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Abstract: Assessing passenger cars’ dynamic performance is a critical aspect for car industries, due 
to its impact on the overall vehicle safety evaluation and the subjective nature of the involved han-
dling and comfort metrics. Accordingly, ISO standards, such as ISO 4138 and ISO 3888, define sev-
eral specific driving tests to assess vehicle dynamics performance objectively. Consequently, proper 
evaluation of the dynamic behaviour requires measuring several physical quantities, including ac-
celerations, speed, and linear and angular displacements obtained after instrumenting a vehicle 
with multiple sensors. This experimental activity is highly demanding in terms of hardware costs, 
and it is also significantly time-consuming. Several approaches can be considered for reducing ve-
hicle development time. In particular, simulation software can be exploited to predict the approxi-
mate behaviour of a vehicle using virtual scenarios. Moreover, motion platforms and detail-scalable 
numerical vehicle models are widely implemented for the purpose. This paper focuses on a custom-
ized simulation environment developed in C++, which exploits the advantages of object-oriented 
programming. The presented framework strives to perform concurrent simulations of vehicles with 
different characteristics such as mass, tyres, engine, suspension, and transmission systems. Within 
the proposed simulation framework, we adopted a hierarchical and modular representation. Vehi-
cles are modelled by a 14 degree-of-freedom (DOF) full-vehicle model, capable of capturing the 
dynamics and complemented by a set of scalable-detail models for the remaining sub-systems such 
as tyre, engine, and steering system. Furthermore, this paper proposes the usage of autonomous 
virtual drivers for a more objective evaluation of vehicle dynamic performances. Moreover, to fur-
ther evaluate our simulator architecture’s efficiency and assess the achieved level of concurrency, 
we designed a benchmark able to analyse the scaling of the performances with respect to the num-
ber of different vehicles during the same simulation. Finally, the paper reports the proposed simu-
lation environment’s scalability resulting from a set of different and varying driving scenarios. 

Keywords: autonomous vehicle; vehicle dynamics; torque vectoring; object-oriented programming; 
real-time simulations 
 

1. Introduction 
Over the last decades, automotive original equipment manufacturers (OEM) aimed 

to make their cars increasingly smarter, more autonomous, and safer by widening the use 
of efficient electronic control units (ECUs) and active systems to improve both vehicle 
performance and passengers’ safety. Since the anti-lock braking system (ABS) was intro-
duced for serial production, several advanced driver-assistance systems (ADASs) have 
been developed for vehicle longitudinal, lateral, and vertical stability control [1–3]. As a 
result, modern cars, even those belonging to the city car segment, feature a plethora of 
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ADAS functions. Besides the older longitudinal dynamics controllers, such as the ABS [4], 
the adaptive cruise control (ACC) [5], and the traction control system (TCS) [6–9], other 
functionalities recently arose targeting the lateral stability enhancement, such as the elec-
tronic stability program (ESP) [10,11], the active front steering (AFS) [12–14] and the direct 
yaw moment controller (DYC) for torque vectoring (TV) transmission control [15]. Even 
if less common than the former systems, vertical dynamics control systems, such as the 
active suspension control (ASC) [16] and the active body control (ABC) [17], are being 
introduced in top-end passenger cars to improve safety and ride comfort. As a result, the 
complexity of modern vehicle control systems is reaching hardly sustainable levels, with 
up to over 100 million lines of source code distributed on board among over 100 ECUs 
[18]. 

ADASs generally improve vehicle safety and stability, but their effectiveness relies 
on the accurate estimation of the instantaneous vehicle dynamic states [19], enabled by a 
variety of onboard sensors, such as inertial navigation sensors (INS), global navigation 
satellite systems (GNSS), and wheel speed and orientation sensors [20,21]. Besides estima-
tion, ADASs rely on model predictive control strategies to correctly perform their safety 
actions, thus requiring the embedding of a numerical vehicle dynamic (VD) model on the 
ECU. 

In the literature, different dynamic models and formulations estimate vehicle perfor-
mance in terms of longitudinal, vertical, and lateral dynamics. Advanced simulations deliv-
ering high-accuracy predictions rely on high-fidelity rigid multibody (MB) models [22,23], 
which can be eventually enriched by vehicle body concept models to account for the body 
flexibility as well [24,25]. However, the MB modelling approach is quite complex and de-
mands high computational effort. It may lead to MB models with more than 100 bodies, 
each of which needs an accurate definition of constraints, geometry, and mass properties. 
Although new efficient ECUs have been developed and recent studies tried to achieve real-
time (RT) MB simulation of vehicle dynamics in embedded applications [26–28], the com-
putation is often too expensive with respect to the limited amount of computational re-
sources of an embedded platform, and it is not always compatible with hard RT constraints. 

