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Abstract

This paper develops a theory for completely random measures in the framework of
free probability. A general existence result for free completely random measures is
established, and in analogy to the classical work of Kingman it is proved that such
random measures can be decomposed into the sum of a purely atomic part and a
(freely) infinitely divisible part. The latter part (termed a free Lévy basis) is studied
in detail in terms of the free Lévy-Khintchine representation and a theory parallel
to the classical work of Rajput and Rosiński is developed. Finally a Lévy-Itô type
decomposition for general free Lévy bases is established.
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1 Introduction

In the paper [11] J.F.C. Kingman introduced the concept of completely random
measures. Specifically a random measure on a measurable space (X, S) is a collection
N = {N(B, ·) | B ∈ S} of non-negative random variables, defined on some probability
space (Ω,F, P ), such that the mapping B 7→ N(B,ω) is a measure on the σ-algebra S for
each fixed ω in Ω. If the random variables N(B1, ·), . . . , N(Bn, ·) are further assumed to
be independent, whenever B1, . . . , Bn are disjoint sets from S, then N is referred to as a
completely random measure. Kingman established (under certain additional conditions)
that a completely random measure N can always be decomposed into a sum Na + Nc
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Completely random measures and Lévy bases in free probability

of two mutually independent completely random measures, where, for each ω, Na(·, ω)

is purely atomic, while Nc(·, ω) is atom less. For the second term Kingman showed
further that the distribution of the random variable Nc(B, ·) is infinitely divisible for
any B in S, and hence Nc is an example of what is nowadays commonly referred to as
a Lévy basis. The infinite divisibility of the “marginals” allows for the employment of
Lévy-Khintchine techniques, and the resulting theory was developed by B.S. Rajput and
J. Rosiński in the celebrated paper [16], where more general “index sets” than σ-algebras
were also considered. To be precise, a Lévy basis1 on a ring E of subsets of X is a family
N = {N(E, ·) | E ∈ E} of real valued random variables, defined on some probability
space (Ω,F, P ), such that

• For all E in E the distribution of N(E, ·) is an infinitely divisible probability measure
on R.

• If n ∈ N and E1, E2, . . . En are disjoint sets from E, then N(E1, ·), N(E2, ·), . . . , N(En, ·)
are independent random variables.

• If (En)n∈N is a sequence of disjoint sets from E, such that
⋃
n∈NEn ∈ E, then it holds

with probability 1 that N(
⋃
n∈NEn, ·) =

∑∞
n=1N(En, ·).

In recent years much of the theory of stochastic processes (with very general index
sets) has found a subsuming and unifying framework in Lévy bases, and from that
perspective it is a natural step in the development of free probability to manifest a
corresponding theory for free Lévy bases and more generally free completely random
measures. This theory can also be expected to provide a concrete model for the asymp-
totics of high dimensional random-matrix valued random measures (and integrals with
respect to such), which have received some attention recently in various special cases
(see e.g. [14], [8] and [13]), but the theory remains to be fully developed.

In this paper we introduce natural counterparts of completely random measures and
Lévy bases in the context of free probability, where the classical notion of independence is
replaced by that of free independence, and infinite divisibility refers to the corresponding
notion of free convolution (see [21] or [3] for an introduction to free probability). We
establish thus general existence results for free completely random measures and for
free Lévy bases. In addition we prove, in full analogy with the mentioned results of
Kingman, that a non-negative free completely random measure M can be decomposed
into a sum

M = Ma +Mc (1.1)

of two freely independent terms, where Ma is purely atomic (in a natural sense) free
completely random measure, while Mc is a free Lévy basis (thus with freely infinitely
divisible marginals). We derive a similar decomposition in the more general situation
where the assumption of positivity of the marginals of M is dropped, although some
moment conditions need to be imposed in this case. We focus subsequently on free
Lévy bases, where the free infinite divisibility of the marginals allows for invoking the
Bercovici-Pata bijection (see Subsection 2.4) and thus for transferring major parts of
the theory of Rajput and Rosiński to the free setting. The resulting theory subsumes
and unifies a major part of the existing theory on free Lévy processes and related topics.
Moreover, it includes a theory of integration of deterministic functions with respect to a
free Lévy basis, which is further used to establish a Lévy-Itô type decomposition of a
general free Lévy basis into the sum of two freely independent terms, the first of which
is of free Brownian motion type, while the second is of pure jump type. This result covers
in particular the free analog of the result by Pedersen (see [15]) for classical Lévy bases,

1In [16] a Lévy basis was referred to as an infinitely divisible, independently scattered random measure.
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and in another direction it generalizes the Lévy-Itô type decomposition obtained for free
Lévy processes in [2]. Inserting the Lévy-Itô decomposition of Mc in (1.1) evidently leads
to a refined decomposition for general free completely random measures.

The remaining part of this paper is organized as follows. In Section 2 we provide
background material on δ-rings (and measures thereon), the measure topology and free
infinite divisibility. In Section 3 we give the formal definition of free completely random
measures and of free Lévy bases, and we state the mentioned general existence result
(the proof of which is deferred to Section 7). We establish furthermore the described
analogs of Kingman’s decomposition theorem for completely random measures. In
Section 4 we develop free analogs of essential parts of the Rajput-Rosiński theory, and
in Section 5 we develop a theory of integration with respect to free Lévy bases. In
particular we construct free Lévy bases with a deterministic “density” with respect to
another (given) free Lévy basis, and this is further used in Section 6, where we establish
the described Lévy-Itô type decomposition for free Lévy bases. In the final Section 7 we
prove the general existence of free completely random measures and of free Lévy bases.
While the existence of “classical” random measures and Lévy bases is generally based
on the Kolmogorov extension theorem, our construction is based on free products of von
Neumann algebras and the theory of (unbounded) operators affiliated with such. As this
construction heavily builds on the theory of operator algebras and is less probabilistic in
nature, we have deferred it to the final section of the paper. This is mainly to bring focus
to the probabilistic aspects of the developed theory and to emphasize the analogies to
the theories of Kingman and of Rajput and Rosiński. Accordingly the first six sections of
the paper can be read without reference to the detailed construction given in Section 7.
To our knowledge this construction, dealing throughout with unbounded operators, has
not been carried out in detail previously in the literature even for the case of free Lévy
processes. The paper concludes with an appendix that covers some specific aspects of
the theory of von Neumann algebras needed for the construction in Section 7.

2 Preliminaries

In this section we provide background material on various definitions and results that
are fundamental for the rest of the paper.

2.1 Measures on δ-rings

Recall that a ring of subsets of a non-empty set X is a collection E of subsets of X
satisfying that A ∪B, A \B ∈ E, whenever A,B ∈ E. Since A ∩B = A \ (A \B), a ring is
automatically closed under finite intersections. If E is even closed under all countable
intersections, then it is referred to as a δ-ring. By σ(E) we denote the smallest σ-algebra
on X containing E. It is noteworthy that if E is a δ-ring, then the following implication
holds for all subsets A,E of X:

A ∈ σ(E) and E ∈ E =⇒ A ∩ E ∈ E. (2.1)

A (finite) signed measure on a δ-ring E is a mapping Θ: E→ R satisfying the following
two conditions:

(a) Θ(A ∪B) = Θ(A) + Θ(B) for any disjoint sets A,B from E,

(b) limn→∞Θ(Bn) = 0 for any decreasing sequence (Bn)n∈N of sets from E, such that⋂
n∈NBn = ∅.

For sequences (Bn)n∈N of sets as described in (b), we use the notation Bn ↓ ∅.
Conditions (a) and (b) (together) are equivalent to the condition that Θ(

⋃
n∈NEn) =
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∑∞
n=1 Θ(En) for any sequence (En)n∈N of disjoint sets from E, such that

⋃
n∈NEn ∈ E.

For a mapping Θ: E→ [0,∞] this latter condition, together with the condition Θ(∅) = 0,
defines a (positive) measure on E. In case Θ(A) ∈ [0,∞) for all A in E, we refer to Θ as a
finite measure on E. By a suitable variant of the Carathéodory Extension Theorem, a
(positive) measure on E can always be extended to a (positive) measure on σ(E). Note
however that the extension of a finite measure may fail to be finite. Correspondingly it
does not generally hold that a signed measure on E can be extended to a signed measure
on σ(E). In fact, under the additional assumption:

There exists a sequence (Un)n∈N of sets from E, such that
⋃
n∈N

Un = X, (2.2)

any signed measure Θ on a δ-ring E can be written uniquely in the form:

Θ(E) = Θ+(E)−Θ−(E), (E ∈ E), (2.3)

where Θ+,Θ− are two (positive) measures on σ(E), which are singular in the sense
that there exists a set S from σ(E), such that Θ+(Sc) = Θ−(S) = 0. These Θ+,Θ− are
not necessarily finite measures on σ(E), but Θ+(E),Θ−(E) < ∞ for all E in E, so in
particular Θ+,Θ− are σ-finite (cf. (2.2)). The unique decomposition (2.3) further allows
us to define the total variation measure |Θ| of Θ as

|Θ|(A) = Θ+(A) + Θ−(A), (A ∈ σ(E)).

In this setup we mention finally, that if κ is a σ-finite (positive) measure on σ(E),
such that |Θ| ≤ κ, then Θ+ and Θ− are both absolutely continuous with respect to
κ with σ(E)-measurable densities h+, h− : X → R, which may be chosen such that
h+(x), h−(x) ∈ [0, 1] for all x in X. Then if we put h = h+ − h−, it follows for any set E
from E that

Θ(E) =

∫
E

h+ dκ−
∫
E

h− dκ =

∫
E

hdκ,

so that Θ has density h with respect to κ. Note however that h need not be an element
of L1(κ).

2.2 Free Independence

Free independence (introduced by Voiculescu) is a notion of independence which
in many respects behaves similarly to the classical notion of independence of random
variables, and it is possible to develop a probability theory based on this notion in
parallel to the classical theory of probability. At the same time free independence cannot
be observed among classical random variables (except for trivial cases). The right
framework for free independence is that of quantum probability, where the random
variables are modelled mathematically as selfadjoint operators affiliated with a W ∗-
probability space. A W ∗-probability space is a pair (M, τ) consisting of a von Neumann
algebra M acting on a Hilbert space H equipped with a normal faithful tracial state
τ : M→ C (see [21] for details). A (possibly unbounded) operator a in H is affiliated with
M, if au = ua for any unitary operator u on H satisfying that ub = bu for all b in M. If
a is selfadjoint, this is equivalent to the condition that f(a) ∈M for any bounded Borel
function f : R→ R, where f(a) is defined in terms of spectral calculus. In this case the
spectral distribution of a is the unique Borel-probability measure Lsp{a} on R, satisfying
that ∫

R

f(t)Lsp{a}(dt) = τ(f(a))

for any bounded Borel-function f : R→ R. Throughout the paper we denote by BF(R)

the algebra of all real-valued Borel functions on R. Furthermore we let BFb(R) denote
the subalgebra of bounded functions from BF(R).
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If a1, . . . , an are (possibly unbounded) selfadjoint operators affiliated with M, they are
said to be freely independent (with respect to τ ), if

τ
([
f1(ai1)− τ(f1(ai1))

][
f2(ai2)− τ(f2(ai2))

]
· · ·
[
fm(aim)− τ(fm(aim))

])
= 0, (2.4)

for any m ∈ N, any functions f1, . . . , fm from BFb(R) and any i1, . . . , im from {1, . . . , n},
such that i1 6= i2, i2 6= i3, . . . , im−1 6= im.

If A is a unital subalgebra of M, we denote by A◦ the subspace of centered elements
of A, i.e. A◦ = {a ∈ A | τ(a) = 0}. A finite number of unital subalgebras A1, . . . ,An of M
are said to be freely independent, provided that

τ(a1a2 · · · am) = 0,

whenever a1 ∈ A◦i1 , . . . , am ∈ A◦im for suitable i1, . . . , im ∈ {1, . . . , n} such that i1 6= i2,
i2 6= i3, . . ., im−1 6= im. For any collection {Ti | i ∈ I} of selfadjoint operators affiliated
with M we denote by Alg({Ti | i ∈ I}) (respectively W ∗({Ti | i ∈ I})) the unital subalge-
bra (respectivelyW ∗-subalgebra) of M generated by the subset {f(Ti) | i ∈ I, f ∈ BFb(R)}
of M. We refer to Alg({Ti | i ∈ I}) and W ∗({Ti | i ∈ I}) as, respectively, the unital
subalgebra and the W ∗-subalgebra of M generated by {Ti | i ∈ I}. It follows then that
selfadjoint operators a1, . . . , an affiliated with M are freely independent, exactly when
they generate freely independent unital subalgebras (or, equivalently, W ∗-subalgebras)
of M.

2.3 The measure topology

For a W ∗-probability space (M, τ) we denote by M the space of closed, densely
defined (possibly unbounded) operators affiliated with M. Then M is a ∗-algebra under
the adjoint operation and the so called strong sum and strong product. For example the
strong sum of two operators a, a′ from M is the closure of the operator a+ a′, and the
strong product is defined similarly.

For any positive numbers ε, δ we introduce the subset N(ε, δ) of M given by

N(ε, δ) = {a ∈M | τ [1(ε,∞)(|a|)] < δ},

where |a| = (a∗a)1/2. The measure topology on M is the vector space topology on M for
which the sets N(ε, δ), ε, δ ∈ (0,∞), form a neighborhood basis at 0. In this topology the
adjoint operation and the (strong-) sum and product are all continuous operations. In
addition the measure topology satisfies the first axiom of countability and is a complete
Hausdorff topology.

For a sequence a, a1, a2, a3, . . . of operators from M we have that

an → a in the measure topology ⇐⇒ Lsp{|an − a|}
w→ δ0 as n→∞,

and thus convergence in the measure topology is the quantum probability analog of
convergence in probability. For that reason, and for brevity, we will occasionally use the

notation an
P→ a or a = P- limn→∞ an to express that a sequence (an)n∈N converges to a

in the measure topology.
If a, a1, a2, a3, . . . are all selfadjoint, we note further the implications:

an → a in the measure topology ⇐⇒ Lsp{an − a}
w→ δ0 as n→∞

=⇒ Lsp{an}
w→ Lsp{a}.

(2.5)

For more details about the measure topology (and some proofs) we refer to the appendix
of [3]. A more complete account on this topic can be found in [18].
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2.4 Free infinite divisibility and the free cumulant transform

If a and b are two freely independent selfadjoint operators affiliated with M, then the
free convolution Lsp{a}� Lsp{b} of their spectral distributions is defined as the spectral
distribution of the sum a+ b. Since Lsp{a+ b} is uniquely determined by Lsp{a}, Lsp{b}
and the condition (2.4), and since any pair (µ, ν) of Borel-probability measures on R may
be realized as the spectral distributions of two freely independent selfadjoint operators
affiliated with some W ∗-probability space, the operation � is a well-defined binary
operation on the class P(R) of all (Borel-) probability measures on R (see [7] for details).
The corresponding class of infinitely divisible probability laws is denoted by ID(�). Thus
a measure ν from P(R) belongs to ID(�), if and only if

∀n ∈ N ∃ν1/n ∈ P(R) : ν = ν1/n � ν1/n � · · ·� ν1/n (n terms).

The class of infinitely divisible probability laws with respect to classical convolution ∗ of
probability measures is correspondingly denoted by ID(∗).

As in classical probability, free infinite divisibility is generally studied through a
Lévy-Khintchine type representation of the free analog of the Fourier transform; the so
called free cumulant transform. Specifically the free cumulant transform of a measure ν
from ID(�) is defined by the formula:

Cν(z) = zG〈−1〉
ν (z)− 1,

where G〈−1〉
ν denotes the inverse of the Cauchy transform Gν given by

Gν(z) =

∫
R

1

z − x
ν(dx), (z ∈ C+).

This inverse (and hence Cν) is always well-defined in a region (depending on ν) of the
lower half complex plane C− in the form:

Dν =
{
z ∈ C−

∣∣ |z| < δ and Arg(z) ∈ (−π2 − ε,−
π
2 + ε)

}
.

