the Transformer was required to
build an entire novel image x̃ from scratch according to:

x̃i ∼ q(x|x̃1, . . . , x̃i−1, n, θ?), ∀i ∈ [1, r]. (13)

Unlike (12), each pixel intensity is now conditioned on the previously sampled ones;
Equation (13), therefore, requires r forward passes for each image. It should be noted that,
during the first generative step, the encoder input sequence contains only the SoS. Carrying
on, the sequence gradually incorporates the new intensity embeddings: sT , [s, XT

1 ]
T , . . . ,

[s, XT
r−1]

T , where the rows of X i correspond to the first i sampled gray levels. For each SoS
considered, a fixed number of 64 images was generated, in order to collect statistics about
the samples produced. Spontaneous generation was tested under four different conditions:

• Spontaneous generation over trained numerosities. In this case, the sampling process
was initially conditioned on the |N | numerosity representations learned during the
Transformer training (i.e., the rows of W s). That is, the learned SoSs were provided as
initial seed.

• Spontaneous generation over interpolated numerosities. In this case, we tested whether
the generative process could be biased toward specific numerosities that were never
encountered during training (but nevertheless fell in the training interval) by in-
jecting a novel SoS as initial seed. Defining wT

i as the row of W s corresponding
to the training numerosity i, the desired conditioning n is injected by simply set-
ting s = (wn−1 + wn+1)/2. In other words, the new representation of n is linearly
interpolated from the two closest SoSs.
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• Spontaneous generation over extrapolated numerosities. The generative capability was
further pushed by exploring whether the Transformer could be biased to produce nu-
merosities falling outside the training range. The proposed extrapolation mechanism
relies on the attribute vector technique described in [39], where the vector representing
the direction of change is computed as a = w|N | −w|N |−1; it represents the direction
along which the largest numerosities grow. We conjecture that the representation of a
numerosity immediately larger than those included in the training range [1, |N |] can
be approximated by s = w|N | + αa, for a suitable α > 0.

• Spontaneous generation with reduced components. Although the embedding size is con-
strained by the encoder architecture, numerosity information might in fact be mapped
into a lower-dimensional space, akin to an ordered “number line” [40]. To explore the
possibility that the learned SoSs could be arranged along a one- or two-dimensional
subspace, we performed a principal component analysis (PCA) on the rows of W s
and used either the first or the first and second principal components to reconstruct
the SoSs used to start the generation process and thus establish whether the sampling
quality is affected by such dimensionality reduction.

After all image pixels are generated, the number of dots produced needs to be es-
timated using a suitable heuristic. For the purpose, two dataset-specific heuristics were
introduced. The first counter is a simple area-based heuristic designed to work with uni-
form dots-like samples. The generated numerosity, indeed, can be computed by simply
dividing the area covered by the rendered dots in a frame by the average dot area; such
mean value is trivially estimated from the validation split of the dots dataset. Since this
heuristic does not work in the case of dots with different size, to estimate the number of
dots produced by the Transformer trained on the Non-Uniform Dots dataset, a ResNet18
classifier [41] was employed. The ResNet18 was trained on a subset (22,000 samples)
characterized byN = {0, . . . , 10}. Both counters achieved 100% accuracy on the respective
dataset testing splits: the perfect accuracy achieved by the ResNet18 classifier on the test set
suggests that numerosity estimation up to 10 items can be a trivial task for supervised deep
learning models, at least with respect to the stimulus space considered in our simulations.

3. Results

After each generation task, the SoS-specific histograms of the generated numerosities
were computed. We provide two different histogram visualizations: one depicts the relative
frequency of each generated numerosity [34,42], while a 2D histogram is used to reproduce
the visualization often used in human behavioral studies [43].

The generation histograms related to the spontaneous generation over trained numerosities
task are shown in Figure 3. Especially for the Uniform Dots dataset (top panels), it is
evident that the Transformer is able to create synthetic images with a specified numerosity,
although the number of generated items is not always accurate. The generation is almost
perfect for very small numbers (i.e., 1 and 2), while the model often generates one extra
or one fewer item when asked to produce images with larger numerosities (see also the
sample images reported in Figure A1). A similar pattern of errors is observed when the
Transformer is trained using the Non-Uniform Dots dataset (bottom panels), although in
this case the sampling uncertainty associated with larger numerosities increases, and the
model sometimes generates images with a mismatch of up to three items. Overall, these
results are well-aligned with the existing empirical literature on human behavior, which
suggests that numerosity estimates are distributed around the target mean and variability
tends to increase with numerosity [42,44], and that numerosity estimation can be altered
by confounding non-numerical magnitudes [21,25].
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Figure 3. Spontaneous generation over trained numerosities: (Top) Uniform Dots dataset; and
(Bottom) Non-Uniform Dots dataset.