The use of concept models, consisting of lumped-parameter models commonly used 
during the early-stage design phases, emerged for targeting RT embedded applications. 
Concept models represent a computationally more affordable alternative to the corre-
sponding high-fidelity MB models, enabling an accurate and reliable RT prediction of the 
vehicle dynamic behaviour as required by ADASs [29]. The lumped-parameter vehicle 
models (LPVMs) consist of a few bodies and a limited number of degrees of freedom 
(DOFs) with associated relatively low computational cost. Their complexity ranges from 
simple 2 DOF quarter-car or bicycle models, which can capture only the basic vertical and 
either the longitudinal or the lateral behaviour of a vehicle, up to 15–18 DOF full-vehicle 
models (FVMs) [30–32]. Offering a good compromise between predictive accuracy and 
computational efficiency, FVMs already proved their effectiveness in supporting the ve-
hicle dynamic simulation for RT driver-in-the-loop (DiL) testing [33,34]. A human driver 
immersed into a virtual-reality scenario acts on a virtual vehicle, enabling the assessment 
both subjectively and objectively of the influence of multiple design choices related, but 
not limited to, VD performances. Furthermore, FVMs are also enabling the development 
of more recent control strategies aiming for autonomous driving, such as fuzzy controllers 
[35] and/or proportional–integral–derivative (PID) controllers [36,37]. 

This work’s contribution builds on the verge of extending the above-mentioned DiL 
approach, including some of the more basic autonomous driving functions, such as steer-
ing and throttle control, leading to the concept of virtual-driver-in-the-loop (vDiL) simu-
lations. The proposed vDiL approach enables comparative vehicle design assessments on 
different driving scenarios while achieving a more objective benchmark than the human 
driver-in-the-Loop (hDiL) alternative. In practice, a replica of the virtual driver program 
is used in different simulations, while varying the design parameters under investigation. 
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In particular, this paper describes the main components and the overall architecture 
of a simulation environment required to evaluate the vehicle dynamic performances using 
vDiL. The presented simulation environment enables the validation of the vDiL results, 
while investigating more complex scenarios where the impact of the ADAS or even of the 
autonomous driving functions can be assessed [38,39]. 

The presented research originates from the need for simulating several inde-
pendently controlled actors, while allowing to choose among several vehicle variants, 
with different types of models or different control strategies. This motivation led us to 
design a new simulation environment, which was deeply inspired from a predecessor 
simulator [34]. The new architecture relies on the benefits of the object-oriented program-
ming paradigm and exploits a hierarchical evaluation of the vehicle sub-modules, which 
is also more representative of the hierarchical organization of the plethora of different 
ECUs used in modern cars . 

Within the proposed simulation framework and for the sake of describing a first 
proof-of-concept validation, we adopted a 14 DOF FVM that exchanges information with 
scalable-detail models of the remaining core vehicle sub-systems such as tyre, engine, and 
steering system. Moreover, a vDiL agent module was programmed. In particular, our test-
ing scenarios exemplify how the proposed simulation platform enabled the comparison 
of the lateral dynamics of two vehicles with identical physical characteristics, but with 
two different strategies for driving torque distribution, i.e., a simplified mechanical dif-
ferential model [40,41] and a DYC-based torque vectoring (TV) system [42]. 

The paper is organized as follows. Section 2 describes the concurrent software archi-
tecture of the simulator. Section 3 explains the implemented driving tests. Section 4 dis-
cusses the computational efficiency of the proposed simulator and presents the achieved 
level of concurrency. Moreover, it discusses the numerical results achieved during con-
stant steer (CS) and constant radius (CR) tests according to ISO 4138, along with a severe 
lane change (SLC) manoeuvre as defined by ISO 3888 standard. Section 5 provides con-
cluding remarks and an overview of future developments. 

2. Architecture of the Simulation Environment 
A new simulation environment was designed and implemented using modern C++ 

(ISO 17), although we were inspired by an existing simulator [34]. Thanks to the modern 
object-oriented programming (OOP) paradigm, the proposed simulator offers a modular 
infrastructure, where code procedures and data are hierarchically grouped and systemat-
ically encapsulated into objects [27]. This allows a more effective representation of the 
increasing level of complexity required from the vehicle industry market. 