For a selfadjoint operator a affiliated with a W ∗-probability space (M, τ) we shall also
use the notation Ca for the free cumulant transform CLsp{a} of the spectral distribution
of a. The key property of the free cumulant transform is that it linearizes free additive
convolution in the sense that

Cν�ν′(z) = Cν(z) + Cν′(z) (2.6)

for any probability measures ν, ν′ on R.
In case ν has finite p-th moment for some p in N, Cν admits a Taylor expansion

centered at 0 in the form:

Cν(z) =

p∑
j=1

κj(ν)zj + o(zp), (2.7)

where the coefficients κ1(ν), . . . , κp(ν) are the free cumulants of ν (see [5, Theorem 1.3]).
These were introduced by Speicher via the moment-cumulant formula:

κp(ν) =

∫
R

tp ν(dt)−
∑

π∈NC′(p)

∏
V ∈BL(π)

κ#V (ν), (2.8)

from which the free cumulants are defined recursively. In (2.8) NC′(p) is the set of
non-crossings partitions of {1, . . . , p} with at least two blocks. For such a partition π,
BL(π) denotes the family of blocks of π, while, for V in BL(π), #V denotes the cardinality
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of the corresponding subset of {1, . . . , p} (see [12, Chapter 2] for details). In accordance
with (2.6) and (2.7) the free cumulants linearize free additive convolution in the sense
that

κj(ν � ν′) = κj(ν) + κj(ν
′), (j = 1, . . . , p), (2.9)

whenever ν, ν′ both have finite p-th moment.
A measure ν from P(R) is in ID(�), if and only if Cν has the free Lévy-Khintchine

representation:

Cν(z) = az + bz2 +

∫
R

( 1

1− tz
− 1− zς(t)

)
r(dt), (z ∈ C−),

where a ∈ R, b ∈ [0,∞), r is a Lévy measure on R and ς is the function given by2

ς(t) = −1(−∞,1)(t) + t1[−1,1](t) + 1(1,∞)(t), (t ∈ R).

The triplet (a, b, r) is uniquely determined and is referred to as the free characteristic
triplet of ν. Recall in comparison that a measure µ from P(R) belongs to ID(∗) if and
only if its Fourier transform µ̂ has the Lévy-Khintchine representation:

µ̂(y) = exp
(

i ay − 1
2bt

2 +

∫
R

(
ei ty −1− i yς(t)

)
r(dt)

)
, (y ∈ R),

where the parameters (a, b, r) are exactly as above, uniquely determined by µ and
referred to as the (classical) characteristic triplet of µ.

From the two Lévy-Khintchine representations above, it is apparent that there is a
one-to-one correspondence Λ from ID(∗) onto ID(�). Specifically Λ maps the probability
measure in ID(∗) with classical characteristic triplet (a, b, r) onto the probability measure
in ID(�) with free characteristic triplet (a, b, r). Although Λ may appear as a rather
formal correspondence, it has the following fundamental properties for all µ1, µ2 in ID(∗)
and all c in R:

(i) Λ(µ1 ∗ µ2) = Λ(µ1) � Λ(µ2),

(ii) Λ(Dcµ) = DcΛ(µ),

(iii) Λ(δc) = δc

(iv) Λ is a homeomorphism with respect to weak convergence.

In (ii) and in the following we use the notation Dcµ for the scaling of µ by the constant c,
i.e. Dcµ(B) = µ(c−1B), if c 6= 0, while D0µ = δ0. Here, as in (iii), δc denotes the Dirac
measure at c.

The probability laws appearing in the free analogs of the Central Limit Theorem and
the Poisson Limit Theorem are the semi-circle distributions:

γc,`(dt) =
2

π`2

√
`2 − (t− c)21[c−`,c+`](t) dt, (` > 0, c ∈ R),

and, respectively, the Marchenko-Pastur distributions

mp`(dt) =

{
(1− `)δ0 + 1

2πt

√
(t− s)(u− t)1[s,u](t) dt, if ` ∈ (0, 1),

1
2πt

√
(t− s)(u− t)1[s,u](t) dt, if ` ∈ [1,∞),

2 To emphasize the analogy to the theory developed by Rajput and Rosiński, we have chosen to work
throughout with the same centering function ς as the one used in [16], one of the advantages of which is
continuity.
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where s = (1 − `)2 and u = (1 + `)2. Correspondingly the mapping Λ maps Gaussian
distributions to semi-circular distributions and Poisson distributions onto Marchenko-
Pastur distributions. The latter are also referred to as free Poisson distributions.

It will prove important for us to express weak convergence of probability measures in
ID(�) in terms of the free characteristic triplets in analogy with e.g. the classical result
[17, Theorem 8.7].

Theorem 2.1. Let ν, ν1, ν2, ν3, . . . be probability measures from ID(�) with free charac-
teristic triplets, respectively (a, b, r), (a1, b1, r1), (a2, b2, r2), . . .. Then νn → ν weakly as
n→∞, if and only if the following conditions are satisfied:

(i) an → a as n→∞.

(ii)
∫
R
f(t) rn(dt) →

∫
R
f(t) r(dt) as n → ∞ for any continuous bounded function

f : R→ R vanishing in a neighborhood of 0.

(iii) lim
ε↓0

(
lim sup
n→∞

∣∣∣bn − b+

∫
[−ε,ε]

t2 rn(dt)
∣∣∣) = 0.

Theorem 2.1 follows immediately by combining the corresponding classical result
([17, Theorem 8.7]) with the fact that Λ is a homeomorphism.

Another useful characterization of weak convergence for measures in ID(�) is the
following:

Proposition 2.2. Let ν, ν1, ν2, ν3, . . . be probability measures from ID(�). Then the
following two conditions are equivalent:

(i) νn
w→ ν as n→∞.

(ii) limn→∞ Cνn(i y) = Cν(i y) for all y in (−∞, 0).

For general probability measures (outside ID(�)) the condition in Proposition 2.2
needs to be supplemented by the condition:

sup
n∈N

∣∣Cνn(i y)
∣∣ −→ 0, as y ↑ 0,

in order to ensure weak convergence. Proposition 2.2 may be established as a conse-
quence of Theorem 2.1 and the corresponding classical result. We provide here, for
the reader’s convenience, a short proof which bypasses arithmetics with characteristic
triplets.

Proof of Proposition 2.2. As indicated, it is well-known that (i) implies (ii). For the
converse implication we recall from [1] that the formula:

Υ̂(µ)(y) = exp(CΛ(µ)(i y)) (µ ∈ ID(∗), y ∈ (−∞, 0)),

defines an injective mapping Υ: ID(∗) → ID(∗), which is a homeomorphism onto its
range with respect to weak convergence (see [4]). Putting µ = Λ−1(ν) and µn = Λ−1(νn),

the assumption of the proposition implies that limn→∞ Υ̂(µn)(y) = Υ̂(µ)(y) for all y in
(−∞, 0), and by complex conjugation this also holds for all positive y. Hence by the
continuity theorem for Fourier transforms we have that Υ(µn)

w→ Υ(µ) as n→∞, and
since Υ is a homeomorphism, this means that µn

w→ µ as n→∞. Since Λ is continuous
with respect to weak convergence, this further implies that νn

w→ ν as n → ∞, as
desired.
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3 Free completely random measures

Definition 3.1. Let X be a non-empty set, and let E be a ring of subsets of X. Then a
free Lévy basis (FLB) on (X,E) is a family M = {M(E) | E ∈ E} of selfadjoint operators,
affiliated with some W ∗-probability space (M, τ), satisfying the following four conditions:

(a) If E1, . . . , En are disjoint sets from E, then M(E1), . . . ,M(En) are freely independent
with respect to τ .

(b) If E1, . . . , En are disjoint sets from E, then M(
⋃n
j=1Ej) = M(E1) + · · ·+M(En).

(c) Lsp{M(En)} w→ δ0 as n → ∞ for any decreasing sequence of sets En from E,
satisfying that

⋂
n∈NEn = ∅.

(d) Lsp{M(E)} ∈ ID(�) for all E in E.

If M satisfies only conditions (a)-(b) above, it is referred to as a finitely additive free
random measure (FAFRM). If M satisfies conditions (a)-(c) it is termed a free completely
random measure (FCRM).

Remarks 3.2. (1) From Definition 3.1 it is immediate to check that if t ∈ R and M1 and
M2 are two freely independent free Lévy bases (respectively FAFRMs or FCRMs) then
tM1 +M2 is again a free Lévy basis (respectively FAFRM or FCRM).

(2) In full analogy with the classical theory of random measures we note that if M =

{M(E) | E ∈ E} is a FAFRM then the remaining condition (c) in Definition 3.1 in order
for M to be a FCRM is equivalent to the requirement that

n∑
k=1

M(En) −−−−→
n→∞

M
( ⋃
n∈N

En
)

in the measure topology (3.1)

for any sequence (En)n∈N of disjoint sets from E, satisfying that E :=
⋃
n∈NEn ∈ E.

Indeed, for such a sequence (En)n∈N condition (c) entails that

Lsp
{
M
(
E \ (

⋃n
j=1Ej)

)} w−→ δ0, as n→∞,

and hence by property (b) we obtain for any positive ε that

τ
[
1R\[−ε,ε]

(
M(E)−

∑n
j=1M(Ej)

)]
= τ

[
1R\[−ε,ε]

(
M(E \ (

⋃n
j=1Ej))

)]
=

∫
R

1R\[−ε,ε] L
sp
{
M(E \ (

⋃n
j=1Ej))

}
(dt)

−−−−→
n→∞

δ0(R \ [−ε, ε]) = 0,

which means that
∑n
j=1M(Ej) → M(

⋃
n∈NEn) in the measure topology. Similar argu-

mentation yields that condition (3.1) implies condition (c) of Definition 3.1.

Concerning existence of the various types of free random measures we have the
following main result:

Theorem 3.3. Let E be a δ-ring in a non-empty set X, and for each E in E let ν(E, ·) be
a Borel probability measure on R. Assume that whenever E1, . . . , En are disjoint sets
from E we have that

ν(
⋃n
j=1Ej , ·) = ν(E1, ·) � · · ·� ν(En, ·). (3.2)

Then the following assertions hold:

(i) There exists a W ∗-probability space (M, τ) and a FAFRM M = {M(E) | E ∈ E}
affiliated with (M, τ), such that Lsp{M(E)} = ν(E, ·) for all E in E.
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(ii) If the given family {ν(E, ·) | E ∈ E} satisfies that ν(En, ·)
w→ δ0 as n → ∞ for any

sequence (En)n∈N of sets from E, such that En ↓ ∅, then M described in (i) is
automatically a FCRM.

(iii) If the given family {ν(E, ·) | E ∈ E} satisfies, in addition to the condition in (ii), that
ν(En, ·) ∈ ID(�) for all E in E, then M described in (i) is automatically a FLB.

Note that condition (3.2) entails that ν(∅) = δ0. The proof of Theorem 3.3 is obtained
as the culmination of a series of preliminary lemmas and is deferred to the concluding
section of the paper. In the remainder of the present section we focus on establishing,
under various additional assumptions, a decomposition of a FCRM into the sum of a
FLB and a “purely atomic part”, such that the two terms in the decomposition are freely
independent. In order to derive these decompositions we shall need the following natural
result.

Lemma 3.4. Let E be a δ-ring in a non-empty set X, and let M = {M(E) | E ∈ E} be a
FAFRM (respectively FCRM or FLB) affiliated with a W ∗-probability space (M, τ). Let
further A be a fixed set from σ(E). Then the formulae

M1(E) = M(E ∩A), and M2(E) = M(E ∩ (X \A)), (E ∈ E),

define new FAFRMs (respectively FCRMs or FLBs) on (X,E), and M1 and M2 are freely
independent in the sense that theW ∗-algebras generated by the families {M1(E) | E ∈ E}
and {M2(E) | E ∈ E} are freely independent.

Proof. Note first of all that (2.1) ensures that M1 and M2 are well-defined. Secondly,
it is straightforward to check that M1 and M2 satisfy any of the conditions (a)-(d) in
Definition 3.1, provided that M satisfies that same condition. It remains therefore
to argue that M1 and M2 are freely independent as stated, and for this it suffices to
argue that the unital algebras A1 and A2 generated by M1 and M2, respectively, are
freely independent (cf. [21, Proposition 2.5.7]). To validate the latter assertion it is
sufficient to argue that any given finite subsets {a1, . . . , an} of A1 and {b1, . . . , bm} of A2

generate freely independent unital subalgebras of A. In this setup there exist finitely
many sets E1, . . . , Ek from E and functions f1, . . . , fk from BFb(R), such that each aj
is a (non-commutative) polynomial in (some of) the variables fj(M1(Ej)), j = 1, . . . , k.
Since E is closed under intersections and set-differences, we can subsequently choose
finitely many disjoint sets F1, . . . , Fl from E, such that each Ej is a union of some of the
Fi’s. Let B1 denote the W ∗-subalgebra of A generated by {M1(F1), . . . ,M1(Fl)}. Then
each M1(Ej) is affiliated with B1, being the sum of some of the M1(Fi)’s. In particular
fj(M1(Ej)) ∈ B1 for all j, and hence also a1, . . . , an ∈ B1. Similarly there exists a finite
family G1, . . . , Gr of disjoint sets from E, such that b1, . . . , bm ∈ B2, with B2 being the
W ∗-subalgebra of A generated by {M2(G1), . . . ,M2(Gr)}. Now, by Definition 3.1(a) and
the definitions of M1 and M2 the operators

M1(F1), . . . ,M1(Fl),M2(G1), . . . ,M2(Gr)

are freely independent, and hence B1 and B2 are also freely independent (cf. [21,
Proposition 2.5.5]). Obviously this further entails that the unital algebras generated by
{a1, . . . , an} and {b1, . . . , br}, respectively, are freely independent as well.

3.1 Decomposition of a positive FCRM

In this subsection we consider a non-empty set X equipped with a δ-ring E and
a FCRM M = {M(E) | E ∈ E} affiliated with a W ∗-probability space (M, τ). We
assume throughout that M(E) is positive for all E in E in the sense that sp(M(E)) ⊆
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[0,∞), or, equivalently, that supp(Lsp{M(E)}) ⊆ [0,∞) for all E ∈ E. We shall derive
a decomposition of M into the sum of an “atomic” FCRM and a FLB, a kin to the
fundamental decomposition obtained by Kingman in [11] for classical completely random
measures (CRM). The latter was obtained via the Laplace transforms of the considered
CRM, which give rise to a positive measure on the underlying measurable space. This
approach cannot directly be transferred to the non-commutative operator setting, since
the formula exp(A+B) = exp(A) exp(B) does not generally hold for selfadjoint operators
A and B, unless they commute. Our construction given below therefore follows a
different but related path, where the mentioned Laplace transforms are replaced by the
set function

µ(E) :=

∫ ∞
0

t Lsp{M(E)}(dt), (E ∈ E), (3.3)

which we shall argue is a measure on E. In case M(E) is bounded (and hence an element
of M) it holds automatically that µ(E) <∞, since the appearing integral equals τ(M(E)).
In general, when it is finite, µ(E) may also be identified with the first free cumulant
of Lsp{M(E)} (cf. (2.8)), which we shall mostly denote simply by κ1(M(E)) rather than
κ1(Lsp{M(E)}) to avoid too heavy notation.

Lemma 3.5. In the setting described above the formula

µ(E) =

∫ ∞
0

t Lsp{M(E)}(dt), (E ∈ E),

defines a (positive) measure on (X,E).

Proof. Throughout this proof we employ for brevity the notation νE for the spectral
distribution Lsp{M(E)} for any E from E. From Definition 3.1(b) it follows that M(∅) = 0,
so that ν∅ = δ0, and hence µ(∅) = 0.

We show next that µ is finitely additive on E. For this note first that if A, B are sets
from E, such that A ⊆ B, then M(A) ≤M(B), since M(B)−M(A) = M(B \A) is positive.
According to Lemma 3.3 in [7] this means that the distribution functions FνA and FνB
of νA and νB satisfy that FνA(t) ≥ FνB (t) for all t in R. For any K in [0,∞) this further
implies that∫

(K,∞)

t νA(dt) =

∫ ∞
0

νA({t ∈ R | t1(K,∞)(t) > s}) ds

=

∫ ∞
0

νA((K,∞) ∩ (s,∞)) ds =

∫ ∞
0

(1− FνA(K ∨ s)) ds

≤
∫ ∞

0

(1− FνB (K ∨ s)) ds =

∫
(K,∞)

t νB(dt).

(3.4)

Consider now two disjoint sets E1, E2 from E. If µ(E1) = ∞ or µ(E2) = ∞, then by
(3.4) (in the case K = 0) it follows that µ(E1 ∪ E2) ≥ µ(E1) ∨ µ(E2) = ∞, and hence
µ(E1 ∪ E2) = µ(E1) + µ(E2) in this case. If µ(E1), µ(E2) < ∞, then since M(E1) and
M(E2) are freely independent, and since the free cumulants linearize free convolution
(cf. (2.9)), it follows that

µ(E1 ∪ E2) = κ1(M(E1 ∪ E2)) = κ1(M(E1) +M(E2)) = κ1(νE1
� νE2

)

= κ1(νE1
) + κ1(νE2

) = µ(E1) + µ(E2).

