
10460

ABSTRACT

The objective of this study was to investigate the 
potential of milk mid-infrared (MIR) spectroscopy, 
MIR-derived traits including milk composition, milk 
fatty acids, and blood metabolic profiles (fatty acids, 
β-hydroxybutyrate, and urea), and other on-farm data 
for discriminating cows of good versus poor likelihood 
of conception to first insemination (i.e., pregnant vs. 
open). A total of 6,488 spectral and milk production 
records of 2,987 cows from 19 commercial dairy herds 
across 3 Australian states were used. Seven models, 
comprising different explanatory variables, were exam-
ined. Model 1 included milk production; concentrations 
of fat, protein, and lactose; somatic cell count; age at 
calving; days in milk at herd test; and days from calving 
to insemination. Model 2 included, in addition to the 
variables in model 1, milk fatty acids and blood meta-
bolic profiles. The MIR spectrum collected before first 
insemination was added to model 2 to form model 3. 
Fat, protein, and lactose percentages, milk fatty acids, 
and blood metabolic profiles were removed from model 
3 to create model 4. Model 5 and model 6 comprised 
model 4 and either fertility genomic estimated breeding 
value or principal components obtained from a genomic 
relationship matrix derived using animal genotypes, re-
spectively. In model 7, all previously described sources 
of information, but not MIR-derived traits, were used. 
The models were developed using partial least squares 
discriminant analysis. The performance of each model 
was evaluated in 2 ways: 10-fold random cross-valida-
tion and herd-by-herd external validation. The accu-
racy measures were sensitivity (i.e., the proportion of 
pregnant cows that were correctly classified), specificity 
(i.e., the proportion of open cows that were correctly 
classified), and area under the curve (AUC) for the 
receiver operating curve. The results showed that in 
all models, prediction accuracy obtained through 10-
fold random cross-validation was higher than that of 

herd-by-herd external validation, with the difference in 
AUC ranging between 0.01 and 0.09. In the herd-by-
herd external validation, using basic on-farm informa-
tion (model 1) was not sufficient to classify good- and 
poor-fertility cows; the sensitivity, specificity, and AUC 
were around 0.66. Compared with model 1, adding 
milk fatty acids and blood metabolic profiles (model 
2) increased the sensitivity, specificity, and AUC by 
0.01, 0.02, and 0.02 unit, respectively (i.e., 0.65, 0.63, 
and 0.678). Incorporating MIR spectra into model 2 
resulted in sensitivity, specificity, and AUC values of 
0.73, 0.63, and 0.72, respectively (model 3). The com-
parable prediction accuracies observed for models 3 
and 4 mean that useful information from MIR-derived 
traits is already included in the spectra. Adding the 
fertility genomic estimated breeding value and animal 
genotypes (model 7) produced the highest prediction 
accuracy, with sensitivity, specificity, and AUC values 
of 0.75, 0.66, and 0.75, respectively. However, removing 
either the fertility estimated breeding value or animal 
genotype from model 7 resulted in a reduction of the 
prediction accuracy of only 0.01 and 0.02, respectively. 
In conclusion, this study indicates that MIR and other 
on-farm data could be used to classify cows of good and 
poor likelihood of conception with promising accuracy.
Key words: likelihood of conception, discriminant 
analysis, prediction accuracy

INTRODUCTION

Good fertility is a key driver of profit in dairy farm-
ing because it ensures better control of culling, milk 
sales, and number of replacements (Kaniyamattam 
et al., 2016). This is arguably of greater importance 
in seasonal calving systems compared with nonsea-
sonal systems because good fertility is a prerequisite 
to maintain a compact calving period and match the 
high energy requirements of the cow in early lactation 
with peak pasture growth rate (Armstrong et al., 2010; 
Shalloo et al., 2014). Multiple factors have been re-
ported to be associated with variation in conception 
rate. Nongenetic factors include quality and quantity 
of bull semen (DeJarnette et al., 2004), age, body con-
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dition, energy balance, RUP, milk yield, milk protein 
concentration, and health status of the cow (Roche et 
al., 2007; Shorten et al., 2015; Rodney et al., 2016; 
Leroy et al., 2017; Morton et al., 2017; Rearte et al., 
2018), days postcalving (Clay et al., 2004), heat stress 
(Morton et al., 2007), lameness (Alawneh et al., 2011), 
and insemination season (Cornwell et al., 2006). Berry 
et al. (2011) indicated that about 2.3% of the pheno-
typic variation in conception rate could be attributed 
to additive genetic effects.