In fact, the OOP paradigm is based on the concept of “objects”, which can contain 
data, in the form of fields or attributes or properties, but also embed specific functionali-
ties, in the form of procedures or methods able to process the known data and produce 
new objects. Exploiting OOP, the design of the environment was more natural, as it al-
lowed to focus on expressing the interactions and hierarchies between objects, more than 
on the data transactions and the corresponding procedures typical of the older procedural 
programming approach. Moreover, we exploited polymorphism to effectively capture the 
modular but also hierarchical variety of objects necessary for the dynamic simulation of 
several variants of a vehicle. In fact, the proposed software architecture more naturally 
supports the implementation of a multitude of alternatives for each sub-component of the 
vehicle, while it captures the interfaces between them at a more abstract level. Thanks to 
OOP and modern C++ (ISO 17), the vehicle simulation manager class was programmed to 
be thread-safe: several variants of a vehicle can be simulated concurrently. 

Figure 1 depicts the proposed modular architecture. The simulation starts by instan-
tiating one or more vehicle objects. Each vehicle is created as an independent instance of 
the same abstract object class, which relies on several interacting sub-objects such as the 
car, tyre, powertrain, or driver sub-modules. Each vehicle instance retrieves the infor-
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mation required for its own construction, using a set of specific configuration files. Differ-
ent configuration files define the required vehicle properties such as car geometry, inertial 
parameters, masses, steering system, engine, tyres, and suspension characteristics. Each 
of the input files must obey a prescribed syntax format, although OOP would also allow 
the easy implementation of the possibility of supporting different input file syntaxes. 

The number and type of the input files depend on the type of object used to define 
the simulation: if the user sets a driving torque distribution strategy based on a DYC for 
TV, two more configuration files are required to provide the reference yaw rate lookup 
table (LUT) defined as explained in [42]. 

At least two more additional configuration files are used to define road profiles and 
trajectories that vehicles must follow during the same prescribed ride simulation. 

After the file-based initialization stage, the proposed simulation environment ena-
bles the concurrent simulation of different vehicles, each encapsulating its characteristics 
and control strategies. A dedicated graphical user interface (GUI) was instrumental for 
editing at runtime the different PID parameters, allowing for a better and more efficient 
fine-tuning of the dedicated PID-based virtual driver’s behaviour. 

The RT vehicle simulations, in response to the virtual driver’s actions, are computed 
using a very efficient numerical model for vehicle dynamic simulation based on a lumped-
parameter formulation with 14 DOFs. A set of output signals, such as car position, forces, 
and torques, are sent to the GUI enabling RT data visualization, in addition to their storage 
for post-processing purposes. 

To prevent slowing down the simulation execution, the communication towards the 
GUI application was delegated within a lower-priority thread using a client–Server User 
Datagram Protocol (UDP). 

The vehicle simulation is based on a modular architecture relying on four sub-modu-
els: car, powertrain, tyre, and virtual driver. Each of the sub-module classes was defined 
allowing its evaluation to run in a separated thread, with no dependencies either on the 
states of the other sub-modules or on the communication towards the external GUI. To 
prevent concurrency issues such as race condition and deadlock and achieve thread-
safety, we used the shared-memory paradigm, enriched by the usage of a set of dedicated 
memory mutexes. All the above-mentioned concurrent programming features are sup-
ported natively by modern C++ since the 2011 revision, making the current version of the 
code immediately portable towards different platforms, including the embedded ones. 

 
Figure 1. Diagram of the simulator architecture. 
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2.1. Car Sub-Module 
The car sub-module represents the core of the system implementing the lumped-pa-

rameter FVM. It is an explicit solver for the set of ordinary differential equations (ODEs) 
governing the dynamic equilibrium of the vehicle chassis (three translational and three 
rotational equilibrium conditions) and of each of the wheels (translational equilibrium in 
the vertical direction and rotational equilibrium around the spindle axis). The 14 DOFs of 
the model are as follows: 
• the 3 rigid-body rotations (pitch, roll, and yaw) of the vehicle body; 
• the 3 rigid-body translations of the vehicle body; 
• the vertical displacement of each wheel centre w.r.t. to the vehicle body; 
• the rotation of each wheel around the spindle axis. 

