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Abstract. In this study we compared the efficiency of frequentist approach with Bayesian approach by carrying 

out extreme value analysis of Annual Maximum Daily Rainfall (AMDR). For frequentist frequency analysis of 

AMDR, we used the data of one station i.e. Lahore in Punjab province, Pakistan while for Bayesian analysis we 

used the data of three other neighboring stations as prior information. During frequentist approach, Generalized 

Extreme Value (GEV) was found to be a best-fit distribution on the data. In frequentist method, the parameters of 

GEV distribution were estimated using Maximum Likelihood Estimation (MLE), while in the Bayesian 

framework the Markov Chain Monte Carlo (MCMC) simulation technique along with Metropolis-Hasting 

algorithm and Gibbs sampler were implemented. Findings of this study indicate that despite the asymptotic 

requirements of the MLE, its performance can be enhanced by adopting the Bayesian MCMC paradigm. In order 

to acquire the posterior densities of GEV parameters, non-informative and informative priors based on the 

historical data of surrounding weather stations were employed. The result of Bayesian MCMC might be affected 

by the choice of priors. In addition, the performance of the parameters estimation methods was verified by 

employing several robustness measures. Robustness measures results proved that the Bayesian MCMC method 

performed better than MLE in estimating GEV parameters and future return levels. Therefore, the findings of 

these analyses could be helpful in adopting proper flood protection measures and designing infrastructures of 

culverts, buildings, bridges and dams in the region. 

Keywords: annual maximum daily rainfall, generalized extreme value, the Markov Chain Monte Carlo, 

maximum likelihood estimation, Bayesian paradigm, priors specification 

Abbreviations: AMDR: Annual Maximum Daily Rainfall; GEV: Generalized Extreme Value; MLE: Maximum 

Likelihood Estimation; MCMC: Markov Chain Monte Carlo; UNFCC: United Nations Framework on Climate 

Change; FFC: Federal Flood Commission; POT: Peak over a Threshold; GP: Generalized Pareto; GLO: 
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Sampler; M-H: Metropolis-Hasting; MLEs: Maximum Likelihood Estimates 

Introduction 

Extreme rainfall events are frequently connected with climatic fluctuations which may 

cause a series of natural disasters such as heavy floods and landslides. According to the 

United Nations Framework on Climate Change (UNFCC) the human lives, animal lives, and 

water resources, agricultural lands, food security, and coastal zones will be heavily affected 
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due to climatic changes in Asia. Pakistan is situated in the western part of the Indian 

subcontinent, with Afghanistan and Iran on the western borders, India on the eastern borders, 

and the Arabian Sea to the south. It is an agricultural country. The country with 70% of its 

population depends on agriculture and its products (Faisal and Sadiq, 2009). Most of the 

agricultural lands and other living organisms depend on rain-water. Rainfall occurs in 

Pakistan, not only in summer but also in winter. In summer, rainfall happens frequently 

during the monsoon period (from early July to September). The top-months of the monsoon 

rainfall in Pakistan are July and August (Ahmad et al., 2014, 2016). Rainfall is a major source 

of water for agriculture and energy production. According to Adnan and Khan (2009), the 

60% of the total annual rainfall in Pakistan is due in summer. All Kharif crops are more 

dependent on monsoon rainfalls. These crops are also known as summer or monsoon crops. 

The major Kharif crops are rice, maize, cotton, jowar, bajra etc. Furthermore, winter rains are 

very beneficial for Rabi crops in the country (Shamshad, 1988; Ahmad et al., 2016). Rabi 

crops are sown at the beginning of winter season. The major Rabi crops are wheat, gram, peas 

and barley etc. Rabi crops are also known as winter or spring crops. In Pakistan, rainwater 

plays an important role in hydroelectricity and agricultural production. Agriculture is 

considered as the backbone of Pakistan’s economy, but unfortunately, heavy rainfalls cause 

loss of lives, crops and infrastructures. This fact is undeniable that the society and the 

economy of any country can be affected due to extreme environmental events (Shabri et al., 

2011). Therefore, the suitable modelling of extreme events can be done through statistical 

analysis. 

The main purpose of the statistical analysis of extreme values is to enumerate the 

stochastic behavior of extreme environmental events (Smith, 1989; Coles et al., 2001). The 

most meteorological variables, such as rainfall, wind speed, temperature, floods and 

precipitation, are of under consideration because they have a terrific influence on humans and 

thus it is crucial to portray their behavior statistically due to their extreme positions. 

Due to monsoon season in Pakistan; as heavy rainfalls are anticipated to take place 

frequently every year. According to the Federal Flood Commission (FFC) Pakistan, it is 

estimated that about cumulative financial loss US$ 38.171 million during the past 70 years. 

Around 616,598 km2 of the total land area of Pakistan is prone to flood, some 197,275 

villages were damaged and 12,330 people have lost their lives due to 24 major floods. Being a 

developing country like Pakistan, natural disasters unquestionably cripples the country’s 

output. It is evident that any extreme environmental event is unpredictable. Nevertheless, the 

influence of heavy rainfall events may be abridged by precautionary measures based on the 

results from statistical analysis of Annual Maximum Daily Rainfall (AMDR) series, as 

suggested by Zin et al. (2010), Khamkong (2012) and Diriba et al. (2014). The major 

objective of statistical modelling of extreme rainfall was to estimate the quantiles that might 

occur for the next years to come. 