Consider finally a sequence (En)n∈N of sets from E such that E :=
⋃
n∈NEn ∈ E. We must

show that µ(E) =
∑∞
n=1 µ(En). Recall first from Remark 3.2(2) that M(

⋃n
j=1Ej)→M(E)

EJP 26 (2021), paper 49.
Page 11/41

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP620
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Completely random measures and Lévy bases in free probability

in the measure topology as n → ∞. In particular ν∪nj=1Ej
→ νE weakly as n → ∞

(cf. (2.5)), and this further entails that

µ(E) =

∫ ∞
0

t νE(dt) ≤ lim inf
n→∞

∫ ∞
0

t ν∪nj=1Ej
(dt) = lim inf

n→∞
µ
( n⋃
j=1

Ej
)

= lim inf
n→∞

n∑
j=1

µ(Ej) =

∞∑
n=1

µ(En),

(3.5)

where we also invoked the finite additivity of µ established above. By (3.5) we may
assume in the following that µ(E) < ∞, and by (3.4) this further entails that µ(En) ≤
µ(
⋃n
j=1Ej) <∞ for all n. From the finite additivity of µ we have that

µ(E)−
n∑
j=1

µ(Ej) = µ
(
E \

n⋃
j=1

Ej
)

for all n. Setting Gn = E \
⋃n
j=1Ej for all n, it suffices thus to show that

µ(Gn) =

∫ ∞
0

t νGn(dt) −→ 0 as n→∞. (3.6)

Since GN ↓ ∅ as n→∞, we know from condition (c) in Definition 3.1 that νGn
w→ δ0, and

hence it is well-known that the convergence in (3.6) is equivalent to the condition that
the family {νGn | n ∈ N} is uniformly integrable in the sense that

∀ε ∈ (0,∞) ∃K ∈ (0,∞) : sup
n∈N

∫
(K,∞)

t νGn(dt) ≤ ε. (3.7)

From (3.4) we have for any n in N and K in [0,∞) that∫
(K,∞)

t νGn(dt) ≤
∫

(K,∞)

t νG1
(dt).

Since the right hand side does not depend on n and converges to 0 as K → ∞ (by
dominated convergence) it follows readily that (3.7) is satisfied.

As described in Subsection 2.1 the measure µ introduced in Lemma 3.5 can be
extended to a (positive) measure on σ(E), which we also denote by µ. We shall assume in
the following that µ is σ-finite. This assumption may be seen as an analog of the (less
restrictive) condition “C” presupposed in [11]. In the remainder of this section we shall
assume further that the δ-ring E satisfies condition (2.2).

Recall that an atom for µ is a set A from σ(E), such that µ(A) > 0 and µ(B ∩ A) ∈
{0, µ(A)} for any set B from σ(E). It is well-known that any σ-finite measure may be
decomposed into the sum of a purely atomic part and an atom-less part. More specifically
there exists a subset I of N and a corresponding family (An)n∈I of disjoint atoms for µ,
such that if we put A =

⋃
n∈I An, and

µc(B) := µ(B ∩ (X \ A)), (B ∈ σ(E)),

then the measure µc does not have any atoms. The “atomic part” of µ is then concentrated
to the measure

µa(B) := µ(B ∩ A) =
∑
n∈I

µ(B ∩An), (B ∈ σ(E)),
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and the mentioned decomposition is

µ = µa + µc. (3.8)

Note that the σ-finiteness of µ prevents any atom of µ from having infinite µ-measure. In
particular

µ(An) ∈ (0,∞) for all n in N. (3.9)

By a theorem of W. Sierpiński, the atom-free part µc has the following property: Any
set B from σ(E), such that 0 < µc(B) < ∞, admits for any n in N a decomposition
B =

⋃n
j=1Bj into disjoint sets B1, . . . , Bn from σ(E), such that

µc(Bj) =
µc(B)

n
, j = 1, . . . , n. (3.10)

Corresponding to (3.8) we consider now the decomposition M = Ma +Mc, where

Ma(E) := M(E ∩ A), and Mc(E) := M(E ∩ (X \ A)) for any E in E. (3.11)

We then have the following result.

Theorem 3.6. Let X be a non-empty set, and let E be a δ-ring in X satisfying condition
(2.2). Let further M = {M(E) | E ∈ E} be a positive FCRM on (X,E), satisfying that the
measure µ introduced in Lemma 3.5 is σ-finite, and consider the decomposition

M(E) = Ma(E) +Mc(E), (E ∈ E),

described above. Then Mc and Ma are freely independent, Mc is a free Lévy basis, and
there exists a countable family (Tn)n∈I of operators from {Ma(E) | E ∈ E}, such that

Ma(E) =
∑
n∈I

µ(An∩E)
µ(An) Tn, (E ∈ E), (3.12)

where (An)n∈I is the family of disjoint atoms for µ described above.

Concerning formula (3.12), note that µ(An∩E)
µ(An) ∈ {0, 1} for any E in σ(E) and any n in

I, since An is an atom for µ. Note also that the sum converges in the measure topology
in case I is infinite (cf. Lemma 3.4 and Remark 3.2(2)).

Proof of Theorem 3.6. It follows directly from Lemma 3.4 that Ma and Mc defined by
(3.11) are freely independent FCRM’s on (X,E). In order to prove that Mc is a FLB, it
remains then to verify that Lsp{Mc(E)} ∈ ID(�) for any given E from E. We assume first
that µc(E) <∞. As described above we may then, for any n in N, choose disjoint sets

E
(n)
1 , . . . , E

(n)
n from σ(E), such that E =

⋃n
j=1E

(n)
j , and µc(E

(n)
j ) = µc(E)

n , j = 1, . . . , n (cf.

(3.10)). From (2.1) it follows in particular that E(n)
j ∈ E for all j, n, and therefore

Lsp{Mc(E)} = Lsp{Mc(E
(n)
1 ) + · · ·+Mc(E

(n)
n )} = Lsp{Mc(E

(n)
1 )}� · · ·� Lsp{Mc(E

(n)
n )}.

Appealing now to [6, Theorem 1] it suffices to prove that the family {Lsp{Mc(E
(n)
j )} | n ∈

N, j = 1, . . . , n} is a null-array in the sense that

∀ε ∈ (0,∞) : max
1≤j≤n

Lsp{Mc(E
(n)
j )}([−ε, ε]c) −−−−→

n→∞
0. (3.13)

Given ε in (0,∞) it follows from Markov’s Inequality that

Lsp{Mc(E
(n)
j )}([−ε, ε]c) = Lsp{Mc(E

(n)
j )}((ε,∞)) ≤ 1

ε

∫ ∞
0

t Lsp{M(E
(n)
j \ A)}(dt)

=
1

ε
µ(E

(n)
j \ A) =

1

ε
µc(E

(n)
j ) =

1

nε
µc(E)
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for any j, n. Since the resulting expression does not depend on j, this validates (3.13).
Assume next that µc(E) = ∞. Since µc is σ-finite, we may choose a sequence

(En)n∈N of disjoint sets from σ(E), such that E =
⋃
n∈NEn and µc(En) < ∞ for all n.

By (2.1) we have that En ∈ E for all n, and the argument above then ensures that
Lsp{Mc(En)} ∈ ID(�) for all n. Furthermore Remark 3.2(2) in conjunction with (2.5)
yield that

Lsp{Mc(E1)}� · · ·� Lsp{Mc(En)} = Lsp
{∑n

j=1Mc(Ej)
} w−−−−→

n→∞
Lsp{Mc(E)}.

Since ID(�) is closed under free convolution and weak convergence, this yields that
Lsp{Mc(E)} ∈ ID(�) also in this case.

It remains to establish (3.12). By Remark 3.2(2) we note first for any E in E that

Ma(E) = M(E ∩ A) =
∑
n∈I

M(E ∩An), where µ(E ∩An) ∈ {0, µ(An)} for all n.

In case 0 = µ(E ∩An) =
∫∞

0
t Lsp{M(E ∩An)}(dt), it follows that Lsp{M(E ∩An)} = δ0,

and hence M(E ∩ An) = 0, since τ is faithful. In order to establish (3.12) it suffices
therefore to verify that

M(E ∩An) = M(E′ ∩An)

whenever E,E′ ∈ E such that µ(E ∩ An) = µ(An) = µ(E′ ∩ An). But given such E,E′,
note that (cf. (3.9))

µ(An ∩ E \ E′) ≤ µ(An \ E′) = µ(An)− µ(An ∩ E′) = 0,

and hence it follows as above by faithfulness of τ that M(An ∩ E \ E′) = 0, and similarly
that M(An ∩ E′ \ E) = 0. Therefore

M(An ∩ E) = M(An ∩ E ∩ E′) +M(An ∩ E \ E′) = M(An ∩ E ∩ E′) = M(An ∩ E′),

as desired. This completes the proof.

3.2 Decomposition of a signed FCRM

Let E be a δ-ring on a non-empty set X, and let M = {M(E) | E ∈ E} be a FCRM. In
this subsection we establish a decomposition similar to that obtained in the previous
subsection in the more general situation, where we drop the assumption of positivity.
The corresponding problem for “signed” CRMs was not considered by Kingman; pre-
sumably because the approach using Laplace transforms is not directly applicable. Our
approach to the case of “signed” FCRMs requires stronger moment conditions than
those considered in the positive case, where σ-finiteness of the measure introduced
in Lemma 3.5 was presupposed. Specifically we require in the following existence of
second moments, i.e. ∫

R

t2 Lsp{M(E)}(dt) <∞ for any E in E, (3.14)

but we shall actually need slightly more than that (see Lemma 3.7 and Remark 3.8
below). The existence of second moments allows us to consider the second free cumulant
(cf. (2.8))

κ2(Lsp{M(E)}) =

∫
R

t2 Lsp{M(E)}(dt)−
(∫

R

t Lsp{M(E)}(dt)
)2

≥ 0, (3.15)

which we denote for brevity by κ2(M(E)).
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Lemma 3.7. Let M = {M(E) | E ∈ E} be a FCRM satisfying condition (3.14). Assume
additionally that

lim
n→∞

κ2(M(En)) = 0 for any sequence (En)n∈N from E, such that En ↓ ∅. (3.16)

Then the formulae

µ1(E) = κ1(M(E)) =

∫
R

t Lsp{M(E)}(dt),

µ2(E) = κ2(M(E)),

define, respectively, a signed measure µ1 and a positive measure µ2 on (X,E).

Proof. As in the proof Lemma 3.5 it follows that µ1(∅) = µ2(∅) = 0, and that µ1 and µ2

are finitely additive on E, since κ1 and κ2 both linearize �. For a sequence (Dn)n∈N of
disjoint sets from E, such that D :=

⋃
n∈NDn ∈ E, the finite additivity and condition

(3.14) further ensure the validity of the calculation:

µ2(D)−
n∑
j=1

µ2(Dj) = µ2

(
D \

n⋃
j=1

Dj

)
= κ2

(
M
(
D \

n⋃
j=1

Dj

))
,

and hence (3.16) supplies the remaining condition for µ2 to be a measure on (X,E). In
order to complete the proof it remains therefore only to verify that also

lim
n→∞

κ1(M(En)) = 0 for any sequence (En)n∈N from E, such that En ↓ ∅. (3.17)

Consider thus such a sequence (En)n∈N, and for brevity put νn = Lsp{M(En)} for each
n. Then Definition 3.1(c) entails that νn

w→ δ0 as n → ∞. For any positive ε this, in
conjunction with (3.16), leads to

νn
(
{t ∈ R | |t− κ1(νn)|+ |t| > 2ε}

)
≤ νn

(
{t ∈ R | |t− κ1(νn)| > ε}

)
+ νn

(
[−ε, ε]c

)
≤ ε−2

∫
R

(t− κ1(νn))2 νn(dt) + νn
(
[−ε, ε]c

)
= ε−2κ2(νn) + νn

(
[−ε, ε]c

)
−−−−→
n→∞

0.

In particular {t ∈ R | |t − κ1(νn)| + |t| ≤ 2ε} 6= ∅ for all sufficiently large n, and
for such n we can choose tn in R such that |tn − κ1(νn)| + |tn| ≤ 2ε. But then also
|κ1(νn)| ≤ |κ1(νn)− tn|+ |tn| ≤ 2ε, and this verifies (3.17).

Remark 3.8. The assumption (3.16) in Lemma 3.7 may appear rather “artificial”, as it
is essentially equivalent to the statement that µ2 is a measure. The proof of Lemma 3.7
shows that (3.16) implies that κ1(M(En))→ 0 as n→∞, and hence also that∫

R

t2 Lsp{M(En)}(dt) = κ2(M(En)) + κ1(M(En))2 −−−−→
n→∞

0

for any sequence (En)n∈N from E, such that En ↓ ∅. Thus (3.16) is in fact – in the
considered setup – equivalent to convergence to 0 in the square mean, which by standard
results is equivalent to uniform integrability of the sequence

{Lsp{M(En)} ◦ sq−1 | n ∈ N}

of transformations of Lsp{M(En)} by the mapping sq : x 7→ x2 : R → R. Consequently
a more elaborate condition on M , ensuring the validity of (3.16), is that the family
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{Lsp{M(E′)} ◦ sq−1 | E′ ∈ E, E′ ⊆ E} be uniformly integrable for any E in E. This latter
condition is satisfied, in particular, if there exists a positive number ε, such that

sup
E′∈E
E′⊆E

∫
R

|t|2+ε Lsp{M(E′)}(dt) <∞ for any E in E,

and one could even allow for ε to depend on E.

In the setting of Lemma 3.7 we consider next the positive measure

µ = |µ1|+ µ2, (3.18)

where |µ1| denotes the total variation measure of the signed measure µ1 (cf. Subsec-
tion 2.1). We extend µ to a measure on σ(E) (also denoted µ) and assume again that
(X,E) satisfies condition (2.2). In combination with (3.14) this entails that µ is σ-finite
and hence it admits an atomic decomposition:

µ = µa + µc

as described in Subsection 3.1. Specifically we introduce a countable family (An)n∈I ⊆
σ(E) of disjoint atoms for µ, such that

µa(B) = µ(B ∩ A) and µc(B) = µ(B \ A) for any B in σ(E),

where A =
⋃
n∈I An. We consider then the corresponding decomposition M = Ma +Mc

of M , where

Ma(E) = M(E ∩ A) and Mc(E) = M(E \ A) for any E in E.

Theorem 3.9. Let X be a non-empty set, and let E be a δ-ring in X satisfying condi-
tion (2.2). Let further M = {M(E) | E ∈ E} be a FCRM on (X,E) affilliated with a
W ∗-probability space (M, τ) and satisfying (3.14) and (3.16). Consider also the decom-
position

M(E) = Ma(E) +Mc(E), (E ∈ E),

described above. Then Mc and Ma are freely independent, Mc is a free Lévy basis, and
there exists a countable family (Tn)n∈I of operators from {Ma(E) | E ∈ E}, such that

Ma(E) =
∑
n∈I

µ(An∩E)
µ(An) Tn, (E ∈ E). (3.19)

Here µ is given by (3.18) and (An)n∈I is the family of disjoint atoms for µ described
above.