Despite the large efforts that have been made to 
investigate factors related to conception rate, compara-
tively few authors have attempted to predict the out-
come of an individual insemination event (i.e., pregnant 
vs. open). Prior knowledge of how likely a cow is to get 
pregnant, once inseminated, would enable farmers to 
optimize breeding decisions. For example, sexed or pre-
mium bull semen could be used for cows predicted to 
have a high likelihood of conception, whereas cows with 
predicted poor fertility could be mated using semen 
from beef bulls, multiple doses, or semen from bulls of 
known high genetic merit for fertility. To our knowl-
edge, Grzesiak et al. (2010), Shahinfar et al. (2014), 
and Hempstalk et al. (2015) are the only authors who 
have reported the ability of some on-farm data to pre-
dict likelihood of conception to a given insemination 
of dairy cows. The value of the prediction accuracy 
ranged between 0.66 (Hempstalk et al., 2015) and 0.91 
(Grzesiak et al., 2010). Unfortunately, some of the 
important variables used in these studies might be dif-
ficult to obtain on-farm (e.g., BCS and BW) or cannot 
be predicted a priori (e.g., year).

Mid-infrared (MIR) spectroscopy is routinely used 
by worldwide milk recording organizations to quantify 
the concentration of fat, protein, and lactose in milk 
samples. Moreover, an increasing number of studies 
have reported a good capability of MIR to predict traits 
related to cow metabolic status, such as energy balance, 
milk and serum fatty acids, and BHB [see reviews by De 
Marchi et al. (2014) and Gengler et al. (2016)], which 
are known to affect fertility (Ribeiro et al., 2013). Also, 
Toledo-Alvarado et al. (2018b) reported that milk fatty 
acid profiles predicted by MIR could be used to iden-
tify cows in proestrus or estrus. Alternatively, the MIR 
spectra were also used directly as indicators of health 
and fertility status of the cows. Toledo-Alvarado et al. 
(2018a) showed that pregnant versus open cows postin-
semination could be discriminated with promising ac-
curacy using MIR spectra, parity, and DIM. Hempstalk 
et al. (2015), however, concluded that the inclusion of 
MIR spectra did not improve the accuracy of predicting 
the likelihood of conception to an insemination com-
pared with the same model but without MIR spectra.

The objective of this study was to investigate the 
potential of milk MIR spectra, together with other vari-
ables, for classifying cows of good and poor likelihood 
of conception at first insemination. The additional 
variables evaluated were milk fatty acids and blood 
metabolic profiles (fatty acids, BHB, and urea), milk 
production and composition, DIM at herd test, days 
from calving to insemination, calving age, fertility ge-
nomic EBV, and SNP genotypes of the cow.

MATERIALS AND METHODS

Animal Data

Records of insemination and date of calving were 
available for 8,064 spring-calving cows from 19 com-
mercial dairy herds located in Victoria, Tasmania, and 
New South Wales of Australia in 2016 and 2017. The 
cows were between first and sixth parity and predomi-
nantly Holstein-Friesian (74.3%), but the data set also 
included 8.2% purebred Jersey and 17.5% crossbred 
animals. Other data available included DIM at herd 
test, days from calving to insemination, age at calving, 
previous-lactation milk yield, milk fat yield, and milk 
protein yield, all expressed on a 305-d basis; current-lac-
tation herd test-day milk yield, fat, protein, and lactose 
percentages; SCC; milk and serum fatty acids, BHB, 
and urea; fertility genomic EBV (GEBV); genotype of 
the cow; and MIR spectra. Milk fatty acids and blood 
metabolic profiles were predicted from MIR using the 
equations developed by Ho et al. (2019) and Luke et 
al. (2019), respectively. Milk production, milk composi-
tion, insemination and calving records, fertility GEBV, 
and 47,162 SNP genotypes (BovineSNP50 BeadChip), 
edited for the routine genomic evaluations, were ob-
tained from DataGene (Bundoora, Victoria, Australia). 
To incorporate the genotype data into the prediction 
model, a genomic relationship matrix (GRM; a matrix 
of 8,604 × 8,604 estimating the fraction of total DNA 
that 2 individuals share) was first derived using the 
method of Yang et al. (2010). A principal component 
analysis was then applied on the GRM using the R 
function “prcomp” to determine the optimal number of 
GRM components to be included in future analyses, a 
model (i.e., model 7 as described later) that included 
MIR spectra, previous-lactation 305-d milk yield, milk 
fat yield, and milk protein yield, current-lactation herd 
test-day milk yield, DIM at herd test, days from calving 
to insemination, calving age, and fertility GEBV was 
iteratively run with a descending order of size of eigen-
value. The preliminary analysis showed that the first 
84 components (explaining 84.6% of the total variation 
of the GRM) produced the greatest contribution to 
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the prediction accuracy and thus were used for model 
development.