There are two main statistical approaches to model AMDR series, namely the block 

maxima and peak over a threshold (POT). The block maxima approach models the highest 

value of each year collected from the large sample, whereas (POT) approach requires the 

observations that exceed a certain level of threshold in the collected data (Pickands, 1975; 

Davison and Smith, 1990). However, according to Madsen et al. (1997) and Eastoe and Tawn 

(2012) the block maxima is preferred since the method in selecting the appropriate threshold 

in (POT) procedure sometimes can be complex. 

The AMDR series needs to be modelled by appropriate probability distributions that 

provide the better inferences of the future behaviour of extreme rainfalls. Various kinds of 

statistical distributions often are able to be used in AMDR. They are Generalized Extreme 
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Value (GEV), Gumbel, Generalized Pareto (GP), Generalized Logistic (GLO) and the 

lognormal distribution. Because of their suitability to modelling of extreme value, these 

probability distributions have numerous applications for environmental data (e.g., An and 

Pandey, 2005; Furrer and Katz, 2008; Chikobvu and Sigauke, 2013; Jonathan and Ewans, 

2013; Diriba et al., 2015; Ahmad et al., 2016). Several studies based on frequentist 

approaches have been conducted for finding the best fit distribution and modelling the 

AMDR data in Pakistan by Rasul et al. (2004), Haroon and Rasul (2009), Rasul et al. (2009) 

and Ahmad et al. (2014, 2016). Ahmad et al. (2016) suggested that the (GEV) and (GP) are 

the most suitable distribution for the AMDR series in the different regions of Pakistan. 

In this study, the five extreme value statistical distributions (such as GP, GEV, GLO, 

Pearson Type-III and Log-Normal three parameter) are applied to the extreme rainfall data of 

Lahore station of the Punjab province by using the frequentist procedure via linear moment 

(L-moment) estimation method. However, the results demonstrate the tendency that the GEV 

distribution among all others fits the data in a more appropriate way, attention is therefore 

limited to the GEV distribution. 

Meanwhile, extreme data are sporadic by their nature, the statistical inference on extremes 

may be improved by the addition of other sources of information through a prior distribution. 

Unlike frequentist approaches (maximum likelihood and L-moments), a Bayesian analysis of 

extreme values is also not dependent on the fundamental assumptions that are required by the 

asymptotic theory of frequentist approaches (Smith, 1985; Coles et al., 2001; Smith, 2002). In 

addition, according to Hamed and Rao (2000) the MLE method that was unable to get an 

appropriate estimate with a small sample. The Bayesian method can be employed in 

estimating the parameter of GEV distribution. The basic theory of the Bayesian paradigm 

about extreme values has been discussed by many authors in a number of outstanding articles 

and books (Coles and Tawn, 1996, 2005; Beirlant et al., 2006; Naghettini, 2017, p. 505). In 

this study, the researcher has focused on its applications by using the GEV distribution. 

Additionally, the primary purpose of this article is the comparison of both estimation methods 

by using the robustness measures. The first one is the MLE method and the second one is the 

Bayesian method. In Bayesian analysis, the non-informative priors and informative priors 

based on the historical data of neighboring stations in term of extreme quantiles are 

formulated. In the previous study, Ahmad et al. (2014) discussed the behaviour of monsoon 

rainfalls in Pakistan through kappa distribution by employing L-moments estimation method. 

In another study Ahmad et al. (2016) used the data of extreme rainfall of 28 stations in 

Pakistan and found the best fit distribution among five extreme value distributions. After 

finding the best fit distribution the researcher carried out at-site frequency analysis on the 

same data by using L-moments and Trimmed L-moment estimation methods. However, they 

did not use the Bayesian paradigm for the modelling of extreme rainfall in Pakistan. The main 

purpose of this paper, therefore, is to study the extremes of rainfall by applying the GEV 

distribution to the Lahore station data, the province of Punjab, Pakistan. The frequentist 

approach, i.e. MLE and the Bayesian method were applied (Coles and Tawn, 1996; Diriba et 

al., 2017). The effects of non-informative and informative priors on the estimate of GEV 

parameters and return level are investigated and compared with MLE results. Despite the 

application of the Bayesian approach is progressively prevalent in many areas, a challenge 

when using this method is the computational problems. This can be solved by the application 

of Markov Chain Monte Carlo (MCMC) simulations (Coles et al., 2001). Moreover, the 

previous studies conducted on Bayesian Paradigm by using MCMC were Coles and Tawn 

(1996), Coles et al. (2003), Smith (2005) and Eli et al. (2012). The rest paper is organized as 

follows. We commence with description of data used in this study. Next, the probability 
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distribution and parameters estimation methods used in this study will be described. After 

that, the results and discussion section of our analysis will be presented. Later on, the 

conclusion, recommendations concerning the plan for future studies will be discussed in final 

section. 

Materials and methods 

Data description 

The modeling of extreme rainfalls in the province Punjab, Pakistan, the data of daily 

rainfall of Lahore station had been acquired from Pakistan Metrological Center Karachi 

for the period of 1985 to 2014, which is recorded in millimeters (mm). Data have been 

selected on the following standard criteria like as length of the data, variability, quality, 

urbanization and climate change. After that, the Annual Maximum Daily Rainfall 

(AMDR) series were extracted from the daily rainfall series. AMDR series is a single 

maximum value for any specific year and station among the all values of recorded daily 

rainfall. The AMDR series for 30 years of the same length were considered. For 

construction of informative priors for the Bayesian analysis, extreme rainfall 

characteristics of three sites at various distances from Lahore station were selected, 

namely Faisalabad, Sialkot and Jhelum. 