Proof. The proof is similar to that of Theorem 3.6, and we shall not repeat all details.
It follows directly from Lemma 3.4 that Ma and Mc are freely independent FCRM’s. To
show that Lsp{Mc(E)} ∈ ID(�) for any E in E, we use the facts that µc is atom-less and

that µc(E) <∞ to choose, for any n in N, disjoint sets E(n)
1 , . . . , E

(n)
n from E, such that

E =
⋃n
j=1E

(n)
j , and such that µc(E

(n)
j ) = µc(E)

n , j = 1, . . . , n. Note then for any n in N
that

Lsp
{
Mc(E)

}
= δµ1(E\A) �

( n
�
j=1

Lsp
{
Mc(E

(n)
j )− µ1(E

(n)
j \ A)111M

})
,

where 111M denotes the multiplicative unit of M. By [6, Theorem 1] it suffices thus to show
that

∀ε ∈ (0,∞) : max
1≤j≤n

Lsp{Mc(E
(n)
j )− µ1(E

(n)
j \ A)111M}([−ε, ε]c) −−−−→

n→∞
0. (3.20)
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Given ε in (0,∞), we find for any j, n by Chebyshev’s Inequality that

Lsp
{
Mc(E

(n)
j )−µ1(E

(n)
j \ A)111M

}
([−ε, ε]c)

= Lsp{Mc(E
(n)
j )}

(
{t ∈ R | |t− κ1(Mc(E

(n)
j ))| > ε}

)
≤ ε−2κ2(Mc(E

(n)
j )) = ε−2κ2(M(E

(n)
j \ A))

≤ ε−2µ(E
(n)
j \ A) = ε−2µc(E

(n)
j ) =

µc(E)

nε2
,

from which (3.20) follows readily. It remains to verify (3.19). Note initially that

Ma(E) = M(E ∩ A) =
∑
n∈I

M(E ∩An)

for any E in E by (2.1) and Remark 3.2(2). If µ(E ∩ An) = 0, then in particular the
variance κ2(M(E ∩ An)) = 0, and hence Lsp{Ma(E ∩ An)} = δc for some c ∈ R. Since
also |µ1|(E ∩ An) = 0, and therefore κ1(Ma(E ∩ An)) = µ1(E ∩ An) = 0, we must then
have that c = 0. By faithfulness of τ this implies that M(E ∩An) = 0. To verify (3.19) it
suffices therefore to argue for any n in N and any E,E′ from E that

µ(E ∩An) = µ(An) = µ(E′ ∩An) =⇒ M(E ∩An) = M(E′ ∩An). (3.21)

Assuming the left hand side of (3.21) it suffices as in the proof of Theorem 3.6 to show
that M(An∩E\E′) = M(An∩E′\E) = 0, and as argued above this follows by faithfulness
of τ , if we validate that µ(An ∩ E \ E′) = µ(An ∩ E′ \ E) = 0. But this follows exactly as
in the proof of Theorem 3.6.

4 Free Lévy bases

For a Free Lévy basis the �-infinite divisibility of the marginals makes it possible to
transfer major elements of the theory of classical Lévy bases, as developed in [16], to
the free setting via the Bercovici-Pata bijection. Following that strategy we record in
this section some basic results on free Lévy bases. The starting point is the following:

Theorem 4.1. Let E be a δ-ring of subsets of a non-empty set X.

(i) For any free Lévy basis M = {M(E) | E ∈ E} (affiliated with some W ∗-probability
space) there exists a classical Lévy basis N = {N(E) | E ∈ E} defined on some
probability space (Ω,F, P ), such that

Λ(L{N(E)}) = Lsp{M(E)} for all E in E. (4.1)

(ii) For any classical Lévy basis N = {N(E) | E ∈ E} (defined on some classical
probability space) there exists a free Lévy basis M = {M(E) | E ∈ E} affiliated
with some W ∗-probability space (M, τ), such that the relation (4.1) holds.

Proof. (i) Consider a free Lévy basis M = {M(E) | E ∈ E} affiliated with some W ∗-
probability space (M, τ), and for each E in E put

µ(E, ·) = Λ−1(Lsp{M(E)}).

If E1, . . . , En are disjoint sets from E we have then that

µ
(⋃n

j=1Ej , ·
)

= Λ−1
(
Lsp
{
M(E1) + · · ·+M(En)

})
= Λ−1

(
Lsp{M(E1)}� · · ·� Lsp{N(En)}

)
= Λ−1(Lsp{M(E1)}) ∗ · · · ∗ Λ−1(Lsp{M(En)})
= µ(E1, ·) ∗ · · · ∗ µ(En, ·).

(4.2)
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In addition, for any decreasing sequence (Fn)n∈N from E, such that
⋂
n∈N Fn = ∅, we

have that Lsp{M(Fn)} w→ δ0 as n→∞, and hence by continuity of Λ−1,

µ(Fn, ·)
w−−−−→

n→∞
δ0. (4.3)

It follows from (4.2) and the Kolmogorov Extension Theorem that there exists a finitely
additive, infinitely divisible random measure N = {N(E) | E ∈ E}, defined on some
probability space (Ω,F, P ), such that L{N(E)} = µ(E, ·) for all E in E. If (En)n∈N is a
sequence of disjoint sets from E, such that E :=

⋃
n∈NEn ∈ E, then (4.3) implies that∑n

j=1N(Ej)→ N(E) in probability as n→∞. Since the terms N(E1), N(E2), N(E3), . . .

are independent, the convergence also holds almost surely. Hence N is a classical Lévy
basis.

(ii) Let N = {N(E) | E ∈ E} be a classical Lévy basis defined on some probability space
(Ω,F, P ), and for any E in E put

ν(E, ·) = Λ(L{N(E)}) ∈ ID(�).

Argumentation similar to that of the proof of (i) verifies that the family {ν(E, ·) | E ∈ E}
satisfies (3.2) and the conditions in (ii) and (iii) of Theorem 3.3. Hence that same theorem
provides the existence of a FLB with the described properties.

Next we transfer some fundamental results from [16] on classical Lévy bases to
corresponding results for free Lévy bases. In the remaining part of this section we
consider thus, as in [16], a δ-ring E in X satisfying condition (2.2). Note that without
loss of generality we may assume that the Un’s from (2.2) are disjoint or increasing in n.

Proposition 4.2. (i) Let M = {M(E) | E ∈ E} be a free Lévy basis affiliated with
some W ∗-probability space (M, τ). Then there exist a signed measure Θ: E→ R, a
finite (positive) measure Σ: E→ [0,∞) and a σ-finite (positive) measure F : σ(E)⊗
B(R)→ [0,∞] such that the free Lévy-Khintchine representation of M(E) is given
by

CM(E)(z) = zΘ(E) + z2Σ(E) +

∫
R

( 1

1− tz
− 1− zς(t)

)
FE(dt), (z ∈ C−), (4.4)

for any E in E. Here FE is the measure on B(R) given by: FE(B) = F (E ×B) for
any B in B(R), and FE is a Lévy measure on R for all E in E.

(ii) For any triplet (Θ,Σ, F ) of measures as described in (i), there exists a free Lévy
basis M = {M(E) | E ∈ E} (affiliated with some W ∗-probability space), such that
(4.4) holds.

(iii) Let M and (Θ,Σ, F ) be as stated in (i). Then there exists a unique, σ-finite and
positive measure κ on σ(E) with the following properties:

(a) κ(E) = |Θ|(E) + Σ(E) +
∫
R

min{1, x2}FE(dx) for all E in E.

(b) If (En)n∈N is a sequence of sets from E, such that κ(En)→ 0 as n→∞, then
M(En)→ 0 in the measure topology.

(c) Suppose (En)n∈N is a sequence of sets from E, such that M(E′n) → 0 in the
measure topology for any sequence (E′n)n∈N from E, such that E′n ⊆ En for all
n. Then κ(En)→ 0 as n→∞.

The triplet (Θ,Σ, F ) of measures introduced in Proposition 4.2(i) is referred to as the
free characteristic triplet of the free Lévy basis M . The measure κ is referred to as the
control measure of M .
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For the measure FE in 4.2(i) it follows e.g. by a standard extension argument that a
Borel function f : R→ C is in L1(FE), if and only if 1E ⊗ f ∈ L1(F ), in which case∫

R

f(t)FE(dt) =

∫
X×R

1E(x)f(t)F (dx, dt). (4.5)

We note also that the measure F is uniquely determined on the σ-algebra σ(E)⊗B(R)

by the condition: F (E ×B) = FE(B) for all E in E and B in B(R), since this also implies
that F (Un × (R \ [− 1

n ,
1
n ])) <∞ for all n, because FUn is a Lévy measure. Here (Un)n∈N

is the sequence from (2.2), chosen to be increasing.

Proof of Proposition 4.2. (i) Let N = {N(E) | E ∈ E} be a classical Lévy basis corre-
sponding to M as described in Theorem 4.1. Then by Proposition 2.1 and Lemma 2.3
in [16] there exist a signed measure Θ: E → R, a finite measure Σ: E → [0,∞) and a
σ-finite measure F : σ(E)⊗B(R)→ [0,∞], such that

CN(E)(y) = i yΘ(E)− 1
2y

2Σ(E) +

∫
R

(
ei ty −1− i yς(t)

)
FE(dt), (y ∈ R), (4.6)

for all E in E. Since Lsp{M(E)} = Λ(L{N(E)}) for all E in E, it follows immediately from
the definition of Λ that (Θ,Σ, F ) satisfies (4.4) as well.

(ii) If (Θ,Σ, F ) is a triplet as described in (i), then Proposition 2.1 in [16] ensures
the existence of a classical Lévy basis N = {N(E) | E ∈ E} such that (4.6) holds.
Subsequently Theorem 4.1 provides a free Lévy basis M = {M(E) | E ∈ E} such that
(4.4) holds.

(iii) Let N be as in the proof of (i). It follows then from Proposition 2.1 in [16] that
there exists a σ-finite measure κ on σ(E), such that (a) is satisfied, and such that (b) and
(c) hold with M replaced by N and convergence in the measure topology replaced by
convergence in probability. Since e.g. in (b) M(En)→ 0 in the measure topology, if and
only if N(En) → 0 in probability, it follows readily that κ satisfies (b) and (c) as they
stand.

Since the triplet (Θ,Σ, F ) appearing in Proposition 4.2(i) is obtained by application of
Proposition 2.1 in [16] to a classical Lévy basis, it follows immediately from Lemma 2.3
of that same paper, that there exists a mapping ρ : X ×B(R)→ [0,∞] with the following
properties:

(i) ρ(x, ·) is a Lévy measure on R for any fixed x in X.

(ii) ρ(·, B) is a σ(E)-measurable function for any fixed Borel subset B of R.

(iii) For any function h : X ×R→ C which is positive and σ(E)⊗B(R)-measurable or in
L1(F ) it holds that∫

X×R
h(x, t)F (dx, dt) =

∫
X

(∫
R

h(x, t) ρ(x,dt)
)
κ(dx), (4.7)

where κ is the control measure introduced in Proposition 4.2(iii), and the integral∫
R
h(x, t) ρ(x, dt) is well-defined for κ-almost all x in X.

We note also that ρ is unique up to κ-null-sets: If ρ′ : X ×R→ [0,∞] is another mapping
satisfying conditions (i)-(iii), then ρ(x, ·) = ρ′(x, ·) for κ-almost all x, since B(R) is
countably generated.

For the mapping ρ we now have the following analog of Proposition 2.4 in [16].
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Proposition 4.3. Consider a free Lévy basis M = {M(E) | E ∈ E}, and let Θ,Σ, F, κ

be the associated measures described in Proposition 4.2. Furthermore let ρ be the
corresponding mapping introduced above, and let θ and σ2 denote, respectively, the
Radon-Nikodym derivatives of Θ and Σ with respect to κ. Then for any set E from E we
have the formula:

CM(E)(z) =

∫
E

R(x, z)κ(dx), (z ∈ C−),

where the kernel R(·, ·) is given by

R(x, z) = zθ(x) + z2σ2(x) +

∫
R

( 1

1− tz
− 1− zς(t)

)
ρ(x,dt),

for all z in C− and x in X.

Proof. By the definition of κ in 4.2(iii) it is clear that |Θ|,Σ ≤ κ, so that θ and σ2 are
well-defined (see Subsection 2.1). Let E be a given set from E. For any fixed z in C−

the function t 7→ 1
1−tz − 1− zς(t) belongs to L1(FE) and to L1(ρ(x, ·)) for all x in X, since

the considered measures are all Lévy measures. Combining formulae (4.5) and (4.7) it
follows further that∫
E

(∫
R

( 1

1− tz
− 1− zς(t)

)
ρ(x, dt)

)
κ(dx) =

∫
X×R

1E(x)
( 1

1− tz
− 1− zς(t)

)
F (dx, dt)

=

∫
R

( 1

1− tz
− 1− zς(t)

)
FE(dt).

Therefore, by the definitions of R, θ and σ2,∫
E

R(x, z)κ(dx) = zΘ(E) + z2Σ(E) +

∫
R

( 1

1− tz
− 1− zς(t)

)
FE(dt) = CM(E)(z),

where the last equality is (4.4).

Remark 4.4. For fixed x in X the “slice-function” R(x, ·) of the kernel R in Proposi-
tion 4.3 is the free cumulant transform of a freely infinitely divisible probability measure
νx with free characteristic triplet (θ(x), σ2(x), ρ(x, ·)). In the literature on classical Lévy
bases the measure µx in ID(∗) with classical characteristic triplet (θ(x), σ2(x), ρ(x, ·)) is
often referred to as the Lévy seed at x of the classical Lévy basis N = {N(E) | E ∈ E}
corresponding to M as in Theorem 4.1. By analogy we refer to νx as the (free) Lévy
seed of M at x. Proposition 4.3 then asserts that the distribution of the free Lévy basis
M is uniquely determined by the family {νx | x ∈ X} of Lévy seeds and the control
measure κ. Accordingly we refer to the quadruplet (θ, σ2, ρ, κ) as the free characteristic
quadruplet of M . We note further, that since Λ(µx) = νx for all x in X, it is apparent
that the one-to-one correspondence in Theorem 4.1 really takes place at the infinitesimal
level, i.e. by applying Λ at the level of the “infinitesimal seeds”.

We consider next a fundamental class of examples of free Lévy bases, namely the
so-called factorizable free Lévy bases.

Examples 4.5. (1) Let ν be a measure from ID(�) \ {δ0} with free characteristic triplet
(a, b, r). Let further X be a non-empty set equipped with a δ-ring E, and let η : E→ [0,∞]

be a measure on E. Finally put E0 = {E ∈ E | η(E) < ∞}, and note that E0 is again
a δ-ring. We assume that E0 satisfies condition (2.2). This implies in particular that
σ(E0) = σ(E), and that η extends uniquely to a σ-finite measure on σ(E).

For each E in E0 we denote by ν(E, ·) the measure in ID(�) with free characteristic
triplet

η(E) · (a, b, r) := (η(E)a, η(E)b, η(E)r).
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If E1, . . . , En are disjoint sets from E0, then ν(E1, ·)� · · ·� ν(En, ·) has free characteristic
triplet (∑n

k=1 η(Ek)
)
· (a, b, r) = η

(⋃n
k=1Ek) · (a, b, r),

and thus equals ν(
⋃n
k=1Ek, ·). Hence by Theorem 3.3 there exists a free Lévy basis

M(η,ν) = {M(η,ν)(E) | E ∈ E0} such that Lsp{M(η,ν)(E)} = ν(E, ·) for all E in E0. It is
straightforward to check that in the considered set-up, the triplet (Θ,Σ, F ) for M(η,ν)

described in Proposition 4.2 is given by

Θ = aη, Σ = bη and F = η ⊗ r,

and consequently the control measure κ is given by

κ(E) = |a|η(E) + bη(E) + η(E)

∫
R

min{1, t2} r(dt) = cνη(E), (E ∈ σ(E)),

where the constant cν is given by

cν = |a|+ b+

∫
R

min{1, t2} r(dt). (4.8)

Note that cν > 0, since ν 6= δ0. The Lévy seed νx at a point x in X (cf. Remark 4.4)
consequently has free characteristic triplet (θ(x), σ2(x), ρ(x, ·)) given by

θ(x) = c−1
ν a, σ2(x) = c−1

ν b, and ρ(x, ·) = c−1
ν r.

In particular the Lévy seed νx does not depend on x. We refer to free Lévy bases in this
form as factorizable free Lévy bases.

(2) In the special case where the measure ν considered in (1) is the standard semi-circle
distribution 1

2π

√
4− x21[−2,2](x) dx we replace the notation M(η,ν) by Gη and refer to Gη

as a semi-circular Lévy bases. As the free characteristic triplet (a, b, r) of ν is (0, 1, 0) in
this case, the free cumulant transform of Gη(E) is given by CGη(E)(z) = z2η(E) for all E
in E0. In other words Gη(E) has the semi-circle distribution

1

2πη(E)

√
4η(E)− t21[−2η(E)1/2,2η(E)1/2](t) dt.

In particular Gη(E) is a bounded operator for all E in E0. The triplet (Θ,Σ, F ) equals
(0, η, 0), and the constant cν in (4.8) equals 1, so the characteristic quadruplet is (0, 1, 0, η).
For each x in X the Lévy seed νx is simply ν itself.

