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Aims A blood pressure (BP)-independent metabolic shift towards a catabolic state upon high sodium (Na*) diet, ulti-
mately favouring body fluid preservation, has recently been described in pre-clinical controlled settings. We sought
to investigate the real-life impact of high Na* intake on measures of renal Na*/water handling and metabolic signa-
tures, as surrogates for cardiovascular risk, in hypertensive patients.

Methods We analysed clinical and biochemical data from 766 consecutive patients with essential hypertension, collected at

and results the time of screening for secondary causes. The systematic screening protocol included 24 h urine (24 h-u-) collec-
tion on usual diet and avoidance of renin—angiotensin—aldosterone system-confounding medications. Urinary 24 h-
Na™ excretion, used to define classes of Na™ intake (low <2.3 g/day; medium 2.3-5 g/day; high >5 g/day), was an in-
dependent predictor of glomerular filtration rate after correction for age, sex, BP, BMI, aldosterone, and potassium
excretion [P=0.001; low: 94.1 (69.9-118.8) vs. high: 127.5 (108.3—147.8) mL/min/1.73 m*]. Renal Na* and water
handling diverged, with higher fractional excretion of Na™ and lower fractional excretion of water in those with ev-
idence of high Na™ intake [FEna: low 0.39% (0.30-0.47) vs. high 0.81% (0.73-0.98), P<0.001; FE,aer: low 1.13%
(0.73-1.72) vs. high 0.89% (0.69-1.12), P=0.015]. Despite higher FEy., these patients showed higher absolute 24 h
Na™ reabsorption and higher associated tubular energy expenditure, estimated by tubular Na*/ATP stoichiometry,
accordingly [Ahigh—low = 18 (12-24) kcal/day, P <0.001]. At non-targeted liquid chromatography/mass spectrome-
try plasma metabolomics in an unselected subcohort (n= 67), metabolites which were more abundant in high ver-
sus low Na™ intake (P < 0.05) mostly entailed intermediates or end products of protein catabolism/urea cycle.

Conclusion When exposed to high Na™ intake, kidneys dissociate Na™ and water handling. In hypertensive patients, this comes
at the cost of higher glomerular filtration rate, increased tubular energy expenditure, and protein catabolism from
endogenous (muscle) or excess exogenous (dietary) sources. Glomerular hyperfiltration and the metabolic shift
may have broad implications on global cardiovascular risk independent of BP.
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1. Introduction

A close association between sodium (Na*) and blood pressure (BP) is
well recognized, although BP response to increased or reduced sodium
intake (salt sensitivity) varies across populations and individuals."™ The
rationale for World Health Organization reduced sodium intake recom-
mendations is based on the predicted benefit in terms of incidence of
cardiovascular events that would follow a population-level decrease in
BP.3*® While there is reasonable agreement that high salt intake (gener-
ally identified as > 5g Na'/day) is associated with worse outcomes,
there is no consensus on the optimal range of intake and the role for its
effect on BP as the sole causal determinant of cardiovascular events has
not been proved.®™

Recently, an independent link between high Na* intake and a shift in
metabolism has been suggested, whereby a catabolic state induced by
Na* would ultimately serve preservation of body water. In particular, in
the experimental setting of a long-term salt balance study in 10 healthy
male subjects simulating a space flight, Rakova et al’® demonstrated
that endogenous water generation and accrual prevented extra water
intake upon high salt diet. Further mechanistic insights from a
rodent study pointed to urea excess as a key osmotic force to minimize
water loss."" This was achieved by renal urea recycling and extrarenal
endogenous generation, via a salt-driven catabolic state. Based on evi-
dence of increased 24 h-u-glucocorticoids excretion in both humans and
mice, the authors suggested hypercortisolism to mediate this metabolic
shift.'*"!

These mechanisms, which would lead to increased cardiovascular risk
regardless of BP salt-sensitivity, lack demonstration in humans out of a di-
etary- and environmentally controlled experimental setting.

This study sought to investigate the impact of high salt intake on renal
Na*/water handling and metabolism in real-life in hypertensive patients
undergoing systematic biochemical screening for secondary causes of hy-
pertension following a pre-defined standardized protocol. We herein re-
port the results for the large cohort of patients who received a final
diagnosis of essential hypertension.

2. Methods

An expanded version is available in the Supplementary material online.