2.2. Powertrain Sub-Module 
The powertrain sub-module is responsible for computing the angular velocity of the 

engine, from which the engine torque, Td, is derived by interpolating the specified maxi-
mum torque–velocity curve and scaling it by the throttle command. The torque distribu-
tion to the driving wheels is considered even for a vehicle equipped with a conventional 
mechanical differential, while the following uneven distribution is implemented for a ve-
hicle equipped with DYC for TV: 

Trdw	=	0.5× Td − MzRw

d  (1)

Tldw	=	0.5× Td+
MzRw

d  (2)

where Trdw and Tldw are the torque values delivered to the right and left wheel, respec-
tively, while Rw is the wheel radius, d the vehicle half-track width, and Mz is the yaw 
moment required by the desired understeer correction calculated as described in [43]. For 
the vehicles used in the proposed simulation, we used Rw = 0.3135 m and d = 1.4673 m. 

2.3. Tyre Sub-Module 
The tyre sub-model is responsible for simulating the road–tyre interaction and com-

puting the vertical, longitudinal, and lateral forces, along with the longitudinal and lateral 
slip coefficients. At each simulation step, vertical forces are estimated by a simple spring–
damper model. Longitudinal and lateral forces are computed using a simplified version 
of Pacejka Magic Formula, as explained in detail in [41]. 

2.4. Virtual Driver 
The driver sub-module of the simulation software is used to control the throttle po-

sition, the steering wheel angle, and the Mz correction factor using three nested PID regu-
lators as described in [40,41] and depicted in Figure 2. A kinematic model is implemented 
to derive the steering angle at wheels, based on the actual value of the steering input given 
by the virtual driver and on the steering ratio. 
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Figure 2. Nested PID controllers behind the virtual driver agent module. 

Three independent PID controllers are used to calculate the values of the steering 
wheel angle (δ), the throttle command (th), and, in the case of a vehicle with DYC, the 
desired yaw moment, Mz, input. 

Considering the discrete-time nature of the simulation, all the implemented PID reg-
ulators rely on a classical formulation as follows: 

δ(k)	=	Kpδ ect(k)+Kiδ ect(i) dt
k

i	=	0 +Kdδ 
ect(k) 	− 	ect(k − 1)

dt  (3)

th(k)	=	Kpth es(k)+Kith es(i) dt
k

i	=	0 +Kdth 
es(k) − es(k− 1)

dt  (4)

Mz(k)	=	KpMz eyr(k)+KiMz eyr(i) dt
k

i	=	0 +KdMz 
eyr(k) − eyr(k − 1)

dt  (5)

where ect is the current cross-track error determined as the distance of the current vehicle 
position from the reference trajectory; es represents the error between the target speed 
and the current vehicle speed; and eyr is the error between the current vehicle yaw rate 
and the desired yaw rate. The index, k, is the number of the current iteration timestep in 
a range from 1 to N, with N representing the total number of simulation timesteps. The 
integration time, dt, represents the time interval between two consecutive iteration steps. 
It is worth noting than the duration of dt has a remarkable influence on the overall quality 
and stability of simulation. On the one hand, an extremely low value of dt corresponds to 
a very dense time discretization, thus assuring a high dynamic accuracy of the simulation 
results. However, this can lead to numerical instabilities when using discrete derivatives, 
such as in Equations (3)–(5), in presence of numerical noise [40]. On the other hand, higher 
values of dt generally reduce the dynamic accuracy, leading to information loss and po-
tentially instability and divergency when simulating highly dynamic problems. In the 
scope of this paper, we used values of the integration time, dt, between 0.001 and 0.005 s, 
assuring a good compromise between accuracy and stability corresponding to these val-
ues. Kpδ, Kiδ, and Kdδ are the proportional, integral, and derivative gains, respectively, for 
the steer regulator; Kpth, Kith, and Kdth are the proportional, integral, and derivative gains 
for the throttle regulator; KpMz, KiMz, and KdMz are the proportional, integral, and deriv-
ative gains for the throttle regulator. 
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3. Virtual Driving Tests 
Several driving tests were carried out based on ISO standard manoeuvres to assess 

the effectiveness of the implemented simulator. The most relevant tests carried out were 
those concerning the evaluation of lateral behaviour of the vehicles by simulating the CS, 
CR, and SLC manoeuvre. 

The first two tests are defined by the ISO 4138 standard for the characterization of 
understeering characteristics of the vehicle, and the last one is defined by ISO 3888 stand-
ard. The ISO 4138 defines a standardization of the driving manoeuvres to evaluate the 
understeer gradient of a vehicle. It consists in varying a specific feature of the vehicle mo-
tion, while measuring and keeping constant other motion features. 