The selected stations for informative priors were located to the south-west, north-east 

and north-west of Lahore station. Additionally, they are 118 km, 105 km, 164 km from 

Lahore station, respectively. The plots under spatial network comprise of selected 

weather stations studied in present research are shown in Figure 1. This study have 

25 years of data at the same time points from 1990-2014 for each station considered for 

construction of informative priors. 

 

 

Figure 1. Spatial plots of network weather stations used in study for the period of 1985-2014 

 

 

Summary statistics of the selected stations 

The statistical parameters for the amount of AMDR data of four selected stations are 

briefed in Table 1. Where the minimum, maximum, mean, standard deviation (SD), 

coefficient of variation (CV), skewness and kurtosis of AMDR series of the all included 

stations in this study are given. The AMDR data designates that the annual daily rainfall 
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was strongly positively skewed and highly leptokurtic for Jhelum station. It is also 

noted that AMDR data for Sialkot station is positively skewed and platykurtic. The CV 

of AMDR around 42-45% in the province Punjab, Pakistan. 

 
Table 1. Summary statistics of the annual maximum daily rainfall (AMDR) data for the 

selected stations 

Study locations 
Stations 

Lahore Faisalabad Jhelum Sialkot 

Minimum (mm) 

Maximum (mm) 

Mean 

Standard deviation 

Coefficient of variation 

Coefficient of skewness 

Kurtosis 

29.40 

189.70 

90.45 

38.32 

42.35 

0.91 

3.35  

25.00 

136.00 

63.43 

27.66 

43.61 

1.05 

4.02  

54.90 

242.20 

99.40 

44.56 

44.83 

1.52 

5.29  

45.00 

207.50 

110.10 

47.44 

47.44 

0.71 

2.34 

 

 

The fundamental assumptions 

Primarily, it is compulsory to check the basic assumptions of data before conducting 

the further analysis of an annual maximum series in the field of statistical hydrology; 

because the final results may be ambiguous without fulfilling the assumptions. The 

fundamental assumption of hydrological data are randomness, independence, 

homogeneity and stationarity. We tested these assumptions using different tests such as 

NERC test for randomness, Wald-Wolfowitz for independence, Mann-Whitney test for 

homogeneity with respect to location parameters and Spearman rank correlation test for 

stationarity. The results of these tests given in Table 2 are calculated by using (ALEA 

2.0) software. 

 
Table 2. Results of different tests for basic assumptions at 5% level of significance 

Study locations  
NERC 

(P-value) 

Wald-Wolfowitz 

(P-value) 

Mann-Whitney 

(P-value) 

Spearman Rank 

(P-value) 

Lahore 
-0.7445 

(0.2283) 

1.3505 

(0.0884) 

-0.3940 

(0.3468) 

0.7895 

(0.2149) 

Faisalabad 
1.9358 

(0.1264) 

0.5230 

(0.3005) 

-2.0117 

(0.1021) 

2.4021 

(0.0820) 

Jhelum 
1.0423 

(0.1486) 

1.5812 

(0.0569) 

-1.8043 

(0.0556) 

-1.3981 

(0.0810) 

Sialkot 
-0.7445 

(0.2283) 

0.5039 

(0.3072)  

-0.4770 

(0.3167) 

0.2767 

(0.3910) 

 

 

The probability value of these tests for each stations is more than 5% level of 

significance showed that the relevant assumptions of the data are fulfilled, and the 

available data can be used for further frequency analysis (FA). 
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Generalized extreme value distribution 

Jenkinson (1955) introduced the GEV distribution for the three limiting cases for 

maxima. Furthermore, the GEV distribution is very extensively used for the design 

structure of extreme events. Engineers, hydrologist and business analyst are most 

commonly used GEV distribution in the recent decade. Because, the risk always linked 

with the extreme type events such as risk in business, the stock market, and also risk is 

related to extreme floods, heavy rainfall, high wind speed and extreme temperature etc. 

The GEV probability density function and distribution function of a random variable w 

is given by: 
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where   /)(1: −+ ww  and ,  and   are location, scale and shape parameters of 

GEV distribution (Beirlant et al., 2006). The shape parameter affects the nature of upper 

tail of the GEV distribution. Additionally, GEV distribution is the mixture of three 

limiting extreme value distributions i.e., Gumbel distribution, Freshet distribution and 

Weibull distribution. If 0→  the GEV distribution in Equation 2 relates to the Gumbel 

distribution. 

 

 














 −
−−=






)(
expexp),,,(

w
wF ; − w  (Eq.3) 

 

It means that the probability of obtaining the maximum high observation come to be 

very small exponentially. For 0  the GEV distribution in Equation 2 converts to 

Frechet distribution, which is considered by a heavy tail that declines polynomially. 

Hence, obtaining higher values of maximum are larger probability in comparison with a 

Gumbel distribution. For 0  the distribution in Equation 2 becomes negative 

Weibull distribution and this is bounded above (Coles et al., 2003; Karim, 1995; 

Gingras and Adamowski, 1992). Consequently, there is a finite value that the maximum 

cannot exceed. 