Spectral Data

In this data set, all cows were milked twice daily in 
accordance with the standard commercial practices of 
herd-testing organizations in Australia. Milk samples 
(either a.m. or p.m.) were collected and sent to TasH-
erd Pty Ltd. (Hadspen, Tasmania, Australia) to be 
analyzed for fat, protein, and lactose concentrations 
and SCC using a NexGen Series FTS Combi machine 
(Bentley Instruments, Chaska, MN), and the corre-
sponding spectra were obtained for this study. Each 
cow had 2 to 8 records. A recorded spectrum includes 
899 data points, with each point representing the ab-
sorption of infrared light through the milk sample at a 
particular wavenumber in the 649 to 3,999 cm−1 region.

Data Manipulation

The main objective of this study was to examine the 
potential of MIR spectra and other on-farm data for 
classifying cows of good and poor likelihood of concep-
tion at first insemination. Thus, we first divided the 
cows in the data set into 3 groups as shown in Table 1: 
good (cows that conceived at first insemination), aver-
age (cows that conceived following 2 or more insemina-
tions and cows that did not conceive but where number 
of inseminations was >1), and poor (cows with no 
conception event recorded and that had only 1 insemi-
nation). Conception was confirmed by a calving in the 
subsequent year and was coded binarily as 1 (pregnant) 
or 0 (open). Mating records that resulted in abortions 
were removed from the data. The conception event was 
assumed to result from the last recorded insemination.

It was hypothesized that cows in the good and poor 
groups might have significantly different metabolic 
conditions and, consequently, different likelihood to 
conceive, whereas the metabolic condition of cows in 
the average group could be similar to that of cows in 
the other 2 groups. By focusing on the good and poor 
groups, the differences would be magnified and may 
help improve the predictability of the model. Second, 
to be predictive, only spectral records obtained before 
the first insemination were retained, which reduced the 
data to 6,488 records of 2,897 cows for final analyses. 
The mean ± standard deviation of the number of days 
between milk sampling for spectral collection and first 
insemination was 43.4 ± 25.1. Although there were 
multiple spectra per cow (i.e., 2.2 on average), we 
considered each spectrum to be unique because of the 
large differences in terms of, for example, diet, lactation 

stage, and management at the time each observation 
was recorded, which is a common practice in many 
MIR studies (Soyeurt et al., 2011; McParland et al., 
2014; van Gastelen et al., 2018).

Pretreatments were also applied to the raw spectra. 
First, spectral regions (2,998–3,998 cm−1, 1,615–1,652 
cm−1, and 649–925 cm−1) characterized by low signal: 
noise ratio, which is the consequence of high water 
absorption, were removed before chemometric analyses 
(Hewavitharana and van Brakel, 1997). This resulted 
in 536 wavenumbers available for model development. 
Second, to discard the spectra that are potentially 
outliers, a standardized Mahalanobis distance (often 
known as global H distance; Shenk and Westerhaus, 
1995) between each spectrum and the population aver-
age was calculated. Then, spectra with a global distance 
greater than 3 (n = 24) were considered to be outliers 
and eliminated as recommended by Williams (2004). 
Finally, extended multiplicative correction (Kohler et 
al., 2009) and first-order Savitzky–Golay derivative 
(Savitzky and Golay, 1964) were applied to the reduced 
spectra.

The prediction equations of Ho et al. (2019) and 
Luke et al. (2019) were applied on the preprocessed 
spectra to derive milk fatty acids (C4:0, C6:0, C8:0, 
C10:0, C12:0, C14:0, C16:0, C17:0, C18:0, C18:1 cis-
9, and C20:0) and the concentrations in sera of fatty 
acids, BHB, and urea, respectively.

Model Development and Evaluation of Performance

Discriminant models to classify cows that conceived 
at first insemination and did not conceive within the 
breeding season were developed using partial least 
squares discriminant analysis (PLS-DA) and imple-
mented with the mixOmics R package of Lê Cao et 
al. (2011). Partial least squares discriminant analysis 
is a variant of partial least squares regression when the 
response variable is categorical that is used to find the 
relationship between 2 matrices. It is one of the most 
well-known classification methods in chemometrics, 
metabolomics, and proteomics and has the ability to 
analyze highly collinear data, which is often a problem 
with conventional regression methods, such as logistic 
regression (Gromski et al., 2015). The predictors were 
scaled using an option in the package (i.e., each vari-
able was standardized by dividing itself by the standard 
deviation). Each model’s performance was evaluated in 
2 ways: 10-fold random cross-validation and herd-by-
herd external validation. In the 10-fold random cross-
validation, the data set was randomly split into 10 parts 
that were balanced in terms of the ratio of pregnant 
and open cows using the groupdata2 R package (Olsen, 
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2017). One part was reserved for validation, whereas 
the remaining data were used for model training. This 
process was repeated 10 times until each part of the 
data had been validated once. In the herd-by-herd ex-
ternal validation, the data of a given herd was excluded 
and used as a validation of the model trained with the 
data of the other 18 herds. The process continued until 
every herd had been validated once (i.e., 19 times, as 
there were 19 herds in this study).