2.1 Patients and diagnostic protocol

The study included clinical and biochemical data from consecutive
patients referred to the tertiary Hypertension Center of the University
of Padua, who underwent a biochemical screening for secondary causes
of hypertension and provided informed written consent (2012—17; local
biobank Prot.1925P/2009; international ENSAT-HT network, http://
www.ensat-ht.eu/, local approval prot. 3998/A0/16; in compliance with
the Declaration of Helsinki). The screening entailed plasma electrolytes,
aldosterone, renin, cortisol, 24h-u-Na*t, and K* excretion; additional
biochemical data, including renal function, 24 h creatinine excretion, 24 h
urinary catecholamines/metanephrines, and urinary free cortisol were
measured as recommended by guidelines.'*"® Patients were not
instructed to change their usual dietary habits before the screening.
They were asked to undertake a 24 h-u-collection on the day before and
to bring the entire volume on the morning of blood sampling, which was
performed after 1 h in supine position, between 8 and 10 a.m. If patients
were already treated, screening was performed after appropriate wash-
out from agents affecting the renin—angiotensin—aldosterone system and
switch to calcium channels blockers and/or doxazosin, as per guide-
lines," unless contraindicated. Exclusion criteria entailed reported/bio-
chemical evidence of oral, intramuscular or intravenous steroid use or
abuse and cases with a final diagnosis of secondary hypertension after ap-
propriate work-up (biochemistry, anatomical/functional imaging, adre-
nal/renal vein sampling), and follow-up at the time of data-lock (1 January
2019). Patients with a conclusive diagnosis of essential hypertension
were grouped according to classes of Na* intake. Intake estimates were
based on 24 u-Na"-excretion, which has limitations when applied to a
single subject"® but is only minimally affected by within-individual day-to-
day variability when applied to groups with sufficient number of partici-
pants included.” Intakes were defined as low <2.3g Na'/day
(100mmol/day); medium 23-5g Na'/day; high >5g Na'/day
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(216 mmol/day; Supplementary material online, Figure S1), according to
commonly used cut-offs. 181

2.2 Laboratory methods

Plasma and urinary electrolytes, plasma renin, aldosterone and cortisol,
and additional biochemistry as appropriate and detailed above, were
measured at the time of the secondary hypertension screening in an
International Standard Organisation (ISO) 15189:2012 accredited clinical
laboratory (University of Padua) by routine methods. Normal values and
within- and inter-assay coefficient of variation for aldosterone and renin,
as well as aldosterone-to-renin ratio (ARR) criteria for primary aldoste-

and further
4132021

ronism diagnostic work-up have already been

reporte and are recapitulated in the Supplementary material on-
line. Plasma cortisol concentration was measured by a chemilumines-
cence competitive immunoassay and urinary 24 h free cortisol (UFC) by
a liquid chromatography—mass spectrometry (LC-MS)/MS, as described
in detail elsewhere. 2?3 Urinary catecholamines and metanephrines
were measured by HPLC with electrochemical detection with a CE-IVD
kit (see Supplementary material online).

Plasma and 24 h urinary urea and creatinine were not routinely deter-
mined in all screened patients; the available biochemical dataset was ex-
panded by analysing urine samples stored in the local biobank since the
time of the screening and validating the results against the original dataset
according to Passing and Bablok method (Supplementary material online,
Figures $2—S4 and Table S1).

2.3 Renal function and energetics

Urine samples collected over the 24 h immediately before plasma sam-
pling were used for estimation of glomerular and tubular function,
according to standard equations. In particular, glomerular filtration rate
(GFR) was estimated by 24 h creatinine clearance and also by the CKD-
EPI formula.?* Tubular Na* handling was assessed by fractional excre-
tions (FEs) (i.e. the percentage of the filtered amount that is excreted), as
well as the absolute amount of filtered, reabsorbed, and excreted Na*
(mmol/day). FE of water (FEwater) Was calculated as urine flow rate/GFR.
Estimated tubular energy expenditure (kcal/day) was calculated based
on a tubular 4.6 Na™/ATP stoichiometry and the free energy equivalent
of ATP.?

2.4 Metabolomics

Available EDTA-plasma samples from a non-selected sub-cohort of
patients in the low and the high Na™ intake groups, stored in Padua bio-
bank from the time of screening, were extracted with chloroform/meth-
anol/water (1:3:1 v/v) and stored at -80°C until analysis by LC-MS.
Briefly, samples were eluted on a hydrophilic interaction LC column
(ZIC-pHILIC, Merck) and analysed on a Thermo Q-Exactive (Thermo
Scientific), operated in polarity switching mode to record both positive
and negative ionization mode data for each sample. A pooled sample,
prepared by combining an aliquot from each individual sample, was
injected every 5th injection to confirm the stability of the analysis. The
raw MS data were processed in a non-targeted way, using a pipeline con-

sisting of XCMS (peak picking) and MZMatch (grouping and filtering).2*~
30

2.5 Statistics

Categorical variables are presented as absolute numbers and percen-
tages and compared by x> test. Quantitative variables were tested for
normal distribution in the whole cohort and in individual groups by

graphical plot and Kolmogorov—Smirnov test; they are presented as
meanxSD, or median and inter-quartile range in case of a skewed distri-
bution. Parametric and nonparametric statistics were used for normally
and non-normally distributed variables, respectively. In particular, one-
way analysis of variance (ANOVA) or Kruskal-Wallis test was used to
compare anthropometric, clinical, and biochemical data across study
groups, with Tukey or Dunn’s as post hoc tests, as appropriate; crude cor-
relations were ascertained by Pearson or Spearman tests.