Table 1 summarizes the constant, varied, and measured features for each of the two 
tests. 

Table 1. ISO 4138—test conditions. 

Test Method Constant  Varied Measured or Calculated 
Constant Radius Radius Speed Steering wheel angle 
Constant Steer Steering wheel angle Speed Radius 

As explained in [43], in dynamic conditions, the steering angle δ is given by 

δ	=	 180
π  

L
R +K ay (6)

where L is the wheelbase length of the vehicle; R, the turning radius; and ay, the lateral 
acceleration. The understeer gradient, K, can be derived as follows: 

K	=	 δ− 180
π  L

R
ay

 (7)

The lateral acceleration depends on the longitudinal velocity, s, and the turning ra-
dius, being 

ay	=	 s2

R (8)

In real driving scenarios, vehicles are equipped with specific sensors to measure δ, s, 
and ay from which the understeer gradient, K, is derived, while in the virtual tests pro-
posed in this work, those values are estimated by the implemented 14 DOF FVM. 

CR and CS manoeuvres can be used alternatively, being the steady-state equilibrium 
independent of the actual testing method. The values of speed, steering wheel angle, or 
turning radius can be obtained holding constant any of the three, while varying the second 
in a controlled way and measuring the third one. 

In the implemented CR manoeuvre, the two vehicles are driven by virtual PID-con-
trolled drivers at different speeds along the trajectory shown in Figure 3, consisting of a 
clothoid, along which the vehicles are accelerated until reaching a speed of 30 km/h, fol-
lowed by a circular trajectory of standard constant radius, R, equal to 100 m. At that point, 
the steering angle is increased up to the value of the Ackerman angle, which is calculated, 
for the test vehicles with a wheelbase L = 2.73 m, as 

= 180	 ≅ 1.56° (9)
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Figure 3. Constant radius test trajectory. 

Once the vehicles are on the circular path, the virtual drivers accelerate from 30 to 
100 km/h following a stepwise constant law, with a step of 5 km/h, while ensuring that 
the lateral acceleration increases by a rate not exceeding 0.1 m/s2/s, as ISO 4138 suggests. 
At each step, the speed is kept constant to ensure that steady-state conditions are main-
tained for at least 3 s. The understeer gradient is then calculated using Equation (7). 

In addition to the CR test, a CS manoeuvre is implemented as well, during which the 
steering wheel angle is kept fixed and equal to the Ackerman value δAck, and the speed, s, 
of the vehicles is steadily increased from 50 to 160 km/h, again with a step of 5 km/h. With 
the imposed steering wheel angle, as the longitudinal speed increases, the car travels 
along circular trajectories with decreasing or increasing radii for an oversteering and an 
understeering behaviour, respectively. 

When the car reaches steady-state conditions for a given speed value, s, the actual 
turning radius is calculated as follows: ( ) = ( ) (10)

The understeer gradient, K, is finally derived from Equation (7). 
A third driving test has been implemented as well, consisting of an SLC manoeuvre 

defined according to the ISO 3888 standard. The latter defines the geometry of a test track, 
with a total length of 61 m, designed to enable the assessment of obstacle avoidance per-
formance and road-holding capability of a vehicle. The test track, which is depicted in 
Figure 4 and defined by the dimensional specifications listed in Table 2, is marked by 
cones that are placed as shown in the schematic of Figure 5. 

 
Figure 4. Track for the severe lane change (SLC) test. 
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Table 2. Obstacle avoidance track dimension. 

Section 
Length 

[m] 
Lane Offset 

[m] 
Width b 

[m] 
1 12 - 1.1 vehicle width + 0.25 
2 13.5 - - 
3 11 1 vehicle width + 1  
4 12.5 - - 
5 12 - 1.3 vehicle width + 0.25 (min ≥ 3) 

To perform this manoeuvre, the virtual driver strives to follow as closely as possible 
the specific test trajectory that follows the middle line of the test track, as shown in Figure 
5. 

 
Figure 5. SLC desired trajectory. 

In particular, the virtual vehicle is expected to enter Section 1 with the highest gear 
position that allows guaranteeing a minimum engine speed of 2000 RPM during the ma-
noeuvre, and after 2 m the driver must release the throttle and drive up to the end of 
Section 5. The test is considered faultless if the vehicle never crosses the track borders as 
defined by the cones. 