The accuracy of each discriminant model was evalu-
ated by producing the receiver operating characteristic 
curves and calculating the area under the curve (AUC) 
through the 2 validation processes described previously. 
The optimal cut-off value for each test variable was 

defined as the point where the sum between sensitivity 
and specificity was at a maximum (i.e., equal weighing 
of false-positive and false-negative test results), where 
sensitivity is the proportion of pregnant cows that were 
correctly classified and specificity is the proportion of 
open cows that were correctly classified. The PLS-DA 
method used in the mixOmics package already uses a 
prediction threshold based on distances that optimally 
determine class membership of the samples tested. 
Therefore, according to Lê Cao et al. (2011), AUC and 
receiver operating characteristic curves are not needed 
to estimate the performance of the model and are pro-
vided only as complementary performance measures. 
The estimated P-values from Wilcoxon tests between 

Table 1. Description (mean ± SD) of explanatory variables used, besides infrared spectra, for classifying cows as having good, average, and 
poor likelihood of conception at first insemination

Item

Likelihood of conception at first insemination1

P-value2
Good 

(n = 4,123)
Average 

(n = 2,356)
Poor 

(n = 2,618)

DIM at herd test (d) 62.6 ± 56.9 69.0 ± 58.5 57.9 ± 49.9 ***
Days from calving to insemination (d) 106.3 ± 59.2 144.4 ± 91.7 96.2 ± 49.9 ***
Age at calving (mo) 48.6 ± 24.6 56.8 ± 30.6 48.4 ± 24.5 ***
Traits of previous lactation3 (305-d kg)
 Milk yield 6,901 ± 1,734 7,185 ± 1,759 7,319 ± 1,813 ***
 Fat yield 280.5 ± 61.9 279.1 ± 61.3 293.7 ± 67.1 ***
 Protein yield 236.0 ± 55.8 240.8 ± 55.8 248.1 ± 59.1 ***
 Lactose yield 324.3 ± 82.0 324.8 ± 84.1 345.8 ± 84.9 ***
Traits of current lactation per herd test day
 Milk yield (kg/d) 27.6 ± 7.8 28.9 ± 8.6 28.8 ± 9.0 ***
 Fat (%) 3.65 ± 0.83 3.49 ± 0.82 3.76 ± 1.09 ***
 Protein (%) 3.35 ± 0.40 3.22 ± 0.43 3.28 ± 0.42 ***
 Lactose (%) 5.11 ± 0.19 5.10 ± 0.21 5.09 ± 0.21 ***
 SCC 135 ± 523 166 ± 590 110 ± 377 *
Milk fatty acids (g/100 g of milk)
 C4:0 0.096 ± 0.044 0.086 ± 0.044 0.101 ± 0.051 ***
 C6:0 0.048 ± 0.027 0.042 ± 0.027 0.051 ± 0.033 ***
 C8:0 0.031 ± 0.017 0.027 ± 0.016 0.033 ± 0.020 ***
 C10:0 0.066 ± 0.041 0.051 ± 0.040 0.065 ± 0.049 ***
 C12:0 0.066 ± 0.049 0.056 ± 0.048 0.071 ± 0.058 ***
 C14:0 0.294 ± 0.121 0.272 ± 0.121 0.031 ± 0.150 ***
 C16:0 1.250 ± 0.399 1.175 ± 0.426 1.292 ± 0.459 ***
 C17:0 0.039 ± 0.007 0.038 ± 0.007 0.039 ± 0.008 ***
 C18:0 0.223 ± 0.103 0.208 ± 0.109 0.229 ± 0.114 ***
 C18:1 cis-9 0.659 ± 0.205 0.630 ± 0.213 0.681 ± 0.227 ***
 C20:0 0.004 ± 0.002 0.004 ± 0.002 0.004 ± 0.002 NS
 Short-chain fatty acids 0.232 ± 0.125 0.203 ± 0.125 0.248 ± 0.151 ***
 Medium-chain fatty acids 1.713 ± 0.524 1.611 ± 0.548 1.771 ± 0.624 ***
 Long-chain fatty acids 0.885 ± 0.309 0.839 ± 0.324 0.916 ± 0.349 ***
 De novo fatty acids 1.256 ± 0.544 1.161 ± 0.462 1.311 ± 0.551 ***
Blood metabolic profiles (mmol/L of blood)
 Fatty acids 0.445 ± 0.172 0.410 ± 0.184 0.484 ± 0.167 ***
 BHB 0.427 ± 0.168 0.475 ± 0.156 0.382 ± 0.172 ***
 Urea 0.676 ± 0.168 0.649 ± 0.182 0.692 ± 0.161 ***
 Fertility genomic EBV 103.5 ± 4.5 102.6 ± 4.2 103.2 ± 4.6 ***
1Good = cows that conceived at first insemination; average = cows that conceived following 2 or more inseminations; poor = cows with no 
conception event recorded. n = number of records.
2P-values were obtained from 1-way ANOVA tests with pairwise comparisons.
3Estimate yield in kilograms by a standard period of 305 d.
*P < 0.05; ***P < 0.0005; NS = P ≥ 0.05.
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the predicted scores of one class versus the other were 
also obtained, but because they were all statistically 
significant, they are not reported here.