Multivariable-adjusted comparisons (ANCOVA) and linear regression
models included significant covariates identified at comparison of Na-
intake groups, that is, age, sex, BMI, aldosterone, and systolic BP, upon
appropriate transformation to attain normal distribution. Little’s missing
completely at random (MCAR) test was used beforehand to test the as-
sumption that variables were missing completely at random, including
the above covariates and urinary (u-) Na* excretion in the analysis; no
imputation methods were adopted and missing data were excluded,
with valid numbers for each analysis reported in the manuscript.

Slopes of the regression lines for FEs, assessing tubular Na* and water
handling, were compared between high and low Na* intake groups using
the extra-sum-of-squares F test, with automatic outliers exclusion (con-
servative Q for ROUT approach set at 0.5%) and normality of residuals
confirmed with Kolmogorov-Smirnov test.

For metabolomics, the intensity of peaks with a matching database for-
mula®" was log-transformed and t-test comparisons were conducted be-
tween high and low Na™ intake groups, using a moderated linear model.
The P-values for the targeted and non-targeted analysis were corrected
to control the false discovery rate.>

The o level was set at 0.05 and all statistical tests were 2-tailed. SPSS
(version 25, IBM) and Prism (version 8.02, GraphPad Software) were
used for the analysis.

3. Results

3.1 Cohort characteristics

Out of 1464 patients, we excluded 592 in whom washout of confound-
ing medications was not possible and 106 who received a final diagnosis
of secondary hypertension (Supplementary material online, Figure ST7).
The final study cohort therefore included data from 766 patients, almost
exclusively of Caucasian ethnicity. Their clinical and biochemical general
characteristics by Na* intake groups are reported in Table 1. Of note,
pre-defined 24 u-Na* cut-off values for group allocation closely approxi-
mated the extreme quintiles of the distribution (102 and 219 mmol/day
for 20th and 80th percentile, respectively).

Patients on high Na™ intake were generally younger, had a higher BMI
and similar BP values, although more frequently required doxazosin on
top of a first-line calcium channel blocker, compared with other Na™
groups. Prevalence of diabetes and/or CKD (KDIGO stage > 3) in the
cohort was low (<4% for both) and did not differ across study groups.

While plasma Na™ and K™ did not differ, plasma aldosterone was
higher with low Na% intake (P=0.040). Renin showed a similar trend,
which reached statistical significance upon correction for age and sex,
significant predictors at multivariate regression analysis (Supplementary
material online, Tables S2 and S3 and Figures S5 and S6). Overall, the ARR
did not differ across study groups. In the 24 h urine, higher Na™ excre-
tion was paralleled by a higher K excretion and total urinary volume
(P<0.001 for both).
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Table | Clinical and biochemical characteristics of patients, by Na* intake group

Nyaia  Whole cohort Low-Na® (n=146) Medium-Na* (n=464) High-Na™ (n=156) P

Age (years) 766 47413 47413 47413 44+13% 1 0.015
Sex (M; n/%) 766 428/55.9 49/33.6 248/53.4* 132/84.1%,1 <0.001
BMI (kg/m?) 537  25.6(23.0-29.0) 241 (21.0-274) 25.7 (23.2-29.1)* 26.7 (24.5-29.8)*,1 <0.001
SBP (mmHg) 647 150+18 153420 149+18 149+15 0.165
DBP (mmHg) 647 93110 93110 93110 94+11 0.801
Medications

None (n/%) 766 138/18.0 27/18.5 89/19.2 22/14.0 0.356

Dihydropiridine CCB (n/%) 766 444/58.0 82/56.2 261/56.3 102/65 0.158

Non-dihydropiridine CCB (n/%) 766 160/20.9 30/20.5 103/22.2 27/17.2 0.427

a-blockers (n/%) 766 173/22.6 24/16.4 102/22.0%* 47129.9% 1 0.016
Diabetes (n/%) 630 24/3.8 4/3.3 15/4.0 5/3.6 0.927
Chronic kidney disease (n/%) 645 24/3.7 4/3.3 18/4.7 2/1.4 0.222
p-Nat (mmol/L) 675 14112 14112 14112 141+2 0.650
p-K™ (mmol/L) 703 4.0+0.4 4.0£0.4 4.1+0.4 4.0£0.4 0.070
PAC (pmol/L) 766 241 (183-340) 265 ( 189-386) 232 (182-323)* 254 (174-344)* 0.040
PRA (ng/mL/h), 2012-15 313 0.64 (0.33-1.26) 1.00 (0.29-1.50) 0.61(0.30-1.21) 0.62 (0.41-1.17) 0.361
DRC (mlU/L), 2015-17 452 7.9 (3.3-14.8) 9.5 (4.1-15.9) 7.7 (3.1-13.6) 7.6 (2.7-15.7) 0.155
ARRpra (ng/dl/ng/mL/h) 313 15.9 (9.1-29.4) 14.9 (9.1-29.7) 16.5 (8.2-31.2) 15.7 (9.8-24.7) 0.823
ARRpprc (ng/d/mlU/L) 452 1.09 (0.61-2.25) 0.99 (0.62-2.00) 1.14 (0.62-2.46) 1.03 (0.53-2.15) 0.514
24h-u-Diuresis (L/day) 766 1.8 (1.4-23) 1.5 (1.0-2.1) 1.8 (1.4-2.3)* 2.0 (1.6-2.4)*+ <0.001
24h-u-Na™ (mmol/day) 766 155 (112-205) 80 (66-92) 154 (128-183)* 252 (236-294)*,1 <0.001
24h-u-K* (mmol/day) 766 60 (48-77) 49 (38-65) 60 (48-74)* 73 (61-90)*1 <0.001