 

Parameter estimation of GEV distribution 

Maximum Likelihood Estimation (MLE) method was primarily articulated by a 

German mathematician Johann Carl Friedrich Gauss. But later as a general method of 
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estimation was initially developed by a British statistician Sir Ronald Aylmer Fisher 

in his series of papers discussed by Gupta (1982). MLE method involved a function 

that maximizes the parameters of the distribution, the function is known as the 

likelihood function. Likelihood function reaches to the maximum value when equating 

it to the conditions of unknowns and an identical number of equations in the system, 

whose solution produce the MLE estimators for unknown distribution parameters. The 

author was used MLE method to estimate the GEV distribution parameters. The 

density function of GEV distribution is given in Equation 1. Therefore the joint 

likelihood function associated with 1 2, ,........, mw w w  follows from Equation 1. 
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The maximum likelihood estimates of the parameters ,   and  , say ˆ ˆ,   and ˆ,  

are calculated by maximizing the logarithm of Equation 4, that is, maximizing 

 

 
=

−

= 





 −
+−







 −
+








+−=

m

i

i
m

i

i
m

ww
mwwwl

1

1

1

21

)(
1

)(
1log

1
1log),..,,;,,(














  (Eq.5) 

 

With respect to unknown parameters, say ,   and  . In other words, the log-

likelihood function i.e., =)],...,,;,,(ln[ 21 mwwwL  ),..,,;,,( 21 mwwwl   is 

maximized instead of ),...,,;,,( 21 mwwwL  , which simplifies the complication and 

gives the easy solution to the system. In a continuous parameter space the shape 

parameter of Gumbel distribution, 0=  is a single point, it will not be estimated by 

maximizing this log likelihood with probability 1. In practice the maximization of log 

likelihood functions is done by numerically iterations e.g., with a quasi-Newton 

procedure (Diriba et al., 2014, 2015). 

 

Return level estimation for GEV distribution 

The attention of extreme climatic events analysis does not sometimes lie on the 

estimates of GEV parameters, however the application of the fitted model to estimate 

the other measures. For illustration, it is very important the forecast of future extreme 

rainfall and heavy floods to make a proper plan to reduce its negative impact (for 

example landslides, human lives, animals and destruction of infrastructures such as 

power stations, buildings and roads) and return level or quantiles are used for such 

forecast. In other word, return level estimates play a dynamic role in rainfall 

frequency analysis to finding the future risk connected with a return period 

corresponding to a fitted model. The return level for GEV model corresponding the 

return period 
p

T
1

=  is acquired through quantile function, which is the inverse of 

Equation 2 given by Coles (2001), denoted by pw  where F( pw ) = 1 p−  and 

0 1p  . 
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The return level pw  is a quantile of considered GEV distribution corresponding to 

the upper tail probability .p  The ML estimate of the return level pw , denoted by ˆ
pw  is 

found by substituting the ML estimates ˆ ˆ,   and ̂ . The standard error (SE) of ˆ
pw  are 

acquired via delta method (Rao, 1973). 

 

Bayesian paradigm 

The Bayesian approach has been extensively used in extreme rainfall frequency 

analysis. Bayesian statistical analysis depends on Bayes Theorem, which describes us 

how to update prior information about parameters and hypotheses using the additional 

information of data, to produce posterior beliefs suggested (Jackman, 2009). According 

to Naghettini (2017) and Tang and Ang (2007) difference between Bayesian and 

frequentist approaches are based on the parameters of given probability distribution. 

In a classical approach, the parameters have fixed, but unknown, they are estimated 

from given sample by maximizing the likelihood function. But in Bayesian approach the 

parameters are treated as random, they have their own probability distribution. The 

parameters are updated on the basis of prior knowledge and sample information, the 

updated information is called the posterior information of the parameters. 

As in MLE method, suppose AMDR 1 2( , ,....., )mw w w w=  are independently and 

identically distributed and their distribution belongs to a parametric family i.e. GEV. 

However, the parameters of GEV distribution ( ,   and  ) are treated as random 

variables for which the author describes the prior distributions. Let ( , , )   =  and 

suppose the prior information about parameter   can be articulated by a probability 

density function ( )g   with no reference to the actual data. After multiplication of 

likelihood and prior information using Bayes theorem to get the posterior density of   

has the form: 

 

 
( / ) ( )

( / )
( / ) ( )

L w g
w

L w g d





 
 

  

=


 ( / ) ( )L w g   (Eq.7) 

 

where ( / )L w  is the likelihood function of GEV distribution given in Equation 4 and 

( / )w   is the posterior distribution for  . Furthermore, the integral is taken over the 

parameter space  . In this paper, both the non-informative and informative priors were 

used. The description about construction of these prior are given in previous sections. 