Notably, the synthetic images produced by the Transformer are much more pre-
cise compared to samples produced by other deep generative models, such as VAEs or
GANs [26,34]. Moreover, differently from previous approaches, here we demonstrate
that the generation process can be biased toward a specific numerosity, suggesting that
attention mechanisms play a key role in allowing a more precise processing of numerosity
information. As a control simulation, we also tested the generative capability of a model
trained on images containing objects of a different shape. To this aim, we created the
Smoothed Squares dataset containing images produced by inscribing squares into the circles
of the Uniform Dots dataset, applying an average filtering (3× 3) and a gamma correction
(xout = x0.25

in ). Sample images from this dataset are shown in Figure A3. Histograms related
to the spontaneous generation task are shown in Figure A4, while samples of generated
images are reported in the left panel of Figure A5. Interestingly, the Transformer generates
well-formed images even when trained on a dataset containing a mix of images from
Smoothed Squares and Uniform Dots (see the right panel of Figure A5), suggesting that it can
properly factorize also shape information.

The generation histograms related to the spontaneous generation over interpolated nu-
merosities task are shown in the left panel of Figure 4. Quite impressively, the Transformer
is able to produce images with a specific number of objects even for numerosities that
were never encountered during training. For example, by averaging the embeddings
corresponding to n = 1 and n = 3, the model always generates images with exactly two
dots (orange line in the left panel). An analogous finding holds when interpolating the
numerosities n = 4 and n = 6, although in those cases the number of items is not always
perfectly matched (sample images are reported in Figure A6). These remarkable findings
suggest that the emergent representational space approximately encodes the semantics of
cardinal numbers, at least within the lower and upper training bounds.

As shown in the right panel of Figure 4, the results related to the spontaneous generation
over extrapolated numerosities task further corroborate this hypothesis. Indeed, the attribute
vector computed as the difference between the embeddings of the two largest numerosities
in the training set (in this case, n = 4 and n = 5) seems to represent the direction of increase
of the numerosity feature: by summing a fraction of such vector to the embedding of n = 5,
the Transformer can reliably generate images containing six items, although sometimes
the additional item appears squeezed or slightly distorted (sample images are reported
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in Figure A7). Interestingly, when the attribute vector is scaled by a factor alpha = 0.5,
the Transformer equally generates images with either five or six items. However, setting
alpha ≥ 2 did not allow to reliably generate images with seven items, suggesting that the
learned embeddings approximately capture a sort of “successor function” only over the
local neighborhood of a specific numerosity.

Figure 4. Spontaneous generation over interpolated (left) and extrapolated (right) numerosities.
Trained numerosities are represented by semi-transparent curves, while solid curves represent unseen
numerosities.

The lower-dimensional manifold structure of the encoder space is shown in Figure 5.
Interestingly, and in partial alignment with other recent computational work [35], it seems
that the topology of the numerosity embeddings preserves the strict ordering of cardinal
numbers, even though the Transformer did not explicitly receive such information during
training. This is evident even by just looking at the first principal component (x-axis in
the figure), which suggests that numerosity information could be internally organized as
a one-dimensional “number line” [20,45]. However, differently from Kondapaneni and
Perona [35], we found that the second principal component does not monotonically encode
cardinal information, but suggests a periodic pattern. As a control analysis, Figure A8 also
shows the PCA projection resulting right after the random initialization of the embeddings,
which indeed does not reflect any ordering structure.

Figure 5. Visualization of the lower-dimensional embedding space resulting from PCA.

The results related to the spontaneous generation with reduced components task suggest
that, when the embeddings are projected into such lower-dimensional manifold, the
generative abilities of the model are preserved: as shown in the top panels of Figure 6,
the Transformer can generate samples with remarkable accuracy even when only the first
principal component is retained. Adding the second principal component (bottom panels
of Figure 6) allows further improving the generation precision, although numerosities
mapped to nearby points in the lower dimensional space (i.e., n = 6 and n = 7) are
frequently confounded.
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Figure 6. Spontaneous generation with reduced components, considering: one principal component
(top); and two principal components (bottom).