(3) In the special case where the measure ν considered in (1) is the free Poisson
distribution 1

2πt

√
t(4− t)1[0,4](t) dt with parameter 1, we replace the notation M(η,ν) by

Pη.
As the free characteristic triplet (a, b, r) of ν is (1, 0, δ1) in this case, the free cumulant

transform of Pη(E) is given by

CPη(E)(z) = η(E)z + η(E)
( 1

1− z
− 1− z

)
= η(E)

( 1

1− z
− 1
)
, (z ∈ C−),

for all E in E0. In other words (see e.g. [21, page 35]) the spectral distribution of Pη(E)

is the free Poisson distribution Poiss�(η(E)) with parameter η(E) given by

Poiss�(η(E))(dt) =

{
(1− η(E))δ0 + 1

2πt

√
(t− s)(u− t)1[s,u](t) dt, if η(E) ≤ 1,

1
2πt

√
(t− s)(u− t)1[s,u](t) dt, if η(E) > 1,

where s = (1− η(E))2 and u = (1 + η(E))2. In particular Pη(E) is a bounded operator for
all E in E0. The triplet (Θ,Σ, F ) equals (η, 0, η ⊗ δ1), and the constant cν in (4.8) equals
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2, so that the characteristic quadruplet is ( 1
2 , 0,

1
2δ1, 2η). For each x in X the Lévy seed

νx is the Poisson distribution with parameter 1
2 .

Free Lévy bases in this form were previously considered under the name free Poisson
random measures in [2].

We close this section by stating two propositions, both of which describe natural and
useful constructions with free Lévy bases. As the proofs of these propositions are rather
simple, we leave them as exercises for the interested reader.

Proposition 4.6. Let M = {M(E) | E ∈ E} be a free Lévy basis with free characteristic
triplet (Θ,Σ, F ). Let further ϕ : X → Y be mapping from X into a non-empty set Y , and
define

F0 = {H ⊆ Y | ϕ−1(H) ∈ E}

and
M ◦ ϕ−1 = {M(ϕ−1(H)) | H ∈ F0}.

Then F0 is a δ-ring and M ◦ ϕ−1 is a free Lévy basis. If F0 satisfies (2.2), then the free
characteristic triplet of M ◦ ϕ−1 is given by (Θ ◦ ϕ−1,Σ ◦ ϕ−1, F ◦ (ϕ, idR)−1), where idR
denotes the identity function on R and (ϕ, idR) : X ×R→ Y ×R is the function given by

(ϕ, idR)(x, t) = (ϕ(x), t) (x ∈ X, t ∈ R).

Proposition 4.7. Let M = {M(E) | E ∈ E} be a free Lévy basis with free characteristic
triplet (Θ,Σ, F ). Let further A be a fixed set from σ(E), and define

EA = {E ∈ σ(E) | A ∩ E ∈ E},

and
MA(E) = M(A ∩ E), (E ∈ EA).

Then MA is a new free Lévy basis on (X,E) with free characteristic triplet (ΘA,ΣA, FA)

given by

ΘA(E) = Θ(A ∩ E), ΣA(E) = Σ(A ∩ E), and FA(E ×B) = F ((A ∩ E)×B)

for any E from E and any Borel subset B of R.

5 Integration with respect to free Lévy Bases

In this section we develop a theory of integration with respect to free Lévy bases in
parallel to the corresponding theory for classical Lévy bases in [16]. Throughout the
section we consider a δ-ring in a non-empty set X, and we assume condition (2.2). We
consider further a free Lévy basis {M(E) | E ∈ E} affiliated with a W ∗-probability space
(M, τ). Now let s : X → R be a simple E-measurable function in the form:

s =

n∑
k=1

αk1Ak , where α1, . . . , αn ∈ R, and A1, . . . , An are disjoint sets from E. (5.1)

Then for any A in σ(E) we define the integral
∫
A
sdM of s over A with respect to M by

the formula: ∫
A

sdM =

n∑
k=1

αkM(Ak ∩A). (5.2)

Remarks 5.1. (1) The right hand side of (5.2) is well-defined, since Ak ∩A ∈ E for all
k (cf. (2.1)). Denote by SM(E) the class of functions in the form (5.1). Since E is in
particular stable under finite intersections, it follows from the definition of a free Lévy
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basis and standard argumentation that SM(E) is a vector space, that the right hand side
of (5.2) does not depend on the choice of the representation (5.1) and that∫

A

(αs+ s′) dM = α

∫
A

sdM +

∫
A

s′ dM

for any s, s′ in SM(E), any A in σ(E) and any α in R. The definition of a free Lévy basis
further entails that Lsp{

∫
A
sdM} ∈ ID(�) for any s in SM(E) and A in σ(E).

(2) Let N = {N(E) | E ∈ E} be a classical Lévy basis corresponding to M as in
Theorem 4.1. Then for any s in SM(E) and A in σ(E) the integral

∫
A
sdN is defined

in [16] exactly as above (with M replaced by N ). It follows then from the algebraic
properties of Λ that

Λ
(
L
{∫

A

sdN
})

= Lsp
{∫

A

sdM
}
.

In parallel to [16] we define next the class L1(M) of real valued functions on X that
are integrable with respect to M .

Definition 5.2. Let f : X → R be a σ(E)-B(R)-measurable function. Then f is called
M -integrable, if there exists a sequence (sn)n∈N from SM(E) such that the following two
conditions are satisfied:

(a) limn→∞ sn = f almost everywhere with respect to the control measure for M .

(b) For any A in σ(E), the sequence (
∫
A
sn dM)n∈N converges in the measure topology

on (M, τ).

The class of M -integrable functions f : X → R is denoted by L1(M).

For a classical Lévy basis N = {N(E) | E ∈ E} the class of N -integrable functions,
here denoted by L1(N), was introduced in [16] exactly as in Definition 5.2, but with M
replaced by N and convergence in the measure topology replaced by convergence in
probability.

For an M -integrable function f it is natural to define the integral
∫
A
f dM with

respect to M as the limit of the sequence appearing in Definition 5.2(b). We proceed
next to show that this limit does not depend on the choice of approximating sequence
satisfying conditions (a) and (b) from the afore mentioned definition, while simultaneously
establishing that L1(M) = L1(N), if N is the classical Lévy basis corresponding to M as
in Theorem 4.1.

Proposition 5.3. Let N = {N(E) | E ∈ E} be a classical Lévy basis corresponding to M
as in Theorem 4.1. Then the following assertions hold:

(i) L1(M) = L1(N).

(ii) If f ∈ L1(M) and (sn)n∈N and (tn)n∈N are two sequences from SM(E), both satisfy-
ing conditions (a) and (b) of Definition 5.2, then for any A in σ(E) the sequences
(
∫
A
sn dM)n∈N and (

∫
A
tn dM ) share the same limit in the measure topology.

Proof. Let f be a function from L1(M), and let (sn)n∈N be a sequence from SM(E)

satisfying conditions (a) and (b) of Definition 5.2. Then for any n,m in N it follows from
(1) and (2) in Remark 5.1 that

L
{∫

A

sn dN −
∫
A

sm dN
}

= Λ−1
(
Lsp
{∫

A

sn dM −
∫
A

sm dM
})
−→ δ0, as n,m→∞,

so that (
∫
A
sn dN)n∈N is a Cauchy-sequence in probability and hence convergent in

probability. Since M and N have the same control measure, this verifies that f ∈ L1(N)
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and hence the inclusion L1(M) ⊆ L1(N). The reverse inclusion follows by similar
argumentation, applying Λ rather than Λ−1 and using completeness of the measure
topology. Hence (i) follows.

Assume next that (tn)n∈N is another sequence from SM(E) satisfying conditions (a)
and (b) of Definition 5.2. The same argumentation as above then shows that the sequence
(
∫
A
tn dN)n∈N converges in probability as well for any A in σ(E), and it follows then from

[19] that the limit must equal that of (
∫
A
sn dN)n∈N. Therefore the mixed sequence∫

A

s1 dN,

∫
A

t1 dN,

∫
A

s2 dN,

∫
A

t2 dN, . . .

is also convergent and hence a Cauchy sequence in probability. Arguing as above the
properties of Λ entail that the sequence∫

A

s1 dM,

∫
A

t1 dM,

∫
A

s2 dM,

∫
A

t2 dM, . . .

is then a Cauchy sequence and hence convergent in the measure topology. Since the
measure topology is Hausdorff, (ii) now follows by sub-sequence considerations.

Definition 5.4. Let f be an M -integrable function, and let (sn)n∈N be a sequence of
functions from SM(E) satisfying conditions (a) and (b) of Definition 5.2. Then for any A
in σ(E) the integral

∫
A
f dM of f over A with respect to M is defined by∫

A

f dM = lim
n→∞

∫
A

sn dM,

where the limit is in the measure topology.

In the following remark we list next a number of rather immediate properties of the
integral introduced in the definition above.

Remarks 5.5. (1) If f is in L1(M) and A ∈ E, then
∫
A
f dM is a selfadjoint operator

affiliated with (M, τ) (because f is real-valued and the adjoint operation is continuous in
the measure topology).

(2) It follows Proposition 5.3(i) that L1(M) is a vector space. This also follows directly
from Definition 5.2 and the fact that the linear operations on M are continuous in the
measure topology. This latter fact together with Remark 5.1(1) further entail that∫

A

(αf + g) dM = α

∫
A

f dM +

∫
A

g dM

for any f, g in L1(M), A in σ(E) and α in R.

(3) In Remark 5.1(1) we observed that
∫
A
sdM ∈ ID(�) for any s in SM(E) and A in

σ(E). Since ID(�) is closed under weak convergence, and since convergence in the
measure topology implies weak convergence of the spectral distributions (cf. (2.5)),
it follows that

∫
A
f dM ∈ ID(�) for any f in L1(M). Moreover, the continuity of Λ in

combination with Remark 5.1(2) imply that

Λ
(
L
{∫

A

f dN
})

= Lsp
{∫

A

f dM
}

for any f in L1(M) = L1(N), where N is a classical Lévy basis corresponding to M as in
Theorem 4.1.
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(4) LetK be a positive integer, let f1, . . . , fK be functions from L1(M), and letA1, . . . , AK
be disjoint sets from σ(E). Then the integrals

∫
A1
f1 dM, . . . ,

∫
AK

fK dM are freely inde-

pendent operators in M. This fact follows immediately from (5.2) and the definition of a
free Lévy basis, in case f1, . . . , fK ∈ SM(E). The extension to general functions in L1(M)

subsequently follows directly from Definition 5.4, since free independence is preserved
under limits in the measure topology (see Proposition 5.4 in [2]).

(5) Since L1(M) = L1(N) (with N as in (3)), Theorem 2.7 in [16] immediately pro-
vides the following characterization of L1(M) in terms of the characteristic quadruplet
(θ, σ2, ρ, κ) of M : A σ(E)-B(R)-measurable function f : X → R belongs to L1(M), if and
only if the following three conditions are satisfied:

(a)
∫
X

∣∣f(x)θ(x) +
∫
R

(
ς(f(x)t)− f(x)ς(t)

)
ρ(x,dt)

∣∣κ(dx) <∞.

(b)
∫
X
f(x)2σ2(x)κ(dx) <∞.

(c)
∫
X

( ∫
R

min{1, f(x)2t2} ρ(x, dt)
)
κ(dx) <∞.

In the affirmative case it follows further from (3) and [16, Theorem 2.7] that the free
characteristic triplet (af , σ

2
f , Ff ) of

∫
X
f dM is given by

(d) af =
∫
X

(
f(x)θ(x) +

∫
R

(
ς(f(x)t)− f(x)ς(t)

)
ρ(x, dt)

)
κ(dx).

(e) σ2
f =

∫
X
f(x)2σ2(x)κ(dx).

(f) Ff (B) = F
(
{(x, t) ∈ X ×R | f(x)t ∈ B \ {0}}

)
for any Borel set B in R.

In (f) F is the measure on σ(E)⊗B(R) described in Proposition 4.2 (or equivalently
given by (4.7)). For f in L1(M) the measure Ff is a Lévy measure on R, and by e.g. an
extension argument it follows that∫

R

g(t)Ff (dt) =

∫
X×R

g(f(x)t) · 1R\{0}(f(x)t)F (dx,dt), (5.3)

for any function g in L1(Ff ).

Knowing the free characteristic triplet of
∫
X
f dM (as described in Remark 5.5(5)),

we can easily derive the following analog of Proposition 2.6 in [16], which generalizes
Proposition 4.3 (in the present paper) from indicator functions to general functions in
L1(M).

Corollary 5.6. Let M = {M(E) | E ∈ E} be a free Lévy basis with free characteristic
quadruplet (θ, σ2, ρ, κ), and let f be a function from L1(M). Consider further the kernel
R : X × C− → C set out in Proposition 4.3. Then the function x 7→ R(x, zf(x)) is in L1(κ)

for all z in C−, and the free cumulant transform of
∫
X
f dM is given by

C∫
X
f dM (z) =

∫
X

R(x, f(x)z)κ(dx), (z ∈ C−). (5.4)

Recall that for fixed x in X the function R(x, ·) is the free cumulant transform of
the Lévy seed νx at x. Thus, from the infinitesimal point of view, (5.4) shows that the
distribution of the integral

∫
X
f dM is obtained by scaling νx by f(x) at each x, followed

by an averaging with respect to the control measure κ.

Proof of Corollary 5.6. Consider the free characteristic triplet (af , σ
2
f , Ff ) for

∫
X
f dM

(given in Remark 5.5(5)). For z in C− it follows then by (5.3) and (4.7) that∫
R

( 1

1− tz
− 1− zς(t)

)
Ff (dt) =

∫
X×R

( 1

1− tzf(x)
− 1− zς(tf(x))

)
F (dx, dt)

=

∫
X

(∫
R

( 1

1− tzf(x)
− 1− zς(tf(x))

)
ρ(x,dt)

)
κ(dx),
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and consequently

C∫
X
f dM (z) = zaf + z2σ2

f +

∫
R

( 1

1− tz
− 1− zς(t)

)
Ff (dt)

=

∫
X

z
(
f(x)θ(x) +

∫
R

(
ς(f(x)t)− f(x)ς(t)

)
ρ(x, dt)

)
κ(dx)

+ z2

∫
X

f(x)2σ2(x)κ(dx) +

∫
X

(∫
R

( 1

1− tzf(x)
− 1− zς(tf(x))

)
ρ(x, dt)

)
κ(dx),

=

∫
X

(
zf(x)θ(x) + z2f(x)2σ2(x) +

∫
R

( 1

1− tzf(x)
− 1− zf(x)ς(t)

)
ρ(x,dt)

)
κ(dx),

=

∫
X

R(zf(x), x)κ(dx),

as desired.

Proposition 5.7. Let M = {M(E) | E ∈ E} be a free Lévy basis with free charac-
teristic triplet (Θ,Σ, F ) and quadruplet (θ, σ2, ρ(·,dt), κ). Let further f : X → R be a
σ(E)-measurable function, and define

E(f) = {E ∈ σ(E) | f1E ∈ L1(M)},

and

f ·M(E) =

∫
X

f1E dM, (E ∈ E(f)).

Then the following statements hold:

(i) The family E(f) is δ-ring and f ·M = {f ·M(E) | E ∈ E(f)} is free Lévy basis.

(ii) Suppose E(f) satisfies (2.2). Then the free characteristic triplet (Θf ,Σf , F f ) for
f ·M is given by

(a) Θf (E) =
∫
E

(
f(x)θ(x) +

∫
R

(
ς(f(x)t)− f(x)ς(t)

)
ρ(x, dt)

)
κ(dx),

(b) Σf (E) =
∫
E
f(x)2σ2(x)κ(dx),

(c)

∫
X×R

g(x, t)F f (dx, dt) =

∫
X×R

g(x, tf(x))1R\{0}(tf(x))F (dx,dt),

where (c) holds for any σ(E(f))⊗B(R)-measurable function g : X ×R→ [0,∞).

Proof. (i) According to Remark 5.5(5) a set E from σ(E) belongs to E(f), if and only if
the following three conditions are satisfied:

•
∫
E

∣∣f(x)θ(x) +
∫
R

(
ς(f(x)t)− f(x)ς(t)

)
ρ(x, dt)

∣∣κ(dx) <∞.

•
∫
E
f(x)2σ2(x)κ(dx) <∞.

•
∫
E

( ∫
R

min{1, f(x)2t2} ρ(x, dt)
)
κ(dx) <∞.

In particular it is apparent that E(f) is a δ-ring with the hereditary property that the
conditions E1 ∈ σ(E), E2 ∈ E(f) and E1 ⊆ E2 imply that E1 ∈ E(f).