 

Priors specification 

Non-informative priors 

The main demur in the use of Bayesian frame work is the requirement for postulating 

a prior knowledge ( )g  . When the minimal or no information is available, the 
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Bayesian analysis is performed by using objective or non-informative and Jeffery’s 

priors. The non-informative priors (also known as diffuse, flat or vague priors) used to 

indicate a set of principles about the concerned parameters of GEV distribution, because 

to betoken that the meaningful information of extreme rainfall is quite inaccessible at 

the moment. The AMDR series have a GEV distribution i.e., ~ ( , , )iW GEV    , the 

likelihood function is given in Equation 4. The parametrization  log=  is used in the 

place of  , for the purpose of easier work to the specification of prior,   is inhibited to 

be positive. The tri-variate normal distribution based on ),,('  =  is used with prior 

density as follows: 

 

 
' 1 '1 1

( ) exp ( ) ( )
2

Tg u u   


− 
 − − − 

 
  (Eq.8) 

 

where the mean vector u  is symmetric positive definite )33(   covariance matrix and ∑ 

must be quantified. The prior density is preferred to be 

 

 )()()(),,(  gggg =  (Eq.9) 

 

The marginal priors of (.)(.),  gg
 
and (.)g

 
are: 

 

 

~ (0,10000)

~ (0,10000)

~ (0,100)

N

LN

N







  

 

These are known as independent normal priors with large variances. The larger 

variances are preferred enough to create the distribution nearly flat, comparable to prior 

obliviousness (Eli et al., 2012; Fawcett and Walshaw, 2008). 

 

Informative priors 

Since the nonexistence of expert knowledge on extreme rainfalls in Lahore station, 

we have articulated the prior knowledge for the Bayesian analysis from rainfall 

characteristics of nearby weather stations in the same province. Hence, the informative 

priors were constructed by employing the approach given by (Coles and Tawn, 1996). 

Prior information were elicited in term of extreme quantiles. The brief description of the 

technique given in the following paragraph. 

Remember that return level pw [= pq  Coles and Tawn (1996) notation] for GEV 

distribution corresponding with the return period of 
1

p
 is given in Equation 6, therefore 

( ) 1pF q p= − , and where (.)F  is the cumulative distribution function of GEV in 

Equation 2. Let 
ipq , 1,2,3i =  with 1 2 3p p p  , be the quantiles calculated from the 

past extreme rainfall data of the nearby weather stations in the province Punjab other 

than Lahore. So, the independent quantiles 
ipq  are calculated for each nearby station by 

means of ML estimates of GEV parameters in Eq. 2. A joint prior distribution for given 
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probabilities 1 2 3p p p   could be elicited from the quantiles (
1 2 3
, ,p p pq q q ) discuss by 

Coles and Tawn (1996). One slight compilation with this approach is that parameters 

must be ordered 
ipq , 1,2,3i = , i.e. 

1 2 3p p pq q q  . Hence, the suggest quantile 

differences, because of the assumption of independent priors on 
ipq , 1,2,3i =  would 

not be valid. 

 

 

1

2 1

3 2

1 1

2

3

p

p p

p p

q q e

q q q

q q q

= −


= − 


= − 

 (Eq.10) 

 

where 1e  is a physical lower end point for the process variable (rainfall) or naturally 

considered to be 1 0e = . Perceive that the quantile differences confirm the ordering of 

quantiles. The marginal priors on the quantile differences are now supposed to 

independent Gamma distribution with parameters (
* *,i i  ), 1,2,3,i =  we can take in the 

form 

 

 ),(~~ **

iip gammaq
i

 , ;0,0 **  ii   1,2,3.i =  (Eq.11) 

 

From Equations 10 and 11 we can get the joint prior for the (
* *,i i  ), 1,2,3i =  in 

following form: 

 

 
**

1

1 2, 3 1 1

3
11 * *

1

2

( , ) exp( ) exp( )i

i ip p p p p p i p

i

g q q q q q q q
  −−

=

 −  −  (Eq.12) 

 

provided that 
1 2 3p p pq q q  . Then utilize Equation 6 in Equation 12 and multiplying 

by the Jacobean (J) of the transformation from (
1 2 3p p pq q q  ) to ( , , )   = , it gives 

to an expression for the prior in term of the GEV distribution parameters  . Further, 

this can be written as 

 

 
*

3
1

*
1

( ) exp( )ii

i

p

p

i i

q
g q J



 


−

=

 −   (Eq.13) 

 

provided that 
1 2 3p p pq q q  . The Jacobean used in Equation 13 is given by 
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where ( )log 1 , 1,2,3.i iy p i= − − =  The posterior density ( / )w   is found by replacing 

the likelihood and prior density given in Equations 5 and 12, respectively, in 

Equation 7. However, the analytical calculation for Equation 7 is completely 

intractable, because of the involvement of integrals in denominator. Therefore, the 

features of posterior distribution ( / )w   of   is to be estimated by using Markov 

Chain Monte Carlo (MCMC) method with the combination of Gibbs Sampler and 

Metropolis-Hastings algorithm. 

In Bayesian analysis, to estimate the return levels, usually, the vectors of simulated 

values are found by employing the marginal posterior distributions of GEV parameters. 

Return level 
pq  is obtained for a specified return period 

1

p
 by substituting the 

simulated samples of GEV parameters from posterior distribution. Furthermore, the 

summary statistics can easily be acquired. 