In this study, 7 models comprising different explana-
tory variables were tested for their capability in clas-
sifying cows of good and poor likelihood of conception 
(Table 2). Model 1 included features that are always 
available on farms that adhere to the herd-testing pro-
gram, such as milk production, milk composition, DIM 
at herd test, and days from calving to insemination. 
Models 2 and 3 aimed to compare the additional value 
of milk fatty acids and blood metabolic profiles versus 
the MIR spectrum when being incorporated into the 
basic model, respectively. Fat, protein, and lactose per-
centages, milk fatty acids, and blood metabolic profiles 
were removed from model 3 to create model 4. Prelimi-
nary results showed that adding MIR spectra produced 
prediction accuracy that was comparable (model 4) 
with the model using both MIR-derived traits and the 
spectra (model 3); thus, MIR-derived traits were not 
considered in future models. Accordingly, models 5, 
6, and 7 were used to investigate the contribution of 
adding the fertility GEBV and animal genotypes on 
top of the predictors in model 4 to the model perfor-
mance. The statistical measures of performance of the 
7 models were compared using a 1-way ANOVA test in 
R with pairwise comparisons. Noticeably, in order for 
the 7 models to be developed using PLS-DA and sub-
sequently have statistically fair comparisons, a random 
noise matrix with dimensions of n × p, where n = 536 
is the number of wavenumbers in the reduced spectra 
and p is the number of records of the validation set, was 
generated from a uniform distribution in the interval 
0.0 to 1.0 and multiplied by a very small constant of 
10−10. Such a matrix was then used in models 1 and 2 to 
represent the spectral wavenumbers. This method has 
been proposed previously to identify the uninforma-
tive MIR wavenumbers by Gottardo et al. (2016). All 
analyses in the present study were performed using R 
statistical software version 3.4.4 (R Development Core 
Team, 2018).

RESULTS AND DISCUSSION

The ability to accurately predict the outcome of 
an individual insemination event given to a cow (i.e., 
pregnant vs. open) would allow farmers to implement 
strategies to optimize breeding decisions. For instance, 
sexed semen could be used to breed cows with a high 
likelihood of conception, whereas beef semen or semen 
from bulls of known high genetic merit of fertility could 
be used for cows predicted to have poor likelihood of 
conception. Additionally, farmers might adjust feeding 
or management strategies to help predicted poor cows T
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improve their physiological conditions and potential 
probability of conception. In this study, we found that 
MIR data obtained from herd testing in early lactation 
can be used to predict cows that are divergent in prob-
ability of conception.

In this study, data on 2,987 cows from 19 commercial 
Australian herds were used to classify cows that con-
trasted in likelihood of conception to first insemination. 
The herds were distributed in different regions (mainly 
in the state of Victoria) to make sure that the data were 
sufficiently representative. This is important because 
the Australian dairy industry is well recognized to have 
diverse feeding systems, which range from grazed pas-
ture to TMR (Dairy Australia, 2016a). Differences in 
feeding and genetics have been reported to significantly 
affect milk composition and thus MIR spectra (Jenkins 
and McGuire, 2006; Gottardo et al., 2017; Tomassini et 
al., 2019). Figure 1 presents the conception rate to first 
service of the herds used in this study. The conception 
rate ranged from 0.22 to 0.54 with an average of 0.38. 
These results are comparable with those reported by 
Dairy Australia (2016b), where the conception rate to 
first service ranged between 0.22 and 0.61 with an aver-
age of 0.39.

One of the important steps in data editing was split-
ting the cows into 3 fertility groups: good (those that 
conceived to 1 insemination), average (those that con-
ceived following 2 or more inseminations and those that 
did not conceive but where number of inseminations 
was >1), and poor (those with no conception event 

recorded and that had only 1 insemination). The hy-
pothesis behind this was that cows in the good and 
poor groups are more likely to differ in their metabolic 
status, which would result in different reproductive per-
formance (Oikonomou et al., 2008; Pryce et al., 2016). 
Such differences in metabolic status are expected to be 
captured by MIR spectra (Belay et al., 2017; Grelet et 
al., 2018; Pralle et al., 2018; Luke et al., 2019). The 
metabolic characteristics of the cows in the average 
group were hypothesized to be similar to those of the 
other 2 groups, which consequently makes them dif-
ficult to differentiate.

