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ABSTRACT: Item Response Theory models are widely used in many domains of ap-
plications to analyze questionnaires data, scaling categorical data into continuous con-
struct. Interpretable inference is often obtained relying on a set of assumptions for the
latent constructs, as for example normality for the unknown subject-specific latent
traits. This assumption can often be unrealistic and lead to biased results, hence we
consider more flexible models using Bayesian nonparametric mixtures for the individ-
ual latent traits. We study several identifiability constraints, and compare inferential
results and different Markov chain Monte Carlo strategies for posterior sampling.
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1 IRT models for binary responses

Let yi j denote the answer of an individual j to item i for j = 1, . . . ,N and
i = 1, . . . , I, with yi j = 1, when the answer is correct and 0 otherwise. Typi-
cally, different individuals are assumed to work independently, while responses
from the same individuals are assumed independent conditional to the latent
trait (local independence assumption). Hence each answer yi j, conditionally
to the latent parameters, is assumed to be a realization of a Bernoulli distribu-
tion, and the probability of a correct response is typically modeled via logistic
regression.

2 Semiparametric 2PL models

In the two-parameter logistic (2PL) model, the conditional probability of a
correct response is modeled as

Pr(yi j = 1|λi,βi,η j) =
exp{λi(η j−βi)}

1 = exp{λi(η j−βi)}
, i = 1, . . . , I, j = 1, . . . ,N. (1)

where η j represents the health status, or more in general latent trait, of
the j-th individual, while βi and λi encode item characteristics. The param-
eter λi > 0 is often referred to as discrimination, while βi is called difficulty



because for any fixed η j the probability of a correct response to item i is de-
creasing in βi. When λi = 1 for all i = 1, . . . , I, the model in ?? reduces to
the one-parameter logistic (1PL) model. Often, conditional log-odds in ?? are
reparametrized as λiηi + γi, with γi = −λi×βi. Sometimes this is reffered to
as slope-intercept parameterization as opposed to the IRT parameterization in
considered traditionally for interpretation.

Traditional literature assumes that η j ∼N (0,1) for j = 1, . . . ,N, but there
are situations in which such assumption can be too restrictive. We can ex-
tend the model in ?? to describe more flexible latent trait distributions using a
Dirichlet Process (DP) mixture of normal distributions

η j|G∼ G, G∼ DP(α,G0),

G0 ≡N (0,σ2
0)× InvGamma(ν1,ν2) (2)

where α is the concentration parameter and G0 the base measure. Alter-
native representations of the DP are known as the Chinese Restaurant Process
(CRP) ? or the truncated stick-breaking (SB) ?.

3 Model estimation

Estimation of the model parameters is carried out in the Bayesian framework
via MCMC methods, using NIMBLE ?, a R software for hierarchical models.
The NIMBLE system provides a suite of different sampling algorithms along
with the possibility to code user-defined samplers. We compare results from
the parametric and semiparametric 2PL model, using NIMBLE’s default sam-
pling configuration, that mixes conjugate samplers with adaptive Metropolis
Hastings algorithm.

Typically parameters of the 2PL model are not identifiable, so constraints
are either included in the model or one can post-process posterior samples
to meet the constraints. This last approach is typical of parameter-expanded
algorithms, which embed targeted models in a larger specification. We found
this last option to be the most efficient in terms on both MCMC mixing and
time.

In traditional literature on parametric 2PL model, identification is obtained
constraining the discrimination parameters λi, for i = 1, . . . , I to be positive,
when the latent trait distribution is assumed to be a standard normal. Since we
are relaxing the normal assumption on the latent traits, we considered sum-to-
zero constraints on the item parameters, i.e. ∑i βi = 0, ∑i log(λi) = 0.



4 Inferential results

We compare inferential results via simulation. We simulate data from two
different scenarios changing the distribution generating the latent traits. We
simulate responses from N = 3,000 individuals to I = 20 binary items. Values
for the discrimination parameters {λi}20

i=1 are sampled from a Uniform distri-
bution over the interval (0.5,2), while values for difficulty parameters {βi}20

i=1
are sampled from a Normal distribution with mean zero and variance 2.

In particular, we considered two different generating distribution for the
latent traits. A unimodal scenario, where η j are i.i.d. draws from a N (0,1)
and a multimodal scenario where

η j ∼ 0.4×N (−3,1)+0.2×N (−2,4)+0.4×N (2,1). (3)

We chose moderately vague priors for the item parameters, βi ∼ N (0,3)
and log(λi)∼N (0.5,0.5). In the parametric model, η js are assumed to follow
N (0,1), while for DP we choose G0 ≡N (0,3)× InvGamma(1.01,2.01). We
run the MCMC for 50,000 iterations using a 10% burn-in of 5000 iterations,
and check traceplots for convergence.
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Figure 1. Comparison of the latent trait density estimates, using a parametric 2PL
model (orange line) and a semiparametric 2PL model (green line). The dotted black
lines indicate the true distribution in (??).

Figure 1 compares density estimates of the latent trait distribution from the



parametric and semiparametric models, computed taking the posterior means
of the η js. It can be noticed that the parametric model leads to a flat distribu-
tion because of the underlying normal assumption, while the semiparametric
specification recover the true density structure. Better estimation of the latent
abilities helps to avoid bias in inference, for example when estimating item
parameters or item characteristics curves (ICC).