 

Robustness measures 

On the basis of robustness measures, the authors will also compare the performance 

between the classical (MLE) and Bayesian MCMC methods (both for non-informative 

and for informative priors) in estimating GEV parameters and return levels for AMDR 

data of Lahore weather station in the province Punjab, Pakistan.. The selected 

robustness measures are relative root mean square error (RRMSE), relative absolute 

square error (RASE) and probability plot correlation coefficient (PPCC). The first two 

measure comprises the assessment on the difference between the observed and the 

estimated values under the presumed distribution, while the third one is measure the 

relationship between the ordered values and associated estimated values (Zawiah et al., 

2009). The formulae are given as: 

 

 

2

:

1 :

ˆ( )1 n
i n i

i i n

w q F
RRMSE

n w=

 −
=   

 
  (Eq.15) 

 

 :

1 :
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−
=   (Eq.16) 
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w x q F q F
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 (Eq.17) 

 

where niw :  represents the observed sample values of ith  order statistics of a random 

sample of size n , and )(ˆ iFq  are estimated quantiles linked with the ith  Weibull 

plotting position, F . The Weibull plotting is defined as follows: 

 

 1+
=

n

i
F
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where i  denote the ranks of the observations arranged in ascending order. The minimum 

values of RRMSE and RASE will show the best method. In contrast, the value of PPCC 

that is closest to -1 or 1 will be reflected as the best method for elucidation the behavior of 

extreme rainfalls in Punjab, Pakistan. 

Results and discussion 

GEV distribution using MLE 

To analyze the AMDR data, GEV distribution is fitted to the extreme rainfall values. 

The parameters of the fitted model are estimated by MLE method. Maximum likelihood 

estimates with their SE in (parentheses) and the 95% confidence interval (CI) in [square 

brackets] for fitted model at Lahore Station are given in Table 3. It can be seen that the 

entire results of the fitted model (i.e. GEV) supports the AMDR data. 

 
Table 3. Parameter estimates of location, scale and shape of GEV distributions, their standard 

errors and confidence interval 

Study locations 

Location ( ̂ ) 

(SE) 

[CI] 

Scale (̂ ) 

(SE) 

[CI] 

Shape ( ̂ ) 

(SE) 

[CI] 

Lahore 

72.8995 

(5.9325) 

[61.2686, 84.5208] 

28.6298 

(4.3780) 

[20.0469, 37.2029] 

0.0317 

(0.1461) 

[-0.2544, 0.3180] 

 

 

Furthermore, before calculating the return levels, we should have to check the 

goodness of fit of our model. The adequacy of the chosen model can be checked using the 

quantiles, probability and return level plot. The plots for GEV distributions fitted to the 

data of Lahore station are given in Figure 2. The quantiles and probability plots shows 

that the assumptions required for the GEV distributions have been fulfilled. 

The return levels for best fitting model (i.e. GEV) could be estimated for next ‘T’ year 

after base year using Equation 6. Therefore, the return levels estimates will be time 

varying. An estimate of the rainfall that the authors might assume to see at Lahore station 

in the next ‘T’ years by employing the MLEs of the parameters in GEV distribution. 

Before estimating ˆ
pw , the number of years should be converted to the probability (i.e. 

1
p

T
= ). The predicted amount of maximum rainfall, that is, in context of return level, 

corresponding to return periods in Figure 2 suggests that the return level falls below the 

20-year return periods. Furthermore, it can be noted that the 95% confidence bounds are 

becoming very distant from the straight line for the return periods beyond the 20 years. 

Return levels for different return periods with corresponding the 95% CIs were estimated 

using the profile likelihood methods are given in Table 4. 

Therefore, the return levels for AMDR increased slowly for the higher return periods. 

It can be seen that from Table 4, the profile likelihood intervals were gradually wider as 

return period increased. 

This supports with the results showed in the return level plots given in Figure 2. 

However, since the profile likelihood method takes into account the skewness of the 

parameter distributions, it gives more accurate results for longer return periods. 
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Figure 2. Diagnostic plots based on profile likelihood method to assess goodness-of-fit of the 

GEV distribution fitted to AMDR data. From top to bottom: probability, quintile and return 

level 

 

 
Table 4. Return level and 95% profile likelihood confidence intervals for 10, 25, 50, 75 and 

100-year return levels of AMDR based on MLE 

Return periods Return levels Profile likelihood confidence intervals 

10 

25 

50 

75 

100 

139.6837 

169.2826 

191.8235 

205.1583 

214.7013 

(118.3549, 187.0867) 

(138.9474, 263.5811) 

(153.1579, 340.1084) 

(160.5263, 393.9222) 

(166.8421, 437.5112) 

 

 

Bayesian analysis 

In Bayesian analysis, we were employed the non-informative and informative priors 

to the extreme rainfall data of Lahore weather station. The non-informative priors used 

(Coles and Tawn, 2005) were constructed for GEV parameters by assuming there is no 

reliable prior information available about the parameters given in priors specification 
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subheading (non-informative priors). Non-informative independent priors for GEV 

parameters were assumed ( ) ~ (0,10000);g N  ( ) ~ (0,10000)g LN  and 

( ) ~ (0,100)g N . 

The scale parameter of GEV (i.e.  ) was reparametrized as log( ) =  to hold the 

positivity of this parameter. The Gaussian distribution having zero mean and higher 

variance impose the flat marginal priors (also known as diffuse or vague priors), which 

show the absence of external information. The MCMC technique with combination of 

Gibbs Sampler (GB) and Metropolis-Hasting (M-H) algorithm was applied to AMDR 

series. Different starting points were used in simulations to check that the chains had 

converged to the original series and all the chains mixed well. The posterior means, 

standard deviation (SD) and 95% CIs of the parameters are given in Table 4. 