Nyaiig, NUMber of patients with available information; BMI, body mass index; SBP and DBP, systolic and diastolic blood pressure, respectively; CCB, calcium channel blockers;

p-, plasma; 24 h-u-, 24 h urine; PAC, plasma aldosterone concentration; PRA, plasma renin activity; DRC, direct renin concentration; ARR, aldosterone-to-renin ratio.

*Post hoc tests: P<0.05 versus low-Na™; P <0.05 versus medium-Na™.

3.2 Renal Na" and water handling
We first tested the association between the FEs of Na* and water
(n=1282, Little’s MCAR test Sig. = 0.185 and n= 303, Sig. = 0.163, re-
spectively), as expression of the traditional osmotic natriuresis mecha-
nism challenged by Rakova et al'® In the context of an expected positive
correlation (Spearman p =0.402, P<0.001), the slope of the regression
line was steeper at low compared to high salt intake (P=0.005;
Figure 1A). In fact, the FE of Na™ increased with increasing Na™ intake
[P<0.001 across groups; post hoc low vs. high: 0.39% (0.30-0.47) vs.
0.81% (0.73-0.98), P <0.001] while that of water decreased [P=0.016
across groups; post hoc low vs. high: 1.13% (0.73-1.72) vs. 0.89% (0.69—
1.12), P=0.015; Figure 1B]. No such difference was observed for K* FE
(P=0.892).

To dissect the determinants of the above differences, we compared
GFRs and absolute measures of tubular activity across study groups.

3.3 Excess Na excretion is paralleled by

glomerular hyperfiltration

In keeping with evidence of a higher excretion of creatinine in the 24 h,
BSA-corrected (and uncorrected) creatinine clearance was greater in
high than in medium- and low-Na* intake (P<0.001 across groups;
n=249; Little’s MCAR test Sig. = 0.221; Table 2). In the high Na™ group
36.7% of the patients met the definition of ‘glomerular hyperfiltration’
according to a commonly used cut-off (135 mL/min/1.73 m?),**** ¢
pared to 16.4% and 8.2% in the medium and low Na™ intake group, re-
spectively (%% P<0.001). Similar trends were confirmed with use of
CKD-EPI formula, although with lower estimates of eGFR and of

om-

glomerular hyperfiltration prevalence, accordingly (Table 2 and
Supplementary material online, Table $4).

An independent association between 24 h urinary Na* excretion and
creatinine clearance was confirmed at multivariate regression analysis, af-
ter correction for age, sex, systolic BP, BMI, and aldosterone (P < 0.001).
In a regression model including also 24 h urinary K*, as an independent
surrogate marker for global food intake based on the above demonstra-
tion of a constant tubule handling, both variables remained significant
predictors (P=0.003 and P<0.001, respectively; Supplementary mate-
rial online, Tables S5 and S6).

3.4 High Na™ intake increases tubular

reabsorption and renal energy expenditure

Although the FE was higher with high Na™ intake, the total amount of
Na™* filtered by the glomerulus and reabsorbed by the tubules per day
was far larger compared to medium and low Na* intake (P<0.001, re-
gardless of adjustment for the above covariates, including stratification
by sex; Figure 2A and Supplementary material online, Table $4).

The estimated energy cost for this excess reabsorptive tubular activity
is shown in Figure 2B [A high vs. low Na™ intake groups =18 (12-24)
kcal/day; P < 0.001].