As explained in Table 3, these manoeuvres must be executed using a different com-
bination of the available PID regulators. To perform these tests at the same time, it is pos-
sible to instantiate several driver and vehicle objects with different characteristics. Specif-
ically, three different drivers and two vehicles were instantiated. Each driver was assigned 
one of the above manoeuvres to be executed with two different vehicles. The following 
table shows the assigned manoeuvres and the activation status of the regulators for steer 
and throttle control in each test. 

Table 3. Regulators’ activation status during the driving tests. 

Driver ID Manoeuvre Steer Controller Throttle Controller 
driver 1 CR enabled enabled 
driver 2 CS disabled enabled 
driver 3 SLC enabled enabled only before Section 1  

CR, constant radius; CS, constant steer. 

If the vehicle is configured to use the TV strategies, the DYC PID-controller is also 
activated in any of the three driver cases. 

The two vehicles instantiated are identical, except for the driving torque distribution 
system: vehicle 1 is equipped with a simplified mechanical differential that performs an 
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even torque distribution, while vehicle 2 exploits uneven driving torque distribution, con-
trolled by a DYC approach. This further clarifies the advantages of OOP and the high 
flexibility of the proposed simulator that can simulate different driving scenarios concur-
rently. The advantages of concurrent simulation and the results of these driving tests are 
illustrated, respectively, in Sections 4.1 and 4.2. 

4. Results and Discussion 
This section describes the numerical assessments conducted to highlight the benefits 

of the concurrent simulation architecture introduced using OOP (as discussed in Section 
2) and to validate the proposed vDiL approach’s usability. All results presented in this 
section have been achieved through simulations executed on a workstation featuring an 
Intel® Core™ i7-6700HQ 2.60 GHz quad-core eight-thread processor, and 16 GB of DDR4 
RAM, running on Windows 10 Enterprise operating system and assigning to the corre-
spondent process higher execution priority. At first, tests assessed the level of concurrency 
with an increasing number of independent vehicles’ simulation. Afterwards, we demon-
strated the potential of the platform and the presented virtual driver approach by simu-
lating a set of comparative standard driving tests, which are typically adopted for per-
forming vehicle dynamics objective evaluations on test tracks. 

4.1. Assessment of the Concurrency Level 
As described in Section 2, this paper deals with the advantages of a concurrent sim-

ulation architecture, which allows multiple—and potentially although not necessarily dif-
ferent—car simulations to run concurrently. 

In other words, the proposed concurrent software architecture is a necessary but not 
sufficient condition to achieve parallel RT execution of different car simulations. Concur-
rency refers just to the possibility of having various simulations to be launched inde-
pendently. In contrast, achieving RT parallel simulation demands additional complexity 
levels: considering the time variable, mechanisms for enforcing time-related deadlines, 
and implementing dedicated constructs for coordinating and orchestrating the operations 
among all the parallel threads. 

The proposed concurrent architecture can achieve real-time execution for all the sim-
ultaneously executed jobs provided that the available computing resources can meet the 
computational demands at any time. Therefore, it is interesting to consider a benchmark 
focusing on the scaling of the computational performances for an increasing number of 
concurrently simulated vehicles. Moreover, it not only allows the further evaluation of the 
efficiency of the proposed architecture but also assess the achieved level of concurrency. 

We performed 10 different simulations with an increasing number of identical vehi-
cles, during a path-following scenario. This context represents the more computationally 
demanding simulation case, because virtual drivers use all the regulators illustrated in 
Figure 2. 

Figure 6a shows the trend of minimum and maximum computation times required 
when issuing an increasing number of parallel simulations. The almost constant value of 
the minimum curve tells us that there is always at least one thread, thus at least one par-
allel simulation, able to conclude the job with a performance comparable to the single-
vehicle simulation case. Conversely, a sever degradation of the slowest thread perfor-
mances happens only from above six concurrently simulated vehicles. This suggests that 
the computational resources within the used workstation are saturated only when we 
launch more than six concurrent threads: in all those cases, only a subset of the threads 
are able to stay resident on the CPU, while the remaining threads’ operations start to be 
scheduled asynchronously. Although the computational efficiency is out of the scope of 
this paper, it is worth noticing also that all the simulations were completed within the 
real-time barrier, showing great potential for achieving parallel real-time simulation of 
several vehicles. 



Machines 2021, 9, 41 11 of 17 
 

 

 

(a) 

 

(b) 

Figure 6. Simulator performances (a) and speed-up (b). 