Furthermore, the posterior means, standard deviations (SD) are close to ML parameter 

of GEV distribution (see Table 3). The CIs of posterior parameters are little bit wider as 

compared to MLEs. It is expected that for flat-priors that posteriors means of GEV 

parameters with their CIs would be close to MLEs because they incorporate little 

information to the likelihood. 

The informative priors were articulated by using historical records of rainfall data 

from three nearby weather stations to Lahore station. Moreover, the prior distributions 

were elicited using the method given by Coles and Tawn (1996) and discussed in 

subheading (informative priors) with quantiles 10 ;iip −=  for 1,2,3i = . By using this 

procedure, we have found )015.4,9065.25(~~
1

gammaqp , 

)4019.117,5702.0(~~
2

gammaqp  and )3856.804,0999.0(~~
3

gammaqp  from Faisalabad 

weather station data. Similarly, the informative prior priors for Sialkot and Jhelum 

weather station were elicited by applying the same procedure. The posterior means and 

SD of GEV parameters with CIs are also given in Table 5. It can be seen the posterior 

means and CIs for GEV parameters based informative prior are close posterior means 

and CIs of non-informative priors. 

 
Table 5. Posterior means, standard deviations and confidence intervals for GEV parameters 

to AMDR data of Lahore weather station 

Study locations 

Parameters estimate of GEV distribution 

Location ( ̂ ) 

(SE) 

[CI] 

Scale (̂ ) 

(SE) 

[CI] 

Shape ( ̂ ) 

(SE) 

[CI] 

Non-informative priors 

72.5232 

(6.3956) 

[60.362, 85.5687] 

31.0642 

(5.1108) 

[22.7240, 42.6316] 

0.0527 

(0.1501) 

[-0.2130, 0.3696] 

Informative priors    

Faisalabad 

70.4847 

(5.8650) 

[59.2650, 82.3369] 

28.3486 

(4.4383) 

[21.1682, 38.4110] 

-0.0006 

(0.1108) 

[-0.2169, 0.2179] 

Sialkot 

73.40324 

(6.2712) 

[61.3944, 86.1910] 

31.76948 

(4.9098) 

[23.7582, 42.9742] 

0.07116 

(0.1429) 

[-0.2006, 0.3549] 

Jhelum 

72.76406 

(6.3700) [60.6154, 

85.6824]  

31.00531 

(4.9640) 

[22.8808, 42.2235]  

0.05265 

(0.1430) 

[-0.2077, 0.3497] 
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The informative priors constructed from the surrounding weather stations reduced 

the posterior SD for all GEV parameters as compared to non-informative priors and 

MLEs. This abatement in the SD would possibly overcome in uncertainty due to using 

extra information from the surrounding weather stations. This impact became most 

important for the SD of location, scale and shape parameters. 

The estimated posterior densities plots of GEV parameters are given in Figure 3. It 

can be noticed that the distributions of location and shape parameters are symmetrical 

for non-informative and informative priors, while the shape parameter is negatively 

skewed for the prior elicited from the Faisalabad weather station that is situated at 

118 km distance from Lahore. But the densities of location, scale and shape parameters 

have high peaks at center for the informative priors which were constructed using the 

Faisalabad and Sialkot data. 

The densities for scale parameter were slightly positively skewed for non-

informative and for all informative priors. It can be observed from densities plots, the 

densities of location, scale and shape parameters are shifted lift for the priors elicited 

from Sialkot and Jhelum data. These variations indicate that the posterior results might 

be changed due to the choice of priors. Furthermore, the distance between a weather 

station was used to articulate priors and Lahore weather station. 
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Figure 3. Posterior densities plots of the GEV parameters to AMDR data using non-informative 

(red line) and informative priors (green line for Faisalabad, pink line for Sialkot and black line 

for Jhelum) 
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Priors effect on return level 

To look at how the non-informative and informative priors have affected the return 

levels, the authors obtained the posterior densities of the return levels. Additionally, the 

posterior density plots were constructed by employing the observations vectors obtained 

from the marginal posterior distributions of GEV parameters in Equation 3, for 

0 1p  . This process was carried out to attain the posterior densities of return levels 

for 10, 25, 50, 75, and 100 years return periods. Therefore, the posterior densities of 

these return levels for both non-informative and informative priors are given in 

Figure 4. The return level densities were symmetric and peaks high for the prior 

formulated from the Faisalabad weather station data, while the all other densities of the 

return levels were positively skewed and mesokurtic for both non-informative and the 

informative priors obtained from the Sialkot and Jhelum data. From this skewness, it 

can be cleared that the uncertainty might reproduce in the model for founding upper 

limits of the return levels as compare to lower limits for higher return periods (Coles 

and Tawn, 2005; Diriba et al., 2015). Furthermore, the posterior median of AMDR data 

for Lahore weather station was calculated. The results for different return periods are 

given in Table 6. The posterior medians of return levels for both non-informative and 

informative prior are not much different to their parallel MLEs. Moreover the results of 

Tables 6 and 4 showed that the posterior medians of return levels for non-informative 

priors and informative priors constructed from nearby stations except Faisalabad are 

higher than MLEs across all considered return periods. The variations in higher medians 

of return levels (i.e. 75, 100) are smaller as compared to lower return levels. Hence the 

medians of returns levels vary due to distance of these stations (Faisalabad, Sialkot and 

Jhelum) and Lahore weather station, which was used to informative priors construction. 