4. Conclusions

In this study, we investigated whether state-of-the-art deep learning architectures
based on attention mechanisms could learn disentangled representations of numerosity
from a set of images containing a variable number of items. Our simulations not only show
that Transformers can successfully learn to generate synthetic images featuring a target
numerosity, but also that they can interpolate and extrapolate the generation process to
previously unseen numerosities. These remarkable findings suggest that Transformers
can indeed disentangle numerosity from other non-numerical visual features. However, it
should be stressed that the generation process is error-prone and thus reflects an approximate
representation of numerical information. Moreover, although we are impressed by the
Transformer’s generative capabilities, in real world scenarios, the number of training
patterns can be exponentially smaller than the support of the probability mass function
to be estimated, which makes generalization to out-of-distribution samples particularly
challenging [34]. A key open issue is thus to establish whether domain-general deep
learning architectures could extrapolate numerical knowledge well beyond the limit of their
training distribution, which would require learning more abstract conceptual structures,
such as the successor function [46], which form the foundation of our understanding of
natural numbers [47].

Another limitation of Transformer architectures is related to their computational
complexity: naive implementations have a quadratic cost in the number of pixels in terms
of both memory and computation, preventing their scaling to high resolutions. Recent
studies have attempted to mitigate this issue by approximating global attention in different
ways, for example by restricting self-attention receptive fields to local neighborhoods [31],
reducing image resolution [32] or focusing on image patches [33]. In the present work, the
image size allowed efficiently training and testing the Transformer architecture; however,
future work should better clarify whether more effective attention mechanisms could be
employed to scale-up the model to realistic image sizes.
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Appendix A. Model Hyperparameters and Supplementary Figures

The Transformer described in the present work is available in three different sizes: “S”
(∼37,000 parameters), “M” (∼136,000 parameters) and “L” (∼568,000 parameters); Table A1
reports the corresponding hyperparameters. For publication purposes, all presented
results refer to the size “M” model. However, we also investigated the performance of
the small and large variants on a subset of the introduced tasks, without noticing major
differences. All models were trained using Adam optimizer [48] (β1 = 0.9, β2 = 0.999) with
a batch size of 16. The training always stops when the validation loss does not improve,
with respect to the best loss obtained, for five epochs in a row. After a search in the set
{0.03, 0.01, 0.003, 0.001}, the initial learning rate was set to 0.003. Furthermore, the learning
rate decays by 0.1 every 25 training epochs. Each training session took, on average, 1 h
45 min on a workstation equipped with an NVidia GTX 1080 graphic card. To reduce the
Transformer computational demand, the dataset entries were pre-processed by uniformly
quantizing (16 levels) the input intensities (i.e., p = 16).

Table A1. Hyperparameters characterizing the available model sizes. See the PyTorch Transformer
documentation for more details about nhead and dim_feedforward (https://pytorch.org/docs/
stable/generated/torch.nn.Transformer.html (accessed on 30 June 2021)).

Hyperparameter
Value

Size “S” Size “M” Size “L”

d_model (d) 16 32 64
nhead 2 2 4

num_encoder_layers (L) 6 8 10
dim_feedforward 64 128 256

https://github.com/BoCtrl-C?tab=repositories
https://github.com/BoCtrl-C?tab=repositories
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
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Figure A1. Sample images produced in the spontaneous generation over trained numerosities task: (Left)
Uniform Dots; and (Right) Non-Uniform Dots. Images produced with increasing generation seeds (i.e.,
N = {1, . . . , 8}) are progressively shown from top to bottom. Sample images with a number of dots
that does not match the seed are purposely included for illustration.

Figure A2. Converging validation loss obtained by training the Transformer (size “M”) on instances
of the Uniform Dots dataset characterized by an increasing number of training patterns.

Figure A3. Sample images from the Smoothed Squares dataset. Stimuli with increasing numerosity
(i.e., N = {1, . . . , 8}) are progressively shown from left to right.
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Figure A4. Spontaneous generation over trained numerosities on the Smoothed Squares dataset.

Figure A5. Sample images produced in the spontaneous generation over trained numerosities task by the
model trained on Smoothed Squares (left) or a mix of Smoothed Squares and Uniform dots (right). Images
produced with increasing generation seeds (i.e., N = {1, . . . , 8}) are progressively shown from top
to bottom.

Figure A6. Sample images conditioned on the interpolated SoSs (i.e., spontaneous generation over
interpolated numerosities task). From top to bottom, the displayed rows correspond to the unseen
numerosities 2, 4 and 6, respectively.
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Figure A7. Sample images conditioned on the extrapolated SoS (i.e., spontaneous generation over
extrapolated numerosities task). The results reported refer to α = 1, which should produce images
containing six objects. Note how the rendering of dots is qualitatively less precise than the ones
shown in Figures A1 and A6.

Figure A8. Visualization of the lower-dimensional embedding space right after random initialization.
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