Figure 6b depicts the results of the same benchmark, in terms of the achieved speed-
up levels, computed as the ratio between the time required to complete all the simulations 
sequentially and the time required from the slowest thread simulation. This chart high-
lights more clearly that our architecture achieves almost perfect parallelism (slope of the 
blue curve is lower than that of the dash-dotted line) with a linear scaling up to 6 simula-
tions. Above this value, the speed-up tends to saturate to a value of 4×, which indicates 
how our implementation can fully saturate all the CPU cores (dashed line). Fluctuations 
of the speed-up above 4× are achieved due to the Intel hyperthreading functionality, 
which allows the scheduling of the execution of more threads on the same physical core. 

Figure 7 further clarifies the implication of concurrent execution of six identical ve-
hicles, all performing the same CR driving test task for 10 s, showing the evolution of the 
time ratio between the software execution time, (texec), and the vehicle time, tsim, calculated 
as follows: 

time	ratio	=	 texec(s)
t (s)	 (11)

As illustrated, the simulation of each vehicle is not synchronized with the simulation 
of the other vehicles, but it is performed asynchronously. The different simulations exe-
cute at a variable computing speed and the virtual vehicles are substantially free to race. 
It is worth mentioning that, with the simulations running on a pre-emptive multitasking 
operative system, with other programs running, the execution is not deterministic as it 
may be greatly influenced by several other factors suddenly changing the amount of avail-
able computing power, such as graphics drivers interrupts, other programs possibly run-
ning in the background, or system updates. At the very beginning, all the simulating 
threads are warming-up, which is consistent with the fact that the CPU frequency is rising 
and transitioning from lower energy-saving states to its maximum power. After few iter-
ations, we can appreciate that vehicles 3 and 4 start being the slowest threads, but they 
were allocated more resources than the others, becoming the first two threads to complete. 
Similarly, simulations of vehicles 5 and 6 advanced with a degrading performance, as-
ymptotically converging towards a time ratio threshold of about 0.27 s. As reported also 
in Figure 6a, for the six simulations case, the total execution time ranged between 2.357 
and 2.693 s, which is also reported at the rightmost side of the chart in Figure 7. It is also 
worth noting that all the simulations were executed maintaining a large margin from the 
real-time barrier, corresponding to a time ratio equal to 1. 
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Figure 7. Thread execution time for the six concurrent simulations. 

4.2. Results of the Virtual Driving Tests 
This section illustrates an example of the simulation output for the CR, CS, and SLC 

driving tests. As mentioned in Section 3, we used three drivers and two vehicles, with 
identical characteristics but with different torque distribution strategies. Each driver was 
assigned a specific manoeuvre, as indicated in Table 3, to be done with the two different 
vehicles. In particular, vehicle 1 was supposed to be equipped with a simplified mechan-
ical differential, providing an even torque distribution to the driving wheels. Vehicle 2 
was designed to have a driving torque distribution based on two different TV strategies, 
to be used in two different driving modes. In the two modes, indicated as mode 1 and 
mode 2, the implemented TV-based DYC allows, respectively, to reduce and to increase 
the understeer gradient in comparison to vehicle 1 (corresponding to the baseline in Fig-
ure 8). 

 
Figure 8. Desired understeering behaviour for vehicle 2 in mode 1 and mode 2. 

Figure 8 shows the dynamic steering angle curve, δdyn
∗ ,	as a function of the lateral 

acceleration, ay, for vehicle 1 (baseline) along with the desired curves for vehicle 2 (mode 
1 and mode 2) when the vehicle speed is set to 25 m/s and a ramp signal is used to define 
the steering wheel input between 0° and 120° [43]. Vehicle 1 shows an oversteering behav-
iour for lateral acceleration values up to 5.5 m/s2. Thanks to DYC, vehicle 2 in mode 1 
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shows an oversteering behaviour up to 6.5 m/s2 of lateral acceleration, while an under-
steering behaviour is achieved by vehicle 2 in mode 2 in the entire range of lateral accel-
eration. 

The implemented DYC allows following the desired δdyn
* ay

*  curve, for each driving 
mode of vehicle 2, with a maximum error of ± 0.5°, as shown in Figures 9 and 10, where 
the achieved trend of understeer gradient for vehicle 1 and vehicle 2 is calculated with the 
CR and CS tests, respectively. 

As mentioned in the previous section, in steady-state conditions the two test methods 
are equivalent, as confirmed by the substantially identical results achieved in the simu-
lated manoeuvres executed by driver 1 and driver 2. 