However, the results of return level against different return periods are higher as 

compared to previous study which was conduct by Ahmad at el. (2016). Therefore, it is 

undeniable that these results are significant for policy implications in the region. They 

are also beneficial for meteorologists and hydrologists in water resource management. 

 
Table 6. Posterior medians for 10, 25, 50, 75 and 100-year return levels of AMDR using 

both non-informative and informative priors 

Priors 
Return levels 

10 25 50 75 100 

Non-informative 146.7440 180.7501 207.0989 222.8688 234.2373 

Informative      

Faisalabad 134.2359 161.0712 180.9693 192.5310 200.712 

Sialkot 150.9387 187.5129 216.2855 233.6831 246.3059 

Jhelum 146.8390 180.7752 207.0684 222.8045 234.1485 

 

 

Robustness measures 

On the basis of result given in Table 7, it can be decided the Bayesian MCMC 

paradigm for both non-informative and informative priors is slightly performed better 

than MLE. Because, the smaller values of RRMSE and RASE show little difference 

between the observed and estimated values. Furthermore, the smaller value of RRMSE 

and RASE corresponding to informative priors also indicate that Bayesian MCMC 
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method provide more precise results, when the expert prior were used in estimation. 

With the support of the results of PPCC test, it can be declared that Bayesian MCMC 

method was superior in modeling of extreme rainfall in the Punjab, Pakistan. 

 

100 200 300 400

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

density.default(x = poq, adjust = 2)

10-year return level

p
o

s
te

ri
o

r 
d

e
n

s
it
y

 

0 100 200 300 400 500 600

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

density.default(x = poqNIL1, adjust = 2)

25-year return level
p

o
s
te

ri
o

r 
d

e
n

s
it
y

 

0 100 200 300 400 500 600 700

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

density.default(x = poqNIL2, adjust = 2)

50-year return level

p
o

s
te

ri
o

r 
d

e
n

s
it
y

 

0 200 400 600 800

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

density.default(x = poqNIL3, adjust = 2)

75-year return level

p
o

s
te

ri
o

r 
d

e
n

s
it
y

 

0 200 400 600 800 1000

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

density.default(x = poqNIL4, adjust = 2)

100-year return level

p
o

s
te

ri
o

r 
d

e
n

s
it
y

 

Figure 4. Posterior median densities plots for the 10, 25, 50, 75 and 100 year return levels 

using AMDR data using non-informative (red line) and informative priors (green line for 

Faisalabad, pink line for Sialkot and black line for Jhelum) 
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Table 7. Comparison of performance between MLE and Bayesian method (both for non-

informative and informative priors) 

Method of estimation  
Test of robustness 

RRMSE  RASE  PPCC 

MLE 0.68443 0.66774 0.8858 

Bayesian    

Non-informative priors 0.67973 0.66050 0.9123 

Informative priors    

Faisalabad 

Sialkot 

Jhelum 

0.64670 

0.65682 

0.66143  

0.63706 

0.63957 

0.63781  

0.97211 

0.96455 

0.96054 

Conclusion 

Our objective was to conduct the extreme value analysis for the modelling of AMDR 

data of Lahore weather station, Punjab, Pakistan through frequentist and Bayesian 

approaches. The AMDR data was shown to follow GEV distribution which has a 

positive shape parameter, frequently appealing as it has a finite upper limit. In 

frequentist method, the return levels for (10, 25, 50, 75 and 100 years) were estimated 

by using parameter estimates obtained via MLE. These results indicated that there 

would be an extreme rain event occurring in future. In addition, the authors used 

Bayesian MCMC approach, which provide a more efficient analysis and predictions. 

Therefore, the results found for both non-informative and informative priors using 

MCMC techniques and were compared with MLEs and each other. As the posterior 

means of best fit distribution parameter estimates attained using non-informative priors 

were close to MLEs of parameters. In addition, the influence of the informative priors 

used in the statistical analysis on posterior mean and SE depend on the distance among 

the weather stations used for construction of informative priors and the weather station 

where GEV model was best fitted. Furthermore, the SE of posterior means of the 

parameters were smaller due to shorter distance. The smaller values of robustness 

measures were directed precision of Bayesian MCMC method (both for non-

informative and informative priors). Although, the Bayesian analysis offers a more 

suitable and straight way to handling and expressing uncertainties suggested (Coles et 

al., 2003). 

The Bayesian paradigm presented in this study to model the behavior extreme event 

at Lahore weather station is suitable when climatological information is scare. The 

limitation of the method is that it considers the behavior of extreme rainfall is same over 

the weather stations in the province from which the data were acquired. However, the 

extreme rainfall behavior at different parts of the province Punjab can be affected by the 

topography of the area and other information. To construct the prior distributions for 

weather stations in addition to historical records, the authors suggest that the Bayesian 

analysis should utilize this kind of information. Moreover, this study shows that the 

effects of informative priors on posterior means and accuracy of parameter estimates of 

GEV depend on distance. In general, the results of this work are very helpful to future 

plan in the designing of dam, bridges, culverts, and flood control devices in the province 

Punjab, Pakistan. These findings could be enhanced further with the practice of spatial 

modelling and this is the theme of future research. 
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