As shown in Table 1, the means of the predictors for 
the cows in the good and poor groups seemed to differ 
from each other more often, whereas average cows were 
similar to those in the other 2 groups. Cows in the poor 
group produced significantly more milk and had higher 
yields of fat, protein, and lactose (305-d yield, kg) com-
pared with cows in the good group (7,319 vs. 6,901, 
293.7 vs. 280.5, 248.1 vs. 236.0, and 345.8 vs. 324.3, 
respectively). Milk, fat, and protein yields of cows in 
the average group were between the yields of cows in 
the other 2 groups. Conversely, the results for several 
of the other traits in our analysis were not consistent; 
for example, the average cows had higher BHB but 
lower serum fatty acids compared with the good cows 
(0.475 vs. 0.427 and 0.410 vs. 0.445, respectively). The 
imperfect prediction accuracy of BHB (R2 ≈ 0.48) and 
serum fatty acids (R2 ≈ 0.61) could be an explanation 
for this result (Luke et al., 2019). Although differences 
in the means of predictors of cows in the average group 
were statistically significant from those of cows in the 
good and poor groups, the pattern was not consistent 
and therefore makes interpretation difficult. Indeed, we 
attempted to train the models, using the same explana-
tory variables, to classify pregnant versus open cows 
in the entire data set (i.e., 3 categories instead of 2), 
and the prediction accuracy was around 50% (data not 
shown), which can be achieved just by random chance 
(Chollet and Allaire, 2018). The idea of creating ex-
treme groups to improve model performance has been 
proposed in previous classification studies (Preacher et 
al., 2005; Grzesiak et al., 2010). For example, Grzesiak 
et al. (2010) assigned cows that conceived with 2 or 
fewer inseminations to the good group and the remain-
ing animals to poor groups.

Table 3 shows the classification accuracy of the 7 
models obtained through 10-fold random cross-vali-
dation and the herd-by-herd external validation. The 
prediction accuracy of all the models obtained through 
the random cross-validation was consistently higher 
than that of the herd-by-herd external validation, with 
the differences in AUC ranging from 0.01 to 0.09. This 
is understandable because in the first validation ap-

Figure 1. Distribution of conception rate at first insemination 
across the 19 herds (unedited data) used in this study.
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proach, the data were first pooled together and then 
partitioned randomly into 10 parts without any con-
sideration of cows or their herds. As a result, records 
from the same herd might have appeared in both the 
training and validation sets. It should, however, be 
noted that this is the most common approach used 
in the majority of MIR prediction studies to evaluate 
model performance. The small size of the reference 
data is probably the most likely reason for not being 
able to perform an external validation. A reduction in 
prediction accuracy in external validation compared 
with that in random cross-validation has been reported 
by several authors. Luke et al. (2019) observed that 
the values of coefficients of determination decreased by 
0.07, 0.11, and 0.55 for external validation compared 
with random cross-validation for models predicting 
serum concentrations of BHB, fatty acids, and urea in 
Australian dairy cows, respectively. McParland et al. 
(2012) indicated that the model for predicting energy 
balance developed using data from the Scotland’s Ru-
ral College research farm did not work when applied 
to the data from the Teagasc Animal and Grassland 
Research and Innovation Center in Moorepark, Ireland, 
with the correlation coefficient decreasing from 0.7 to 
0.1. However, the standard deviation of prediction ac-
curacy obtained from herd-by-herd external validation 
varied more greatly than that obtained from random 
cross-validation.

Interestingly, the average classification accuracy 
of the best model (model 7) in our study remained 
consistently high even in the herd-by-herd external 
validation with an average sensitivity, specificity, and 
AUC of 0.75, 0.66, and 0.75, respectively. According to 
Šimundić (2009), the model diagnostic accuracy is good 
if the value of the AUC is between 0.7 and 0.8. The 
standard deviations of prediction accuracy obtained 

from herd-by-herd external validation were, however, 
higher than random cross-validation (Table 3), which 
indicates that the results are more variable and thus a 
larger data set is needed to improve the robustness of 
the model. It was also noticeable that the 3 herds with 
the lowest prediction accuracy had a mean conception 
rate at first AI of 0.46, whereas this was 0.35 for the 
3 herds with the highest prediction accuracy (data not 
reported). On the one hand, it may imply that the 
model worked better on herds with low fertility, but 
this requires further research to confirm. On the other 
hand, it may simply indicate that we need more data to 
improve the robustness of the model.