The fact that f ·M satisfies conditions (a),(b) and (d) in Definition 3.1 follows from,
respectively, (4), (2) and (3) of Remark 5.5. To verify condition (c) in Definition 3.1
consider a decreasing sequence (En)n∈N of sets from E(f), such that En ↓ ∅ as n→∞. It
follows then from Corollary 5.6 that for any z in C− the function x 7→ R(x, zf(x)1E1

(x)) =

R(x, zf(x))1E1
(x) is in L1(κ), and hence by dominated convergence

C∫
X
f1En dM (z) =

∫
En

R(x, zf(x))1E1(x)κ(dx) −−−−→
n→∞

0,

for any z in C−. By Proposition 2.2 this implies that Lsp{
∫
X
f1En dM} w→ δ0, i.e.∫

X
f1En dM → 0 in the measure topology (cf. (2.5)).
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(ii) The formulae for Θf and Σf follow readily from Remark 5.5(5), which also yields
that

F f (E ×B) = F
(
{(x, t) ∈ X ×R | 1E(x)f(x)t ∈ B \ {0}}

)
for any E in E(f) and any Borel set B in R. From this condition the measure F f on
σ(E(f))⊗B(R) may be identified as the concentration to X × (R \ {0}) of the transforma-
tion of F by the mapping Ψ: X ×R→ X ×R given by Ψ(x, t) = (x, tf(x)). Specifically
this means that

F f (C) = F
(
Ψ−1(C ∩ (X × (R \ {0})))

)
=

∫
X×R

1C(x, tf(x))1R\{0}(tf(x))F (dx, dt),

for any set C in σ(E(f))⊗B(R), which is in accordance with the formula for F f (E×B) =

F fE(B) given above. By e.g. an extension argument it follows further that∫
X×R

g(x, t)F f (dx, dt) =

∫
X×R

g(x, tf(x))1R\{0}(tf(x))F (dx,dt) (5.5)

for any positive and measurable function g.

6 The Lévy-Itô decomposition for free Lévy bases

Throughout this section we consider a non-empty set X equipped with a δ-ring E,
which contains a sequence (En)n∈N of sets such that X =

⋃
n∈NEn. We consider further

a free Lévy basis M = {M(E) | E ∈ E} with free characteristic triplet (Θ,Σ, F ) (in
particular F is a σ-finite measure on σ(E)⊗B(R)). Our objective is to establish a Lévy-Itô
type representation of M . For this we introduce first a free Poisson random measure
PF = {PF (A) | A ∈ AF } on X ×R affiliated with some W ∗-probability space (M, τ), and
where

AF = {A ∈ σ(E)⊗B(R) | F (A) <∞},

and
Lsp{PF (A)} = Poiss�(F (A)) for all A in AF .

We note in particular that σ(AF ) = σ(E) ⊗ B(R), since F is σ-finite. We recall also (cf.
Example 4.5(3)) that the free characteristic triplet and quadruplet of PF are (F, 0, F ⊗ δ1)

and ( 1
2 , 0,

1
2δ1, 2F ), respectively.

Consider now additionally the function h : X ×R→ R given by

h(x, t) = t, (x ∈ X, t ∈ R).

By application of Proposition 5.7 we may then consider yet another free Lévy basis
h · PF = {h · PF (A) | A ∈ AF (h)} on X ×R, where

AF (h) = {A ∈ σ(E)⊗B(R) | h1A ∈ L1(PF )},

and

h · PF (A) =

∫
X×R

1AhdPF =

∫
X×R

1A(x, t)t PF (dx, dt), (A ∈ A(h)).

Lemma 6.1. In the framework set up above the following assertions hold:

(i) For any positive number ε we have that

{E × (R \ [−ε, ε]) | E ∈ E} ⊆ AF (h).

In particular AF (h) satisfies (2.2).
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(ii) The free characteristic triplet for h · PF is given by (Fh, 0, (F ⊗ δ1)h), where

Fh(A) =

∫
A

ς(t)F (dx,dt), (A ∈ AF (h)),

(F ⊗ δ1)h(A×B) = F (A ∩ (X × (B \ {0}))), (A ∈ σ(E)⊗B(R), B ∈ B(R)).

(iii) If E ∈ E such that
∫ 1

−1
|t|FE(dt) <∞, then E ×R ∈ AF (h).

Proof. (i) Let E from E be given. Clearly E × (R \ [−ε, ε]) ∈ σ(E) ⊗ B(R) = σ(AF ). It
remains thus to verify that h1E×(R\[−ε,ε]) ∈ L1(PF ). Recalling from Example 4.5(3) that
the free characteristic quadruplet for PF is ( 1

2 , 0,
1
2δ1, 2F ), it follows by a straightforward

application of Remark 5.5(5) that this amounts to the conditions:

∞ >

∫
E×(R\[−ε,ε])

∣∣ς(h(x, t))
∣∣F (dx, dt) =

∫
R\[−ε,ε]

|ς(t)|FE(dt),

and

∞ >

∫
E×(R\[−ε,ε])

min{1, h(x, t)2}F (dx, dt) =

∫
R\[−ε,ε]

min{1, t2}FE(dt).

Both conditions are satisfied, since FE is a Lévy measure.

(ii) Since the free characteristic quadruplet for PF is ( 1
2 , 0,

1
2δ1, 2F ) it follows readily from

Proposition 5.7 that the free characteristic triplet for h · PF is given as (Fh, 0, (F × δ1)h),
where

Fh(A) =

∫
A

(
1
2h(x, t) +

∫
R

(
ς(h(x, t)s)− h(x, t)ς(s)

)
1
2δ1(ds)

)
2F (dx, dt)

=

∫
A

(t+ ς(t)− t)F (dx, dt) =

∫
A

ς(t)F (dx,dt)

for any A in AF (h). For A in σ(E)⊗B(R) and B in B(R) Proposition 5.7 further yields
that

(F ⊗ δ1)h(A×B) =

∫
X×R×R

1A(x, t)1B(sh(x, t))1R\{0}(sh(x, t))F ⊗ δ1(dx, dt,ds)

=

∫
X×R

1A(x, t)1B\{0}(t)F (dx, dt) = F (A ∩ (X × (B \ {0}))).

(iii) Assume that E ∈ E such that
∫ 1

−1
|t|FE(dt) < ∞. We must verify that h1E×R ∈

L1(PF ), and as in the proof of (ii) this amounts to the conditions:

∞ >

∫
R

|ς(t)|FE(dt) = FE(R \ [−1, 1]) +

∫ 1

−1

|t|FE(dt),

and

∞ >

∫
R

min{1, t2}FE(dt),

which are clearly satisfied by the assumption on E and since FE is a Lévy measure.

Proposition 6.2. Consider the framework set up in the beginning of this section, and
assume that

∫ 1

−1
|ς(t)|FE(dt) <∞ for all E in E. Assume further that there exists a free

semi-circular Lévy basis GΣ = {GΣ(E) | E ∈ E} in (M, τ) with free characteristic triplet
(0,Σ, 0), which is freely independent of PF . For each E in E put

M̃(E) =
(

Θ(E)−
∫
E×R

ς(t)F (dx, dt)
)
111M +GΣ(E) + h · PF (E ×R) (6.1)

where 111M denotes the unit of M.
Then M̃ is a free Lévy basis, and for any E in E the selfadjoint operators M(E) and

M̃(E) share the same spectral distribution.
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Before the proof we note that the assumed existence ofGΣ which is freely independent
of PF can always be realized by replacing (M, τ) by its free product with another W ∗-
probability space (M′, τ ′) which contains a free semicircular basis with the specified
characteristic triplet. In comparison with the classical Lévy-Itô Decomposition we note
also that

h · PF (E ×R) =

∫
E×R

t PF (dx, dt),

by definition of h · PF .

Proof. For each E in E denote by M1(E),M2(E) and M3(E) the three terms on the right
hand side of (6.1) (in order of appearance). Note in particular that M3(E) is well-defined
according to Lemma 6.1(iii). Clearly M1 and M2 are free Lévy bases on (X,E) with free
characteristic triplets (Π, 0, 0) and (0,Σ, 0), respectively, where we have introduced the
signed measure

Π(E) = Θ(E)−
∫
E×R

ς(t)F (dx, dt), (E ∈ E).

Considering the mapping ψ : X×R→ X given by ψ(x, t) = x for all (x, t) inX×R, we note
next that M3(E) = h · PF (ψ−1(E)) for all E in E, and therefore Proposition 4.6 yields that
M3 is a free Lévy basis with free characteristic triplet (Fh ◦ψ−1, 0, (F ⊗ δ1)h ◦ (ψ, idR)−1),
where Fh and (F ⊗ δ1)h are as set out in Lemma 6.1(ii).

Since M1,M2,M3 are freely independent, their sum, M̃ , is again a free Lévy basis
with free characteristic triplet (Π + Fh ◦ ψ−1,Σ, (F ⊗ δ1)h ◦ (ψ, idR)−1). For any set E
from E note here that by Lemma 6.1(ii)

Π(E) + Fh ◦ ψ−1(E) = Θ(E)−
∫
E×R

ς(t)F (dx,dt) + Fh(E ×R) = Θ(E),

and for any Borel subset B of R

(F ⊗ δ1)h ◦ (ψ, idR)−1(E ×B) = (F ⊗ δ1)h(E ×R×B) = F ((E ×R) ∩ (X × (B \ {0})))
= F (E × (B \ {0})) = FE(B \ {0}) = FE(B) = F (E ×B),

where we have used that FE({0}) = 0. Since the last equation above determines F
uniquely on σ(E)⊗B(R), we conclude that (F⊗δ1)h◦(ψ, idR)−1 = F . Altogether M̃ has the
same free characteristic triplet as M , which clearly implies that Lsp(M̃(E)) = Lsp(M(E))

for all E in E.

We return now to the general framework set up in the beginning of this section
without imposing the condition

∫
R
|ς(t)|FE(dt) <∞. For each ε in (0,∞) we then define

M (ε) = {M (ε)(E) | E ∈ E} by

M (ε)(E) = h · PF (E × (R \ [−ε, ε]))−
(∫

R\[−ε,ε]
ς(t)FE(dt)

)
111M, (E ∈ E). (6.2)

Lemma 6.1(i) guarantees that M (ε) is well-defined. With ψ as in the proof of Proposi-
tion 6.2 note that h · Pf (E × (R \ [−ε, ε])) = h · Pf (X × (R \ [−ε, ε]) ∩ ψ−1(E)). Hence
Propositions 4.6-4.7 in combination with Lemma 6.1(ii) entail that M (ε) is a free Lévy
basis with free characteristic triplet (0, 0, F (ε)), where

F (ε)(E ×B) = (F ⊗ δ1)h
(
(X × (R \ [−ε, ε])×R) ∩ ((ψ, idR)−1(E ×B))

)
= F

(
(X × (R \ [−ε, ε])) ∩ (E ×R) ∩ (X × (B \ {0}))

)
= F

(
E × (B \ [−ε, ε])

)
= FE(B \ [−ε, ε])

(6.3)

for any E in E and B in B(R).
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Lemma 6.3. (i) With M (ε) as defined in (6.2), the sequence (M (1/n)(E))n∈N is con-
vergent in the measure topology for any E in E.

(ii) If we define (limit in the measure topology)

M4(E) = lim
n→∞

M (1/n)(E), (E ∈ E),

then M4 = {M4(E) | E ∈ E} is a free Lévy basis with free characteristic triplet
(0, 0, F ).

Proof. (i) Let E from E be given. Since the measure topology is complete, it suffices
to show that (M (1/n)(E))n∈N is a Cauchy sequence in the measure topology, i.e. that
Lsp{M (1/n)(E)−M (1/m)(E)} w→ δ0 as n,m→∞. Establishing this condition amounts to
verifying that

Lsp{M (1/nk)(E)−M (1/mk)(E)} w−→ δ0 as k →∞

for any sequence (mk, nk)k∈N in N × N, such that mk ≤ nk for all k, and such that
mk →∞ as k →∞. Given such a sequence (mk, nk)k∈N, note first that

M (1/nk)(E)−M (1/mk)(E)

=h · PF
(
E × ([− 1

mk
,− 1

nk
) ∪ ( 1

nk
, 1
mk

])
)
−
[ ∫

[− 1
mk

,− 1
nk

)∪( 1
nk
, 1
mk

]

ς(t)FE(dt)
]
111M,

and hence by Lemma 6.1 the free characteristic triplet for M (1/nk)(E)−M (1/mk)(E) is
(0, 0, %k), where

%k(B) = FE
(
B ∩ ([− 1

mk
,− 1

nk
) ∪ ( 1

nk
, 1
mk

])
)

for any Borel set B in R. It follows from Theorem 2.1 that it suffices to show that

(1)
∫
R
f(t) %k(dt)→ 0 as k →∞ for any continuous bounded function f : R→ R, which

vanishes in a neighborhood of 0.

(2) lim
ε↓0

(
lim sup
k→∞

∫ ε

−ε
t2 %k(dt)

)
= 0.

Since
∫
R
f(t) %k(dt) =

∫
[− 1

mk
,− 1

nk
)∪( 1

nk
, 1
nk

]
f(t)FE(dt), condition (1) follows from the fact

that for all sufficiently large k, the set [− 1
mk
,− 1

nk
) ∪ ( 1

nk
, 1
mk

] is contained in the neigh-
borhood of 0 upon which f vanishes. Condition (2), in turn, follows e.g. from the fact
that

∫ ε
−ε t

2 %k(dt) ≤
∫ ε
−ε t

2 FE(dt) for any k in N, and here
∫ ε
−ε t

2 FE(dt)→ 0 as ε ↓ 0, since
FE is a Lévy measure.

(ii) It follows immediately from the definition of M4 that Lsp{M4(E)} ∈ ID(�) for all
E in E, since ID(�) is closed in the topology for weak convergence and by use of
(2.5). For each n in N the operator M (1/n)(E) has free characteristic triplet (0, 0, F (1/n)),
where F (1/n) is given by (6.3). We check next that M4(E) has free characteristic triplet
(0, 0, FE) for any E in E. By another application of Theorem 2.1 this is a consequence of
the following two facts:

(1) For any continuous bounded function f : R→ R vanishing on a neighborhood of 0, it
holds that ∫

R

f dF (1/n) =

∫
R

f1[− 1
n ,

1
n ]c dFE −−−−→

n→∞

∫
R

f dFE ,

by Dominated Convergence, since
∫
R
|f |dFE <∞, because FE is a Lévy measure.
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(2) For any positive number ε we have that∫ ε

−ε
t2 F (1/n)(dt) =

∫ ε

−ε
t21[− 1

n ,
1
n ]c(t)FE(dt) −−−−→

n→∞

∫ ε

−ε
t2 FE(dt),

by Monotone Convergence. Hence

lim
ε↓0

(
lim sup
n→∞

∫ ε

−ε
t2 F (1/n)(dt)

)
= lim

ε↓0

(∫ ε

−ε
t2 FE(dt)

)
= 0,

since
∫ 1

−1
t2 FE(dt) <∞.

It remains to show that M4 is a free Lévy basis, i.e. to verify the four conditions in
Definition 3.1:

(a) We already noted that Lsp{M4(E)} ∈ ID(�) for all E in E.

(b) If E1, . . . , En are disjoint sets from E, then M4(E1), . . . ,M4(En)n∈N are freely inde-
pendent. This follows from the definition of M4 and the corresponding property for
M (1/n), since free independence is preserved under limits in the measure topology
(see Proposition 5.4 in [2]).

(c) If E1, . . . , En are disjoint sets from E, then M4(
⋃n
k=1Ek) =

∑n
k=1M4(Ek). Again this

follows from the definition of M4 and the corresponding property of M (1/n), since
addition is continuous in the measure topology.

(d) Let (En)n∈N be a decreasing sequence of sets from E, such that
⋂
n∈NEn = ∅. Then

Lsp{M4(En)} w→ δ0. Indeed, the free characteristic triplet of M4(En) is (0, 0, FEn),
and hence by Theorem 2.1 it suffices to check the following two conditions:

(1)
∫
R
f dFEn → 0 as n → ∞ for any continuous bounded function f : R → R

vanishing in a neighborhood, say [−ε, ε], of 0. To see this, note that∣∣∣ ∫
R

f dFEn

∣∣∣ ≤ ‖f‖∞FEn([−ε, ε]c) = ‖f‖∞F (En × ([−ε, ε]c)) −−−−→
n→∞

0,

since F (E1 × ([−ε, ε]c)) = FE1
([−ε, ε]c) <∞, and

⋂
n∈NEn × ([−ε, ε]c) = ∅.

(2) lim
ε↓0

(
lim sup
n→∞

∫ ε

−ε
t2 FEn(dt)

)
= 0. To see this, note for any fixed positive ε that

∫ ε

−ε
t2 FEn(dt) =

∫
En×[−ε,ε]

t2 F (dx, dt) −−−−→
n→∞

0,

because
∫
E1×[−ε,ε] t

2 F (dx,dt) =
∫ ε
−ε t

2 FE1
(dt) <∞, and

⋂
n∈NEn × [−ε, ε] = ∅.

This completes the proof.