Urinary norepinephrine excretion, as a surrogate measure of renal
sympathetic nerve activity contribution to tubular Na® reabsorp-
tion,>>*¢ increased across groups of Na™ intake (P < 0.001) and was in-
dependently associated with 24h-u-Na® excretion (Supplementary
material online, Figure S7 and Tables S7-510).
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Figure 1 Renal Na and water handling upon differential Na* intake. (A) The positive association between Water and Na™ fractional excretions (FE)
reflects he osmotic effect of Na™, driving a parallel excretion of accompanying water (n.; = 282); however, the slope of this association is steeper at low
(white dots; n = 61) compared to high (red dots; n = 63) Na* intake [1.62 (95% Cl: 1.14-2.09) vs. 0.81 (95% Cl: 0.56—1.06), respectively; P = 0.005, extra-
sum-of-squares F test; X indicate automatically excluded outliers (ROUT approach, Q = 0.5%) from high and low Na™ intake groups]. (B) With increasing
Na™ intake, Na™ FE increases while water FE decreases (Kruskall-Wallis test: P < 0.001 and P = 0.017, respectively; Dunn’s post hoc test results on top of
bars); no significant difference across groups was noted for K*. Cases are the same as for panel A; n > 60 per bar. Data are shown as median and IQR; *P

< 0.05, ¥*P < 0.01; **++P < 0.0001.

3.5 Re-setting of nitrogen balance and met-

abolic signatures

While 24 h-urine excretion data suggested a higher daily loss of both cre-
atinine and urea with high Na™ intake (P < 0.001 for both), plasma values
increased or did not differ, respectively (Table 2). No difference in the FE
of urea was observed across groups (P = 0.724). Overall, this suggested a
global re-setting of the nitrogen balance.

Analysis of non-targeted metabolomics showed that the majority of
metabolites significantly increased in the high Na* (n=35) compared to
low Na™ group (n =32) entailed intermediates or end products of pro-
tein catabolism (i.e. dipeptides, single amino acids, or their derivatives) or
urea cycle (N-acetyl-L-glutamate 5-semialdehyde: fold change = 1.52,
Peorr = 0.02; Figure 3B). In particular, plasma levels of all detectable amino
acids (including the branched-chain leucine, isoleucine, and valine and
with the exception of few conditionally essential or non-essential amino
acids) were increased with high Na* intake (Figure 3B).

Other significantly increased metabolites identified by the non-
targeted approach included products of triglycerides and fatty acid me-
tabolism (diacylglycerols and acyl-glycines), acyl-carnitines, and some in-
dustrial food/tobacco-related compounds (Figure 3A). A complete list of
significantly different metabolites is provided in the see Supplementary
material online, Table S11.

While no obvious shift in carbohydrate metabolism was observed at
metabolomics analysis, higher Na™ intake was associated with higher
plasma glucose [n=171; high Na™: 4.9 (4.6-5.4) mmol/L, medium Na™:
47 (4.3-5.0) mmol/L, low Na*: 4.5 (4.2-5.0) mmol/L; P=0.004] and in-
sulin [n=47; high Na™: 7.46 (4.75-11.80) pU/mL, medium Na™*: 5.81
(3.79-9.24) pU/mL, low Na™: 4.89 (3.72-8.04) pU/mL; P=0.001]; how-
ever, these associations did not persist at multivariable analysis, where
BMI stood out as the strongest common independent predictor

(r=0.38, P=0.002 and r=0.48, P <0.001, respectively; Supplementary
material online, Tables S12-515).

3.6 Excess cortisol excretion upon high
Na intake

We additionally explored whether cortisol excess could be a primary
drive for muscle catabolism upon high Na™ intake, as suggested previ-
ously.11 In our study, UFC increased across groups of Na® intake
[n=137, Little’s MCAR test Sig. = 0.161; low Na™: 63 (36—72) nmol, me-
dium Na™: 60 (47-86) nmol, high Na™: 86 (75-139) nmol; P<0.001].
The positive association of UFC with 24 h-u-Na™ excretion persisted at
multivariable analysis after correction for age, sex, systolic BP, BMI, and
aldosterone (P=0.017), and also for creatinine clearance (P=0.035);
however, the latter stood out as the strongest independent predictor
(P <0.001; Supplementary material online, Tables S16 and $17).

Morning plasma-cortisol showed an opposite trend [n=658; low
Na*: 246 (203-309) nmol/L, medium Na*: 238 (194-294) nmol/L, high
Na™: 217 (171-294) nmol/L; P=0.047]; no independent association
with 24 h-u-Na™ was observed (P=0.284; Supplementary material on-
line, Tables S18 and S19).

4. Discussion

Our study examined the hypothesis that high Na™ intake could induce
mechanisms of water preservation and adversely affect metabolic signa-
tures, surrogates for global cardiovascular risk, in a large real-life popula-
tion of hypertensive patients. This idea was first proposed by Titze
et al’®"" based on the diet-controlled experimental settings of a rodent
study and a long-term simulated space flight of 10 healthy subjects. Our
results, obtained under normal dietary conditions and salt excretions
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Table 2 Renal function by Na™ intake group

Padj

Nyaiid

High-Na*

Medium-Na*

Low-Na*

Whole cohort

0.027
<0.001
<0.001

0.002
0.001

75 (68-85)*
9.1 (6.3-10.5)* 1

16.0 (13.9-19.7)%

73 (63-84)*
6.7 (4.6-10.3)