Using random cross-validation as a reference, the 
results from our study are slightly lower than those ob-
tained by Grzesiak et al. (2010) but higher than those 
of Shahinfar et al. (2014) and Hempstalk et al. (2015). 
Although Grzesiak et al. (2010) showed that their 
model could differentiate between cows that conceived 
within 2 inseminations and the rest, with a sensitivity 
and specificity of around 0.85, the model was validated 
only once by splitting the data into training set (768 
cows) and validation set (150 cows). Last, the variables 
used in their study such as BW and BCS might be 
difficult to collect, especially on extensively managed, 
pasture-based dairy production systems. However, 
investment in farm automation, including walk-over 
weighers and cameras for automated body condition 
scoring, may change this in the future. Shahinfar et 
al. (2014) and Hempstalk et al. (2015) reported an 
AUC value of around 0.67 for predicting the likeli-
hood of conception to any given insemination, which 
is 0.16 lower than our result of 0.83 (model 7). The 
low prediction accuracy could be due to the fact that 
they did not create extreme groups of cows as in this 
study and Grzesiak et al. (2010) but rather considered 

Table 3. Validation accuracy (mean ± SD) of the partial least squares discriminant analysis models for classifying cows as having good or poor 
likelihood of conception at first insemination1,2

Model3

10-fold random cross-validation

 

Herd-by-herd external validation

LV  
(no.) Sensitivity Specificity AUC

LV  
(no.) Sensitivity Specificity AUC

1 24 0.65 ± 0.05a 0.54 ± 0.04a 0.66 ± 0.02a 13 0.64 ± 0.15a 0.61 ± 0.20 0.66 ± 0.14a

2 24 0.72 ± 0.02b 0.62 ± 0.03b 0.71 ± 0.02b 13 0.65 ± 0.16a 0.63 ± 0.20 0.68 ± 0.14a

3 24 0.80 ± 0.02c 0.68 ± 0.03c 0.81 ± 0.02c 10 0.73 ± 0.20ab 0.63 ± 0.26 0.72 ± 0.13ab

4 20 0.79 ± 0.03c 0.68 ± 0.03c 0.80 ± 0.02c 11 0.74 ± 0.20ab 0.62 ± 0.26 0.72 ± 0.15ab

5 22 0.81 ± 0.02c 0.69 ± 0.02c 0.81 ± 0.02c 11 0.74 ± 0.18ab 0.64 ± 0.23 0.74 ± 0.13ab

6 21 0.80 ± 0.02c 0.71 ± 0.03cd 0.82 ± 0.02ce 13 0.75 ± 0.16bc 0.62 ± 0.21 0.73 ± 0.12ab

7 21 0.80 ± 0.02c 0.72 ± 0.03d 0.83 ± 0.02e 13 0.75 ± 0.16bc 0.66 ± 0.20 0.75 ± 0.11bc

a–eValues within a column with different superscripts are significantly different (P < 0.05).
1Good = cows that conceived at first insemination; poor = cows with no conception event recorded.
2LV = number of latent variables included in the model; sensitivity = proportion of pregnant cows that were correctly classified; Specificity = 
proportion of open cows that were correctly classified; AUC = area under the curve of the receiver operating curve.
3See Table 2 for model descriptions.
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only pregnant versus open cows at any given insemina-
tion. The imperfect heat detection and unknown ef-
fects of other factors such as herd, year, male fertility, 
abortion, and insemination technician capability were 
claimed to contribute to such poor results. This could 
further be complicated by synchronization programs; 
for example, cows that calve late in the seasonal calving 
system are often synchronized and undergo timed AI 
without a need to observe the signs of estrus (Herlihy 
et al., 2011). Hempstalk et al. (2015) also concluded 
that including MIR spectra did not improve prediction 
accuracy, which disagrees with our findings.

In the current study, the inclusion of milk MIR in-
formation, either indirectly via milk composition, milk 
fatty acids, or blood metabolic profiles or directly via 
MIR wavenumbers, significantly improved the model 
performance compared with the model including only 
milk production, milk composition, SCC, DIM at herd 
test, days from calving to insemination, and age at 
calving. The improvement in prediction accuracy was 
between 0.02 and 0.15 for both validation methods. The 
results presented in Table 3 imply that using only basic 
on-farm information (model 1) was not sufficient to 
classify cows into 2 extreme groups. Adding milk fatty 
acids and blood metabolic profiles predicted using the 
MIR equations developed by Ho et al. (2019) and Luke 
et al. (2019) raised the classification accuracy by 0.02 
to 0.05 (model 2). Interestingly, we further improved 
the prediction accuracy of the model by between 0.04 
and 0.10 by incorporating the MIR spectra (model 3), 
implying that MIR spectra capture variation in fertility 
beyond milk fatty acids and blood metabolic profiles. 
Using milk metabolomic or proteomic approaches may 
elucidate some of these compounds (Goldansaz et al., 
2017; Ceciliani et al., 2018; Xu et al., 2018; Greenwood 
and Honan, 2019). The removal of MIR-derived traits 
from model 3 did not change prediction accuracy, 
which means that the useful information obtained from 
the MIR prediction equations of milk fatty acids, blood 
metabolic profiles, and milk composition is already 
included in the MIR spectra. These results agree well 
with the report of Mineur (2017), who showed that 
adding MIR-predicted fatty acids and metabolic pro-
files into a model that already has MIR spectra did not 
improve the prediction accuracy of lame cows. Grelet 
et al. (2015) stated that using the spectra directly as a 
reflection of animal health and metabolic status would 
be a better option than the intermediate traits.