As an immediate consequence of Lemma 6.3 we obtain the following general version
of the Lévy-Itô-decomposition for free Lévy bases. Note that this decomposition coincides
with that of Proposition 6.2 under the extra assumption in that proposition.

Corollary 6.4. Consider the framework set up in the beginning of this section, and
assume further that there exists a semi-circular free Lévy basis GΣ = {GΣ(E) | E ∈ E}
in (M, τ) with free characteristic triplet (0,Σ, 0), which is freely independent of PF .

For each E in E put

M̃(E) = Θ(E)111M +GΣ(E) +M4(E),

where 111M denotes the unit of M and M4 is introduced in Proposition 6.2.
Then M̃ is a free Lévy basis, and for any E in E the selfadjoint operators M(E) and

M̃(E) share the same spectral distribution.
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7 Proof of Theorem 3.3

Throughout this section we consider a nonempty set X and a ring E of subsets of X.
We then put

I =
⋃
k∈N

{
{E1, . . . , Ek}

∣∣ E1, . . . , Ek ∈ E \ {∅} and E1, . . . , Ek are disjoint
}
.

We emphasize that we consider an element of I merely as a collection of sets, without
paying attention to the order in which these sets appear. Thus we identify an ele-
ment {E1, . . . , Ek} from I with the element {Eπ(1), . . . , Eπ(k)} for any permutation π of
{1, . . . , k}.

We equip I with a partial order “≤” by declaring that {E1, . . . , Ek} ≤ {F1, . . . , Fm}
exactly when each Ei is a union of some of the Fj ’s. We note then that “≤” is an upward-
filtering order, since for S = {E1, . . . , Ek} and T = {F1, . . . , Fm} from I we have that
S, T ≤ U , where U is the element of I consisting of all non-empty sets in the following
family:

Ei ∩ Fj , Ei \ (
m⋃
j=1

Fj), Fj \ (
k⋃
i=1

Ei), (i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}).

In the following we consider additionally a family {ν(E, ·) | E ∈ E} of probability
measures from ID(�), satisfying that

ν
(⋃n

j=1Ej , ·
)

= ν(E1, ·) � · · ·� ν(En, ·),

whenever E1, . . . , En are disjoint sets from E. For any set E from E we denote by τE the
state on the abelian von Neumann algebra3 L∞(ν(E, ·)) given by integration with respect
to the probability measure ν(E, ·). Subsequently for any element S = {E1, . . . , Ek} from
I, we let (MS , τS) denote the W ∗-reduced free product of the W ∗-probability spaces
(L∞(ν(Ej , ·)), τEj ), j = 1, . . . , k (see [21] for details).

Lemma 7.1. For any element S = {E1, . . . , Ek} of I there exist freely independent
operators MS(E1), . . . ,MS(Ek) from MS , which generate MS as a von Neumann algebra4,
and such that

Lsp{M(Ej)} = ν(Ej , ·), (j = 1, . . . , k).

Proof. For each j in {1, . . . , k} we have a canonical embedding ιj : L∞(ν(Ej , ·)) ↪→ MS ,
such that τEj = τS ◦ ιj (see [21]). By Proposition A.4 ιj gives rise to a ∗-homomorphism

ιj : L∞(ν(Ej , ·))→MS . We then define

MS(Ej) = ιj(idR), (j = 1, . . . , k), (7.1)

where idR denotes the identity function on R considered as an element of L∞(ν(Ej , ·)).
By Proposition A.4 the range of ιj equals the class of operators affiliated with the von
Neumann algebra ιj(L

∞(ν(Ej , ·)), so in particular MS(Ej) is affiliated with that von
Neumann algebra. By construction of (MS , τS) the algebras ιj(L∞(ν(Ej , ·)), j = 1, . . . , n,
are free in (MS , τS), so in particular MS(E1), . . . ,MS(Ek) are freely independent with
respect to τ . For any f in BFb(R) we note next (cf. Proposition A.4) that

f(MS(Ej)) = f(ιj(idR)) = ιj(f(idR)) = ιj(f) = ιj(f),

3L∞(ν(E, ·)) is the vector space of all ν(E, ·)-essentially bounded functions f : X → C identified up to
ν(E, ·)-null sets.

4Operators T1, . . . , Tk affiliated with a von Neumann algebra M are said to generate M as a von Neumann
algebra, if M is the smallest von Neumann algebra on the considered Hilbert space containing the family⋃k

j=1{f(Tj) | f ∈ BFb(R)}.
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and hence MS(Ej) generates ιj(L∞(ν(Ej , ·)) as a von Neumann algebra. This further
implies that {MS(E1), . . . ,MS(En)} generates MS as a von Neumann algebra (cf. [21,
Definition 1.6.1]). For any j in {1, . . . , k} and any function f from BFb(R) we note finally
that

τS
[
f(MS(Ej))

]
= τS

[
ιj(f)

]
= τEj (f) =

∫
R

f(t) ν(Ej ,dt),

verifying that Lsp{MS(Ej)} = ν(Ej , ·).

Lemma 7.2. Assume that S = {E1, . . . , Ek} and T = {F1, . . . , Fm} are elements of I such
that S ≤ T . Then there exists a normal ∗-homomorphism ιS,T : MS → MT such that
τS = τT ◦ ιS,T .

Specifically it holds for any i in {1, . . . , k} (with notation from Lemma 7.1) that

ιS,T (MS(Ei)) = MT (Fj(i,1)) + · · ·+MT (Fj(i,li)), (7.2)

whenever Ei = Fj(i,1) ∪ · · · ∪ Fj(i,li) for suitable j(i, 1), . . . , j(i, li) from {1, . . . ,m}.

Proof. We adopt the notation from Lemma 7.1. Given any i in {1, 2, . . . , k} we may, since
S ≤ T , write Ei (unambiguously) as Fj(i,1) ∪ · · · ∪ Fj(i,li) for suitable j(i, 1), . . . , j(i, li)

from {1, . . . ,m}. Since the operators MT (Fj(i,1)), . . . ,MT (Fj(i,li)) are freely independent,
it follows then that

Lsp{MT (Fj(i,1))+ · · ·+MT (Fj(i,li))} = ν(Fj(i,1), ·) � · · ·� ν(Fj(i,li), ·)

= ν
(
Fj(i,1)∪ · · · ∪Fj(i,li), ·) = ν(Ei, ·) = Lsp{MS(Ei)}.

Note also that since all the operators MT (F1), . . . ,MT (Fm) are freely independent, the
sums MT (Fj(i,1)) + · · · + MT (Fj(i,li)), i = 1, . . . , k, are also freely independent. Indeed,
for each i the sum MT (Fj(i,1)) + · · · + MT (Fj(i,li)) is affiliated with the von Neumann
algebra generated by L∞(ν(Fj(i,1), ·), . . . , L∞(ν(Fj(i,li), ·) considered as sub-algebras of
MT . And by [21, Proposition 2.5.5] these von Neumann subalgebras are free in (MT , τT )

for varying i. It follows that the two families of operators:

k⋃
i=1

{
f
(
MT (Fj(i,1)) + · · ·+MT (Fj(i,li))

) ∣∣ f ∈ BFb(R)
}

and
k⋃
i=1

{
f
(
MS(Ei))

) ∣∣ f ∈ BFb(R)
}

have the same ∗-distribution, and since MS(E1), . . . ,MS(Ek) generate MS as a von
Neumann algebra, it follows thus from Proposition A.1 that there exists a normal,
injective ∗-homomorphism ιS,T : MS →MT such that

ιS,T
(
f(MS(Ei))

)
= f

(
MT (Fj(i,1)) + · · ·+MT (Fj(i,li))

)
for any i in {1, . . . , k} and f in BFb(R). In addition τS = τT ◦ ιS,T .

To establish (7.2) we consider for each n in N the function fn : R→ R defined by:

fn(t) = t1[−n,n](t)− n1(−∞,−n)(t) + n1(n,∞)(t), (t ∈ R).

Then fn(t)→ t as n→∞ for all t in R, and this implies that fn(MS(Ei))
P→MS(Ei) and

that fn(MT (Fj(i,1)) + · · · + MT (Fj(i,il)))
P→ MT (Fj(i,1)) + · · · + MT (Fj(i,il)) as n → ∞ (cf.
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the calculation (A.4) in the proof of Proposition A.4). From formula (A.3) in that same
proof it follows then further that

ιS,T (MS(Ei)) = P- lim
n→∞

ιS,T
(
fn(MS(Ei))

)
= P- lim

n→∞
fn
(
MT (Fj(i,1)) + · · ·+MT (Fj(i,il))

)
= MT (Fj(i,1)) + · · ·+MT (Fj(i,il)),

(7.3)

as desired. This completes the proof.

Lemma 7.3. The family (MS , τS)S∈I of W ∗-probability spaces equipped with the family
{ιS,T | S, T ∈ I, S ≤ T} of ∗-homomorphisms described in Lemma 7.2 forms a directed
system of W ∗-algebras and injective, normal ∗-homomorphisms.

Proof. Given R,S, T in I such that R ≤ S ≤ T , we must show that ιR,T = ιS,T ◦ ιR,S .
Writing R = {D1, . . . , Dm}, S = {E1, . . . , Ek} and T = {F1, . . . , Fl} for suitable Dh, Ei, Fj
from E \ {∅}, we know that

Dh = Ei(h,1) ∪ · · · ∪ Ei(h,kh), (h = 1, . . . ,m),

Ei = Fj(i,1) ∪ · · · ∪ Fj(i,li), (i = 1, . . . , k),

for suitable i(h, 1), . . . , i(h, kh) in {1, . . . , k} and j(i, 1), . . . , j(i, li) from {1, . . . , l}. Then

ιR,T (MR(Dh)) =

li(h,1)∑
r=1

MT (Fj(i(h,1),r)) + · · ·+
li(h,kh)∑
r=1

MT (Fj(i(h,kh),r))

= ιS,T (MS(Ei(h,1))) + · · ·+ ιS,T (MS(Ei(h,kh)))

= ιS,T
(
(MS(Ei(h,1)) + · · ·+MS(Ei(h,kh))

)
= ιS,T

(
ιR,S(Dh)

)
.

For any f in BFb(R) it follows then (cf. Proposition A.4) that

ιR,T
(
f(MR(Dh))

)
= f

(
ιR,T (MR(Dh))

)
= f

(
ιS,T ◦ ιR,S(MR(Dh))

)
= ιS,T

(
f(ιR,S(MR(Dh)))

)
= ιS,T ◦ ιR,S

(
f(MR(Dh))

)
.

Since MR is generated as a von Neumann algebra by the family

m⋃
h=1

{f(MR(Dh)) | f ∈ BFb(R)},

and since ιR,T and ιS,T ◦ ιR,S are both normal, it follows by an application of Kaplansky’s
Density Theorem that ιR,T = ιR,S ◦ ιS,T , as desired.

Proof of Theorem 3.3. We note first that assertions (ii) and (iii) are direct consequences
of (i). To prove (i), we consider the directed system (cf. Lemma 7.3)

(MS , τS)S∈I, {ιS,T | S, T ∈ I, S ≤ T}

of W ∗-probability spaces and trace preserving ∗-homomorphisms. Using Proposition A.3,
there exists a W ∗-probability space (M, τ) and injective, normal ∗-homomorphisms
ιS : MS →M (S ∈ I), satisfying that τS = τ ◦ ιS for all S in I, and that ιS = ιT ◦ ιS,T for
any S, T in I such that S ≤ T . We now define

M(∅) = 0, and M(E) = ι{E}(M{E}(E)) for E in E \ {∅}, (7.4)
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where M{E}(E) denotes the identity function idR on R considered as an element of

L∞(ν(E, ·)) = M{E}. We will show that the family {M(E) | E ∈ E} satisfies the conditions
(a)-(b) in Definition 3.1 and that Lsp{M(E)} = ν(E, ·) for all E in E.

(a) Assume that E1, . . . , Er are disjoint sets from E \ {∅}, and put S = {E1, . . . , Er} ∈ I.
Consider further arbitrary functions f1, . . . , fr from BFb(R). We must show that the
bounded operators f1(M(E1)), . . . , fr(M(Er)) are freely independent with respect to τ .
For any polynomial p in r non-commuting variables we note (cf. Proposition A.4) that

τ
[
p
(
f1(M(E1)), . . . , fr(M(Er))

)]
= τ

[
p
(
f1(ι{E1}(M{E1}(E1))), . . . , fr(ι{Er}(M{Er}(Er)))

)]
= τ

[
p
(
ι{E1}(f1(M{E1}(E1))), . . . , ι{Er}(fr(M{Er}(Er)))

)]
= τ

[
p
(
ιS ◦ ι{E1},S(f1), . . . , ιS ◦ ι{Er},S(fr)

)]
= τ

[
ιS
(
p
(
ι{E1},S(f1), . . . , ι{Er},S(fr)

))]
= τS

[
p
(
ι{E1},S(f1), . . . , ι{Er},S(fr)

)]
.

(7.5)

For each j in {1, . . . , r} recall that ι{Ej},S is the canonical embedding of M{Ej} =

L∞(ν(Ej , ·)) into the reduced free product MS = L∞(ν(E1, ·)) ∗ · · · ∗ L∞(ν(Er, ·)). Hence
the ranges of ι{E1},S , · · · , ι{Er},S are free in (MS , τS), and in particular ι{E1},S(f1),. . .,
ι{Er},S(fr) are freely independent with respect to τS . Since (7.5) holds for any polyno-
mial p in r non-commuting variables, it follows then that f1(M(E1)), . . . , fr(M(Er)) are
freely independent with respect to τ .

(b) Let E1, . . . , Er be disjoint sets from E \ {∅}, and put E =
⋃r
j=1Ej and S = {E1,. . .,

Er} ∈ I. We must show that M(E) = M(E1) + · · ·+M(Er). Using Corollary A.5 we find
that

M(E1)+ · · ·+M(Er)

= ι{E1}(idR) + · · ·+ ι{Er}(idR) = ιS ◦ ι{E1},S(idR) + · · ·+ ιS ◦ ι{Er},S(idR)

= ιS ◦ ι{E1},S(idR) + · · ·+ ιS ◦ ι{Er},S(idR) = ιS
(
MS(E1) + · · ·+MS(Er)

)
= ιS

(
ι{E},S(M{E}(E))

)
= ιS ◦ ι{E},S(idR)

= ι{E}(idR) = M(E),

where in the first, fourth, fifth and last equality we applied (7.4), (7.2), (7.2) and (7.4),
respectively.

To show finally that Lsp{M(E)} = ν(E, ·) for all E in E, we assume without loss of
generality that E 6= ∅. Then since τ{E} = τ ◦ ι{E} we find for any function f in BFb(R)

that

τ
[
f(M(E))

]
= τ

[
f
(
ι{E}(M{E}(E))

)]
= τ

[
ι{E}

(
f(M{E}(E))

)]
= τ{E}(f) =

∫
R

f dν(E, ·),

which proves the desired identity. This completes the proof.

A Appendix: Von Neumann algebra preliminaries

To accommodate potential readers with limited background in the theory of operator
algebras, we start by recalling briefly various basic concepts from that theory. For a

EJP 26 (2021), paper 49.
Page 35/41

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP620
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Completely random measures and Lévy bases in free probability

thorough introduction to operator algebras we refer to the classical texts [9, 10]. First
of all an algebra (over C) is a vector space A over C, which is also furnished with an
associative multiplication satisfying the usual distributive laws in relation to the linear
operations. One may think of the matrix algebra Mn(C) as a concrete example. As in
this particular case the multiplication is generally not assumed to be commutative. We
say that A is a ∗-algebra, if it is additionally equipped with an involution (or ∗-operation)
a 7→ a∗ : A→ A, satisfying that (a+ b)∗ = a∗ + b∗, (za)∗ = za∗, (ab)∗ = b∗a∗ and (a∗)∗ = a

for all a, b in A and z in C.
A C∗-algebra is a ∗-algebra A, which is also a Banach space with respect to a norm

‖ · ‖, satisfying additionally that ‖ab‖ ≤ ‖a‖‖b‖ and ‖a∗a‖ = ‖a‖2 for all a, b in A. Again,
Mn(C) provides a (finite dimensional) example of a C∗-algebra, and more generally
the space B(H) of continuous linear mappings T : H → H on a Hilbert space H is a
canonical example of a C∗-algebra. In fact any C∗-algebra may be identified with a norm
closed, ∗-invariant subalgebra of B(H). As in [9, 10] we shall generally assume that a
C∗-algebra A comes equipped with a multiplicative neutral element 111A. If A and B are
two C∗-algebras, a linear mapping ϕ : A→ B is called a ∗-homomorphism, if ϕ(111A) = 111B,
ϕ(ab) = ϕ(a)ϕ(b), and ϕ(a∗) = ϕ(a)∗ for all a, b in A.