69 (59-78)
5.7 (4.1-9.4)

73 (63-84)
7.0 (5.0-10.4)

664
325
325

p-Creatinine (umol/L)

u-Creatinine (mmol/L)

<0.001

117 (8.9-15.3)

8.8 (7.1-119)

12.0 (8.8-15.6)

24h u-Creatinine excretion (mmol/day)

Estimated GFR:

<0.001
<0.001

<0.001

<0.001

<0.001
0.001

150.3 (125.6-178.1)%+
127.5 (108.3-147.8)% 1

116.6 (91.7-142.4)*
103.8 (86.9-126.0)*

100.5 (75.1-117.8)

119.2 (93.0-151.1)

303
249

Creatinine clearance (mL/min)

94.1 (69.9-118.8)

108.6 (86.7-128.8)

Creatinine clearance/BSA (mL/min/1.73 m?)

22/60 (36.7)*
100.8 (91.4-111.7)%1

21/128 (16.4)
97.0 (85.4-106.3)

5/61(8.2)
98.8 (86.8-106.0)

48/249 (19.3)

98.4 (86.6-107.6)

Glomerular hyperfiltration—n/tot (%)

eGFR—CKD-EPI (mL/min/1.73 m?)

0.02

664

0.011

3/405 (0.7) 5/137 (3.6)*

0/122 (0)

47 (40-5.6)
145.5 (100.3-237.4)
2429 (178.3-343.0)

8/664 (1.2)

Glomerular hyperfiltration—n/tot (%)

0.724
0.015
<0.001

0.026

5.1 (42-6.1)t
2602 (177.9-314.1)

47 (3.9-5.6)
1774 (125.9-257.8)
3321 (244.8-453.9)*

48 (40-5.7)
196.6 (127.2-271.3)
337.5 (239.6-499.0)

498
173
173

p-Urea (mmol/L)

0.001

u-Urea (mmol/L)

<0.001

496.8 (373.0-610.6)*

24h-u-Urea excretion (mmol/day)

p-, plasma; u-, urine; GFR, glomerular filtration rate; BSA, body surface area; p,q, analysis of variance adjusted for age, sex, systolic blood pressure, BMI, and aldosterone.

*Post hoc tests: P < 0.05 versus low-Na™; +P < 0.05 versus medium-Na™.
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Figure 2 Absolute Na* excretion and reabsorption and energy cost.
(A) The total excreted Na™ (shaded bars) is a trivial proportion of the
reabsorbed amount; the latter is much higher upon high Na* intake
and resulted in 18 kcal of estimated excess energy expenditure per day
(B). Data are shown as median and IQR; neoe = 282, Nigw Na = 671, Nhigh Na
= 63. Kruskall-Wallis and Dunn’s post hoc tests: **P < 0.01; **p <
0.001.

comparable to those reported in other populations,17 showed that the
higher excretion of Na* was indeed coupled with a higher excretion of
water, in keeping with the classic concept of osmotic natriuresis.
However, we identified opposite trends relative to their filtered amount:
while the FE increased for Na* upon high Na" intake, it decreased for
water and this was paralleled by a plasma metabolomic signature consis-
tent with protein catabolism and with the results obtained by Titze et al.
in rodent models. These findings indicate that kidneys can effectively dis-
sociate Na* and water handling upon high Na™ intake and that the asso-
ciated catabolic state, likely participating in this water preservation
mechanism, could independently affect the risk of cardiovascular disease.

Previous clinical studies suggested a different body water handling,
assessed as body weight change and diuretic response upon salt load and
depletion, between salt-sensitive and salt-resistant (insensitive) sub-
jects.” Our study, albeit lacking a formal assessment of salt sensitivity,
rather focused on the renal-specific differential regulation of Na™/water
excretion and its correlates, independently of BP (Supplementary mate-
rial online, Tables S5 and $6). Such fine regulation relies upon a larger
amount of processed urine and a higher GFR. A recent meta-analysis
identified this association also in interventional trials,*® but was limited in
its conclusions by the heterogeneity in study designs, populations, and
approaches to estimation of GFR. In the present study, we employed a
standardized screening approach and a rigorous protocol that included
washout of confounding medications, the use of 24 h urine collections
for the assessment of both Nat and creatinine excretion and non-
targeted metabolomics. In a large sample size, we showed that a consid-
erable proportion of patients exhibit glomerular hyperfiltration upon
high Na™ intake: although estimates differ depending on the method
used for GFR assessment,>* this proportion is consistently higher com-
pared to both medium and low Na™ groups. Glomerular hyperfiltration,
traditionally linked to obesity and diabetes,® is a recognized marker of
early kidney damage, precedes microalbuminuria and/or decline in renal
function and predicts cardiovascular events.** Our study suggests Na™
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Figure 3 Metabolomics signature. (A) Volcano plot showing the metabolomics comparison between high and low (reference) Na* intake (ne = 67
subjects; NiowNa = 32, Nhighna = 35). Y-axis: uncorrected P-values; curved lines: multiple comparisons-corrected significance (pcor<0.05). Red dots: inter-
mediates/end products of the urea cycle or protein catabolism; empty dots: other identified metabolites (Supplementary material online, Table S11). (B)
Comparative profile of plasma amino acids LC/MS signals (mean, 95% Cl); for visualization, the x scale was made homogeneous by Z-score transforma-
tion, based on mean and SD from the low Na™ group, as a reference; n = 35 (high Na). Background: white = essential amino acids; light grey = condition-
ally essential, dark grey = dispensable amino acids. Bars: dashed for branched-chain amino acids; red for significance (pcorr < 0.05). Peaks for asparagine,
cysteine, glutamine, and methionine could not be unequivocally identified. For all statistical comparisons, log-transformed peak intensities of the n = 67