As expected, using the driving mode 1 with driver 1, the understeer gradient of ve-
hicle 2 is always lower than that of vehicle 1, while it is higher in driving mode 2 in the 
full range of lateral acceleration. 

 

(a) 

 

(b) 

Figure 9. Understeer gradient estimated by implementing the CR test for vehicle 1 and for vehicle 2 in driving mode 1 (a) 
and in driving mode 2 (b). 

 

(a) 

 

(b) 

Figure 10. Understeer gradient estimated by implementing the CS test for vehicle 1 and for vehicle 2 in driving mode 1 (a) 
and in driving mode 2 (b). 
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Figure 11 shows the turning radius as a function of the longitudinal speed, measured 
in steady-state conditions during the CS test conducted by driver 2, which further clarifies 
the differences in the lateral behaviour of two test vehicles. 

 

(a) 

 

(b) 

Figure 11. Turning radius as a function of the longitudinal speed for vehicle 2 in both driving mode 1 (a) and in driving 
mode 2 (b), as compared to vehicle 1. 

As expected, for a given value of the longitudinal velocity controlled by driver 2 as 
indicated in Section 3, due to the higher oversteering in driving mode 1, vehicle 2 travels 
along circular paths with a radius that is lower than the one exhibited by vehicle 1. Instead, 
when driving mode 2 is selected, the DYC forces vehicle 2 to travel along higher-radius 
circular trajectories as compared to vehicle 1. 

The effects of TV on the lateral dynamic response of the two vehicles are evaluated 
also using driver 3 to perform the SLC testing manoeuvre. In this test, driver 3 drives the 
vehicle until Section 1 of the test track by achieving a longitudinal speed of 14 m/s. With 
this entry speed value, driver 3 on vehicle 1 fails to complete the manoeuvre. Instead, due 
to the effects of DYC on the lateral dynamics, which enhances the oversteering perfor-
mances, vehicle 2 is able to complete the driving test faultlessly. 

Figure 12 shows the paths followed by the centres of gravity (CGs) of vehicle 1 and 
vehicle 2, along with the desired path during the manoeuvre. Considering the track di-
mensions defined in Table 2 and a vehicle width of 1.4673 m for Sections 3 and 5 of the 
test track, the maximum allowed absolute values of the position error are 0.5 and 0.76 m, 
respectively. Vehicle 2, subject to DYC in driving mode 1, proves able to correctly com-
plete the manoeuvre, with a maximum position error of about 0.12 m. This is due to the 
higher level of oversteer that makes vehicle 2 more responsive to the driver’s steering 
input, allowing it to travel on a path with a lower-curvature radius than vehicle 1 at the 
same speed. 
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Figure 12. SLC test results: simulated path for vehicle 1 and vehicle 2 in mode 1. 

5. Conclusions 
This paper proposed a C++ simulation platform for multiple and concurrent vDiL 

simulations of road vehicles. In the proposed scheme, a software driver, replacing the hu-
man driver interaction, calculates all the possible control signals such as throttle, brake, 
and steering angle, based on the asked manoeuvre and relying on a set of nested PID 
controllers. The preliminary evaluations of the simulator showed great potential for 
achieving the concurrent simulation of several vehicles. 

Several variants of a vehicle can be simulated with different characteristics such as 
geometry, mass properties, tyres, and transmission. The simulation environment relies on 
a modular and hierarchical architecture, which can more naturally be further expanded 
in several ways: additional modules could be dedicated to perform other dynamic tests; 
other modules could create an interface with more advanced virtual driving scenario soft-
ware; yet other modules could expand the current functionality implementing more com-
plex hardware interfaces such as a motion platform. In this latter scenario, our simulator 
could be instrumental for comparing human-in-the-loop (HiL) with vDiL during closed-
loop manoeuvres, similar to those presented in this study or even more complex driving 
scenarios on virtual tracks. Future works are planned to add modular and scalable-detail 
sub-system models and more advanced control strategies, such as fuzzy or predictive con-
trol models. 

The advantages of using the vDiL approach have been illustrated. The reported test 
results demonstrate the capabilities of the proposed simulator and its effectiveness in eval-
uating the dynamic performance of multiple passenger cars with low computational im-
pact. The possibility of instantiating several vehicles, even different variants of a vehicle, 
joined to the possibility of different virtual drivers has been achieved using the OOP par-
adigm. The resulting software environment represents a flexible tool for simulating dif-
ferent driving scenarios, enabling several research activities in line with the recent auto-
motive industry demands. 
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