A von Neumann algebra acting on a Hilbert space H is a ∗-invariant subalgebra M

of B(H), which is closed in the weak operator topology, i.e. the weak topology on B(H)

induced by the family {ωξ,η | ξ, η ∈ H} of linear functionals given by

ωξ,η(a) = 〈aξ, η〉, (a ∈ B(H)).

As this topology is weaker than that induced by the C∗-norm on B(H), a von Neumann
algebra is automatically a C∗-algebra. If M and N are two von Neumann-algebras
(possibly acting on different Hilbert spaces) and ϕ : M→ N is a ∗-homomorphism, then
ϕ is said to be normal if its restriction to the unit ball of M is continuous with respect to
the weak operator topologies on M and N.

With the above basic concepts in place, we recall next that a W ∗-probability space is
a pair (M, τ), where M is a von Neumann algebra (acting on some Hilbert space), and τ
is a faithful, normal, tracial state on M. Specifically τ is a linear mapping from M into C,
which is continuous on the unit ball of M with respect to the weak operator topology and
satisfies the following conditions: τ(a∗a) > 0 for all a in M \ {0}, τ(ab) = τ(ba) for all a, b
in M, and τ(111M) = 1.

If I is an arbitrary non-empty index set, and (xi)i∈I is a corresponding family of
operators in a W ∗-probability space (M, τ), then the ∗-distribution of (xi)i∈I is the
collection of all complex numbers in the form

τ
(
zp11 zp22 · · · zpnn

)
,

where n ∈ N, p1, . . . , pn ∈ N and z1, . . . , zn ∈ {xi | i ∈ I} ∪ {x∗i | i ∈ I}.
Proposition A.1. Let (M, τ) and (N, ψ) be W ∗-probability spaces, let I be a non-empty
index set, and assume that (xi)i∈I and (yi)i∈I are families of operators from M and N,
respectively. Let M0 denote the von Neumann subalgebra of M generated by (xi)i∈I ,
and let N0 denote the von Neumann subalgebra of N generated by (yi)i∈I .

If the ∗-distribution of (xi)i∈I (with respect to τ ) equals that of (yi)i∈I (with respect
to ψ), then there exists a normal ∗-isomorphism Φ of M0 onto N0, such that τ = ψ ◦ Φ on
M0, and such that Φ(xi) = yi for all i in I.

For the proof of Proposition A.1 we refer to [12, Theorem 2 in Section 6.5] or [20,
Remark 1.8].

Corollary A.2. Let (M, τ) and (N, ψ) be W ∗-probability spaces, and let Φ: M→ N be a
∗-homomorphism such that τ = ψ ◦ Φ. Then Φ is automatically normal and injective, and
Φ(M) is a von Neumann subalgebra of N.
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Proof. Since τ = ψ ◦ Φ, the two families of operators M and Φ(M) (indexed by M) have
the same ∗-distribution. By application of Proposition A.1, we obtain thus a normal
∗-isomorphism Φ̃ of the von Neumann subalgebra generated by M (i.e. M itself) onto the
von Neumann subalgebra of N generated by Φ(M), such that Φ̃(a) = Φ(a) for all a in M.
Obviously then Φ = Φ̃, so Φ is normal and injective. In addition Φ(M) = Φ̃(M), which is a
von Neumann algebra.

Recall that a partial order “≤” on a set S is called upward filtering, if, for any elements
S, T in S, there exists an element U in S such that S ≤ U and T ≤ U .

The following result essentially amounts to the existence of inductive limits in the
category of W ∗-probability spaces.

Proposition A.3. Consider a set S equipped with an upward filtering partial order
“≤”. Consider additionally a corresponding family (MS , τS)S∈S of W ∗-probability spaces,
and assume that whenever S, T ∈ S, such that S ≤ T , there is a ∗-homomorphism
ΦS,T : MS →MT such that τS = τT ◦ ΦS,T .

Then there exists aW ∗-probability space (M, τ) and injective normal ∗-homomorphisms
ΦS : MS →M (S ∈ S), such that

τ ◦ ΦS = τS for all S in S,

and
ΦT ◦ ΦS,T = ΦS for all S, T in S, such that S ≤ T .

In addition M is generated as a von Neumann algebra by the ∗-subalgebra
⋃
S∈S ΦS(MS).

The properties listed above characterize (M, τ) up to trace preserving ∗-isomorphisms.

Proof. From Corollary A.2 we know that ΦS,T is normal and injective for any S, T in S

such that S ≤ T , and moreover ΦS,T (MS) is a von Neumann subalgebra of MT . Now let
M0 be the C∗-algebra inductive limit of the directed system

{MS | S ∈ S}, {ΦS,T | S, T ∈ S, S ≤ T}

(see [10, Proposition 11.4.1] for details). Then for any S in S there is a ∗-monomorphism
Φ0
S : MS → M0, such that Φ0

T ◦ ΦS,T = Φ0
S , whenever S, T ∈ S such that S ≤ T . Putting

M00 =
⋃
S∈S Φ0

S(MS), we may then define a linear functional τ00 : M00 → C such that

τS = τ00 ◦ Φ0
S for all S in S. (A.1)

Indeed, if a ∈ Φ0
S(MS) ∩ Φ0

T (MT ) for S, T in S, we have that a = Φ0
S(a′) = Φ0

T (a′′) for
suitable a′ in S and a′′ in T , and we must show that τS(a′) = τT (a′′). Since “≤” is upward
filtering, we may choose an element U of S, such that S, T ≤ U . Now

Φ0
U ◦ ΦS,U (a′) = Φ0

S(a′) = Φ0
T (a′′) = Φ0

U ◦ ΦT,U (a′′),

so the injectivity of Φ0
U implies that ΦS,U (a′) = ΦT,U (a′′), and therefore

τS(a′) = τU ◦ ΦS,U (a′) = τU ◦ ΦT,U (a′′) = τT (a′′),

as desired. Thus (A.1) gives rise to a well-defined mapping τ00 : M00 → C, and by
similar reasoning it follows that τ00 is a linear, positive, tracial and norm-decreasing
functional on M00. Since M00 is dense in M0 with respect to the operator norm (cf. [10,
Proposition 11.4.1]), τ00 thus extends to a linear, tracial, norm-decreasing functional
τ0 : M0 → C, and since τ0(111M0) = 1 = ‖τ0‖, τ0 is a state on M0.

Consider next the GNS-representation πτ0 : M0 → B(Hτ0) of M0 associated with τ0

(see [9, Theorem 4.5.2]), and let ξ0 denote the unit 111M0 of M0 considered as an element

EJP 26 (2021), paper 49.
Page 37/41

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP620
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Completely random measures and Lévy bases in free probability

of Hτ0 . Let M denote the closure of πτ0(M0) in the strong operator topology, and define
τ : M→ C by

τ(a) = 〈aξ0, ξ0〉, (a ∈M).

Then τ0 = τ ◦πτ0 , so τ is tracial on πτ0(M0). Since multiplication is separately continuous
in each variable in the strong operator topology, it follows by a “bootstrap” argument that
τ is tracial on all of M. Hence ξ0 is a generating trace vector for M and hence also for
the commutant M′ (see [10, Lemma 7.2.14]). This implies that ξ0 is separating for M (see
[9, Corollary 5.5.12]), and hence τ is faithful, so that (M, τ) is indeed a W ∗-probability
space.

For any S in S we define next ΦS : MS → M by ΦS = πτ0 ◦ Φ0
S , and we note for a in

MS that
τ ◦ ΦS(a) = (τ ◦ πτ0) ◦ Φ0

S(a) = τ0 ◦ Φ0
S(a) = τ00 ◦ Φ0

S(a) = τS(a).

Hence Corollary A.2 implies that ΦS is injective and normal. If S, T ∈ S, such that S ≤ T ,
and a ∈MS , we note furthermore that

ΦT ◦ ΦS,T (a) = πτ0 ◦ Φ0
T ◦ ΦS,T = πτ0 ◦ Φ0

S(a) = ΦS(a).

To see that M is generated as a von Neumann algebra by
⋃
S∈S ΦS(MS) we use again

that M0 = (
⋃
S∈S Φ0

S(MS))= (where C= denotes the norm closure of C). Since πτ0 is
norm-continuous and πτ0(M0) is a C∗-algebra, this implies that

πτ0(M0) =
( ⋃
S∈S

πτ0 ◦ Φ0
S(MS)

)=
=
( ⋃
S∈S

ΦS(MS)
)=
.

Since the norm topology is stronger than the strong operator topology, this further
entails that

M =
(
πτ0(M0)

)−s
=
(( ⋃

S∈S
ΦS(MS)

)=)−s
=
( ⋃
S∈S

ΦS(MS)
)−s

(where C−s denotes the closure of C in the strong operator topology) as desired.
We establish finally the uniqueness statement. If (M′, τ ′) is another W ∗-probability

space satisfying the conditions listed for (M, τ), we consider the injective
∗-monomorphisms Φ′S : MS →M′ corresponding to the ΦS ’s. It follows then that the two
families of operators

⋃
S∈S ΦS(MS) and

⋃
S∈S Φ′S(MS) (indexed by

⋃
S∈S MS) have the

same ∗-distribution. Hence Proposition A.1 yields an injective, normal ∗-isomorphism Ψ

from M = (
⋃
S∈S ΦS(MS))−s onto (

⋃
S∈S Φ′S(MS))−s = M′, such that τ = τ ′ ◦Ψ.

Before stating the next proposition we recall that the symbol “
P→” refers to conver-

gence in the measure topology.

Proposition A.4. Let (M, τ) and (N, ψ) be W ∗-probability spaces, and let Φ: M→ N be
a ∗-homomorphism such that τ = ψ ◦ Φ. Let further M and N denote the set of (closed
densely defined) operators affiliated with M and N, respectively. We then have

(i) Φ extends to an injective mapping Φ: M → N which preserves the operations of
scalar multiplication, strong sum, strong multiplication and the ∗-operation. In
addition Φ(M) = Φ(M), and (Φ)−1 = Φ−1.

(ii) If (al)l∈N is a sequence of operators from M, a ∈ M and al
P→ a, then also

Φ(al)
P→ Φ(a).

(iii) Φ preserves spectral calculus in the sense that

Φ(f(a)) = f(Φ(a))

for any selfadjoint operator a in M and any function f from BF(R).
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Proof. Since τ is a finite trace it follows from [18, Example 1, page 22] that M equals
the class of τ -measurable operators affiliated with M. Hence (see [18, Theorem 28]) M
is a complete Hausdorff topological ∗-algebra with respect to the measure topology. In
addition M is dense in M with respect to the measure topology, and this topology is first
countable. Of course similar statements hold for N in relation to (N, ψ).

Now given a in M we may choose a sequence (an)n∈N from M such that an
P→ a.

Since Φ is normal it follows then for any positive ε that

ψ
[
1[ε,∞)

(
|Φ(an)− Φ(am)|

)]
= ψ

[
1[ε,∞)

(
|Φ(an − am)|

)]
= ψ

[
1[ε,∞)

(
Φ(|an − am|)

)]
= ψ

[
Φ
(
1[ε,∞)(|an − am|)

)]
= τ

[
1[ε,∞)(|an − am|)

]
−→ 0,

(A.2)

as n,m → ∞. Hence (Φ(an))n∈N is a Cauchy sequence in N (⊆ N) with respect to the

measure topology, so there exists an element b in N such that Φ(an)
P→ b as n→∞. Con-

sidering another sequence (a′n)n∈N from M such that a′n
P→ a, we may further consider

the mixed sequence a1, a
′
1, a2, a

′
2, . . . which also converges to a in probability. Hence the

argument above shows that the sequences (Φ(a′n))n∈N and Φ(a1),Φ(a′1),Φ(a2),Φ(a′2), . . .

converge in probability to elements b′ respectively b′′ from N. By subsequence consider-
ations we must have that b = b′′ = b′, and hence we may define a mapping Φ: M→ N by
setting

Φ(a) = P- lim
n→∞

Φ(an), (a ∈M), (A.3)

where (an)n∈N is any sequence from M such that an
P→ a as n→∞.

From this definition and the fact that scalar multiplication, strong sum, strong
multiplication and the ∗-operation are all continuous operations in the measure topology,
it follows by standard arguments that

Φ(λa) = λΦ(a), Φ(a+ b) = Φ(a) + Φ(b), Φ(ab) = Φ(a)Φ(b), Φ(a∗) = Φ(a)∗

for any a, b from M and λ in C. In other words Φ is a ∗-homomorphism.
Recalling from Lemma A.2 that Φ(M) is a von Neumann subalgebra of N, we check

next that Φ(M) = Φ(M). Since Φ(M) is the closure of Φ(M) in the measure topology, the
definition (A.3) clearly implies that Φ(M) ⊆ Φ(M). Conversely, given b in Φ(M), we may

choose a sequence (an)n∈N from M such that Φ(an)
P→ b. The calculation (A.2) then shows

that (an)n∈N is a Cauchy sequence and hence convergent in the measure topology to
some a from M. Now (A.3) implies that b = Φ(a) ∈ Φ(M). The mapping Φ−1 : Φ(M)→M

(cf. Corollary A.2) similarly gives rise to a mapping Φ−1 : Φ(M)→M, and it follows easily
from (A.3) (and the corresponding definition of Φ−1) that Φ−1 ◦ Φ(a) = a for all a in M

and that Φ ◦ Φ−1(b) = b for all b in Φ(M). In particular Φ is injective.
Consider finally a selfadjoint element a from M, put b = Φ(a) ∈ N and note that b = b∗.

We then define a mapping Ψ: BF(R)→ N by setting

Ψ(f) = Φ(f(a)), (f ∈ BF(R)).

We show next that Ψ(f) ∈ Φ(W ∗({a})) for all f in BF(R), where W ∗({a}) denotes
the (abelian) von Neumann sub-algebra of M generated by a. For this note first that
Φ(W ∗({a})) is again a von Neumann algebra (cf. Lemma A.2). Given f in BF(R) we put
fn = f1{|f |≤n} and note that fn(a) ∈ W ∗({a}) for all n. Using [9, Corollary 5.6.29] we
find then that

τ
[
1[ε,∞)(|fn(a)− f(a)|)

]
= τ

[(
1[ε,∞) ◦ |fn − f |

)
(a)
]

=

∫
R

1{|fn−f |≥ε}(t)L
sp{a}(dt)

= Lsp({a})({|fn − f | ≥ ε}) −−−−→
n→∞

0,

(A.4)
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where we used that fn → f point-wise and that Lsp{a} is a finite measure. Thus

fn(a)
P→ f(a) and hence also Φ(fn(a))

P→ Φ(f(a)). Since Φ(W ∗({a})) is complete in the
measure topology, it follows that Φ(f(a)) ∈ Φ(W ∗({a})) as desired, and in particular we
have that b = Φ(a) ∈ Φ(W ∗({a})).

Note next that Ψ is a ∗-homomorphism (since both Φ and the mapping f 7→ f(a) are
∗-homomorphisms), and furthermore Ψ is σ-normal in the sense of [9, 10], since the
mapping f 7→ f(a) is σ-normal (cf. [9, Theorem 5.6.26]), and since Φ preserves least

upper bounds (because Φ and Φ
−1

both preserve positivity).
The observations above allow us to apply [9, Theorem 5.6.27] by which we infer that

Ψ is the spectral mapping associated to b, i.e. f(Φ(a)) = Φ(f(a)) for all f in BF(R). This
completes the proof.

Corollary A.5. Let (M, τ), (N, ψ) and (L, $) beW ∗-probability spaces, and let Φ: M→ N

and Γ: N→ L be ∗-homomorphisms such that τ = ψ ◦ Φ, and ψ = $ ◦ Γ.
Then Φ and Γ are both normal and injective, and for any a in M we have that

Γ ◦ Φ(a) = Γ ◦ Φ(a).

Proof. Lemma A.2 ensures that Φ, Γ and Γ ◦ Φ are normal and injective, and Proposi-
tion A.4 ensures that the mappings Φ, Γ and Γ ◦ Φ are all well-defined.

Given a in M we choose a sequence (an)n∈N from M converging to a in the measure

topology. Proposition A.4 then entails that Φ(an)
P−→ Φ(a), and hence that Γ ◦ Φ(an)

P−→
Γ(Φ(a)). In addition Γ ◦Φ(an)

P−→ Γ ◦ Φ(a), and since the measure topology is a Hausdorff
topology, we obtain the desired conclusion.
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