subjects were compared by t-tests with a false discovery rate correction.

intake, independent of BP values and of a surrogate for total food con-
sumption, as a key determinant in the pathogenesis of glomerular hyper-
filtration in hypertension, thus confirming previous suggestions from a
smaller study.>

While higher filtration carries the ultimate advantage of more precise
distal regulation of solutes, ™ not only has it negative long-term prognos-
tic implications but also comes at the cost of a much higher tubular activ-
ity at more proximal segments (Figure 2). The increase in Na™®
reabsorption in response to the increased filtered Na™ load is known as
glomerulo-tubular balance and is primarily active via Na*/K™ ATPase,
with ancillary passive mechanisms facilitated by changes in tubular, inter-
stitial, and capillary physical forces. The extra Na*/K*™ ATPase activity
implicates a higher oxygen and energy consumption.41 Pruijm et al*?
found that one week of high-Na™ diet reduced renal medullary oxygena-
tion in both normotensive and hypertensive subjects by using blood oxy-
gen level-dependent (BOLD) MRI, thus pointing to a higher oxygen
extraction by tubular cells, which ultimately supports our contentions.

Our estimate of the excess energy cost upon high versus low Na* in-
take was 18kcal. This is a rough (potentially over- or under-) estimate,
based on a stoichiometry value that averages different tubular segments
with different activity and was validated in ‘standard’ conditions.” Albeit
imprecise, it offers an order of magnitude that corresponds

approximately to 4.5g of protein or 2g of fat per day. These values
should be considered in a lifespan or population perspective. Of note,
with the due haemo- and tubule-dynamic corrections required between
species, the magnitude of this energy cost well justifies the weight loss
observed in high Na™-fed mice when their total caloric food intake was
paired with low Na™-fed controls."" In that animal model, the catabolic
state primarily oriented towards protein degradation and muscle loss
served to generate both endogenous water and osmotically active urea.
Overall, these mechanisms allowed water preservation against Na™ ex-
cess and a potentially volume-depleting osmotic diuresis."" In our study,
a similar re-setting in nitrogen balance was observed: along with evi-
dence of massive excretions of urea and creatinine upon high Na™ in-
take, we identified a catabolic signature at non-targeted metabolomics,
mostly entailing intermediates or end products of the urea cycle or pro-
tein catabolism. In particular, plasma levels of all the identifiable essential
amino acids were increased, thus ruling out endogenous generation or
the sole renal recycling as sources for their excess. To the best our
knowledge, this is the first metabolomics approach to the topic of salt
balance in humans.

Based on the increase in 24 h urinary glucocorticoid excretion upon
high Na™ diet, Titze et al. suggested a Na™-induced subclinical hypercor-

tisolism as the intermediate determinant of the above catabolic state.'®""
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In our human cohort, we could not confirm a cortisol increase in plasma.
The UFC excretion, although increased and independently associated
with Na™ excretion, had GFR as its strongest predictor and its increase
was clinically trivial, particularly when GFR-adjusted. This appears in
keeping with human physiological studies assessing the renal clearance of
plasma cortisol,** or UFC excretion in other glomerular hyperfiltration-
associated conditions, like obesity** or simple water load.*® In fact, only
subtle increases in adrenal cortisol secretion in response to Na™ loading,
possibly due to the cross stimulation of the hypothalamic—pituitary—
adrenal axis by the water-preserving vasopressin,*® were observed by
Ehrlich et al.*” despite marked changes in urinary excretion. As discussed
above, we propose that glomerular hyperfiltration and the consequent
glomerulo-tubular balance per se would suffice to induce extra energy
requirements and the development of a catabolic state.