Fertility of dairy cows has been reported to be heri-
table, with estimates ranging from 0.01 to 0.13 depend-
ing on the component trait (Haile-Mariam et al., 2003; 
Liu et al., 2008; Berry et al., 2014). In Australia, the 
fertility breeding value includes calving interval, lacta-
tion length, calving to first service interval, first service 

nonreturn rate, and pregnancy rate (Haile-Mariam et 
al., 2013). The incorporation of fertility GEBV and the 
animal genotypes (derived from the first 84 principal 
components of the genomic relationship matrix) would 
therefore be expected to improve the performance of 
the model. Although the difference was not statistically 
significant, a 1 to 4% increase in sensitivity, specificity, 
and AUC was observed in models 5, 6, and 7 compared 
with model 4. Compared with the performance of mod-
el 7, discarding fertility GEBV (model 5) and animal 
genotype (model 6) reduced the prediction accuracy by 
0.01 and 0.02, respectively.

Although we have shown that the top models (5, 6, 
and 7) could correctly classify approximately 74% of 
cows of good and poor likelihood of conception at first 
insemination, it is important to explore how the models 
would perform when applied to a random population 
(i.e., a population that also includes cows from the av-
erage group; Table 2). Accordingly, model 7 was chosen 
for this test. Briefly, we repeated the process of herd-by-
herd external validation for model 7 and observed the 
proportion of correct classification for good, average, 
and poor groups. The prediction accuracy remained the 
same for the good and poor cows (i.e., 0.75; Table 3), 
whereas it was only 0.49 for the average group. In other 
words, the model predicted half of the average group 
to be pregnant and the other half to be open after first 
insemination. The cows predicted to be poor needed on 
average 138 d to have their first service given, whereas 
this was 112 d for the cows predicted to be good. 
Although imperfect efficiency of heat detection could 
partly explain this, negative energy balance may be 
the most common cause. Butler (2003) indicated that 
negative energy balance suppresses the pulsatility of 
LH and reduces the responsiveness of the ovary to LH 
simulation. Further, during a period of negative energy 
balance, plasma glucose, insulin, and IGF-I are reduced 
(Spicer et al., 1993), which consequently shifts postpar-
tum ovarian activity and strongly affects the resump-
tion of the ovarian cycles (Senatore et al., 1996). Leroy 
et al. (2008) also reported an inferior oocyte quality in 
cows with negative energy balance. Importantly, our 
finding confirms that the model worked as expected to 
classify cows of good and poor fertility but applied only 
to first insemination and not to any insemination, as 
presented in Shahinfar et al. (2014) and Hempstalk et 
al. (2015). Further work is required to develop models 
that can predict the likelihood of conception for any 
insemination.

With the average accuracy (i.e., AUC) obtained 
through random cross-validation and herd-by-herd 
external validation of 0.83 and 0.75, respectively, the 
model could be used to rank animals in a herd into 
high versus low likelihood of conception to first ser-
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vice groups. This ranking could further be refined by 
combining with other information—for example, serum 
metabolic profiles derived using the equations of Luke 
et al. (2019) and breeding values. Subsequently, farm-
ers may use this information to decide which semen 
type to give to those groups of cows or whether any 
other management actions are needed. Moreover, the 
model might also be used to generate a large number 
of fertility traits for cows that have MIR records. The 
MIR-predicted fertility phenotypes could be used for 
genomic analyses (Gengler et al., 2018). Finally, for 
application of this research, one way to share models 
from PLS-DA is through executable files in which the 
parameters have been embedded. This is often done 
because the number of parameters of a PLS-DA model 
is large (e.g., 546 for model 7).

CONCLUSIONS

In this study, we have shown that MIR spectroscopy 
of milk samples collected in early lactation together 
with other on-farm data could be used to classify 
cows that conceived at first insemination and did not 
conceive within the breading season with reasonably 
good accuracy. The calibration models were externally 
validated with reliable results. Such information could 
be useful in decision support tools to help farmers opti-
mize their breeding decisions. The model might also be 
used to generate, on a large scale, fertility phenotypes 
for genomic evaluation.
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