The main limitation of our study is its cross-sectional nature, unsuit-
able to prove causality. However, mechanistic evidence of a metabolic
shift had already been provided in preclinical models' ' and our study has
the advantage to offer a perspective on real-life, where caloric and/or
water intake is not restricted or fixed. Obviously, this prevented discrim-
ination as to how this energy cost, predominantly but not exclusively in
the form of protein, was paid. Although the association between Na™ in-
take and renal haemodynamics/energetics was independent of K+ excre-
tion, a crude surrogate for total food intake, this could reflect catabolism
of either endogenous (muscle mass) or exogenous (dietary excess)
sources. Based on the higher BMI and a larger urea clearance in our high
Na* group, we speculate that both options could be exploited to differ-
ent degrees in different individuals, according to multiple determinants.
These would include cultural and socio-economical aspects, favouring or
limiting food access. In this regard, the per-protocol controlled caloric in-
take in the 10 healthy male cosmonauts could account for the reduced
excretion and increased recycling of urea observed in the original study
by Rakova et al.,10 but not in our real-life cohort. Similarly, it could ac-
count for the discrepancy of those preclinical data with the recent find-
ings by Juraschek et al.,*®® who found increased thirst upon high Na™ diet
in a secondary analysis of the randomized DASH-Sodium trial, where ca-
loric intake was not fixed. Juraschek et al. also provided reassurance
against a putative weight gain effect of low salt intake, if endogenous
sources were the only available for Na*-induced catabolism. At variance,
they could not draw definite conclusions regarding high Na™ intake,
since the trial failed at adjusting the energy intake of participants to main-
tain a stable weight, further confounded by unmeasured fluid retention.

Overall, the importance of an altered caloric balance is such that the
excess exploitation of exogenous protein sources would ultimately re-
sult in excess fat deposition regardless of food relative composition.*
Therefore, excess food consumption and lean mass loss, alternative or
complementary sources for the catabolic state observed in our study,
are both likely to favour a long-term adverse insulin-resistant metabolic
phenotype, universally associated to worse cardiovascular outcomes
(please see Graphical Abstract).

Additional limitations of the study include: use of a single 24 h urine
collection, which might not accurately estimate an individual’s usual long-
term daily sodium intake; missing data that potentially reduced the
power of some analyses, for example, for UFC; the lack of a formal BP
‘salt-sensitivity’ assessment in the protocol, as mentioned, as well as the
ethnicity distribution of our almost exclusively Caucasian cohort, which
might require validation in other groups like African—Americans.
However, estimates of intake by 24 h urine collections in properly sized
groups are not significantly affected by random variability across individu-
als," particularly when they are not instructed to artificially change their

dietary habits. Moreover, use of the same 24 urine samples for the as-
sessment of all renal handling parameters provides an intra-patient con-
trol, with all fluctuations going in the same biological direction and,
overall, levelling off in large numbers. Finally, absence of evidence of sys-
tematic bias and strong statistical significance for most of our results
makes type Il error or any considerable impact of missing data on the
overall message unlikely.

In conclusion, our results confirmed the activation of water-
preserving mechanisms upon high Na™ intake in a large real-life cohort
of patients with essential hypertension. These mechanisms appear to in-
volve glomerular hyperfiltration, enhanced glomerulo-tubular balance,
increased tubular energy expenditure, and protein catabolism, with
broad implications on cardiovascular risk. The preferential endogenous
or exogenous source of protein to compensate for these energy costs in
different subjects/populations remains to be established in interventional
studies, where caloric intake is controlled but not restricted. However, it
is already tempting to speculate that specific dietary strategies and/or
novel medications like SGLT-2 inhibitors, reducing both glomerular
hyperfiltration and the energy-demanding tubular Na™ reabsorption,
could favourably impact the metabolic consequences of excess Na™ in-
take and the global risk profile of hypertensive patients.

Summary (graphical abstract): High salt intake is traditionally linked
to cardiovascular risk via its effect on blood pressure (BP, in grey).
Preclinical studies recently described a metabolic shift toward catabolism
upon high sodium (Na™) diet, ultimately favouring body water preserva-
tion and possibly impacting cardiovascular risk, irrespective of BP. In a
large cohort of hypertensive patients we confirmed that kidneys
preserve water and excrete sodium excess upon high salt intake; this
was associated with glomerular hyperfiltration, higher tubular workload
and a plasma metabolomic signature suggestive of protein catabolism.
Muscle loss and/or excess food consumption, paralleled by adverse renal
haemodynamics in a putative vicious circle, could represent a novel BP-
independent link between salt intake and cardiovascular disease.
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Translational perspective

We herein show that high Na intake can adversely impact not only blood pressure control but also renal function and metabolic balance in hyper-
tensive patients. At variance with experimental preclinical studies, the catabolism of proteins appears to include also exogenous sources.
Interventional studies where caloric intake is controlled but not restricted may identify preferential metabolic handling in different subjects/popula-
tions and test the effect of specific dietary strategies. Similarly, the potential benefit of medications like sodium—glucose cotransporter (SGLT)-2
inhibitors, which are known to reduce both glomerular hyperfiltration and excess tubular Na™ reabsorption, in non-diabetic hypertensive patients
deserves further investigation in relation to the described Na™-reno-metabolic mechanisms.
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