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Abstract—Spreading code authentication has been proposed
as a promising countermeasure against signal layer spoofing
attacks to GNSS. It consists in replacing part of the spreading
code with a secret, cryptographically generated sequence, that
is also provided to legitimate receivers, allowing them to verify
the signal authenticity and integrity. Different techniques and
formats have been proposed, yet their formulation is typically
given as a particular solution, lacking proper generality.

This paper aims at providing a unified general model for
the design, description, evaluation and comparison of such
techniques, introducing simple performance and security met-
rics, abstracting from the particular cryptographic mechanisms
required to generate the sequences. We derive a way to optimize
the trade-offs between security level and signal availability to
receivers that do not know the modified code, and between
security level and required cryptographic resources.

We also propose a simpler mechanism that closely approaches
the optimal trade-off, and show that it significantly outperforms
existing and proposed techniques, especially in the typically con-
sidered performance range. Finally, we evaluate the robustness of
the proposed schemes to a partial observation of the transmitted
modified code by the attacker.

Index Terms—authentication, integrity protection, spreading
codes, information entropy, satellite navigation systems global
navigation satellite systems, Global Positioning System

I. INTRODUCTION

Given the ever increasing number of applications that make
use of open service (civil) GNSS signals for position, nav-
igation or timing purposes, and hence the growing financial
or terrorist incentives for attacking them, the authenticity and
integrity protection of such signals has become of paramount
importance. A solution that has recently been adopted in
the European Galileo system, to ensure that transmitted in-
formation is received authentic and integral, is to provide
navigation message authentication (NMA) via cryptographic
mechanisms; however, this is not sufficient by itself, as other
spoofing attacks, such as meaconing or selective delay attacks,
can be carried out at the signal layer without attempting to
forge or modify the navigation message. Even introducing
unpredictable symbols into the navigation message, to make
it more difficult for an attacker to produce a spoofed signal
bearing the same message in real time, is not a definitive

solution, since secret code estimation and replay (SCER)
attacks have been shown to be quite effective at reproducing a
valid message under favorable conditions for the attacker [1],
[2].

A possible solution to offer signal authentication was pro-
posed in several distinct fashions in [3], [4], [5], [6], [7], [8]
called spreading code authentication (SCA) and consists in
partially encrypting the PRN spreading code of each SV. That
is, in replacing the publicly known open code with a new
code which coincides with it for a large part, whereas it is
unpredictably modified for a small number of the chips. The
limitation on the amount of modified chips stems from the
need to maintain a significant correlation peak value between
the received authenticated signal and the original code, either
to ensure PNT service availability for legacy receivers that
will not perform signal verification [5], [6], or because the
cryptographic seeds needed to generate the encrypted code
for verification are derived from the demodulated navigation
message data, in a delayed authentication fashion [7], [8]. In
fact, those receivers will correlate the received signal with the
open code and if the peak does not exhibit a significant loss
with respect to that in the autocorrelation of the open code,
the receiver can still acquire and track the signal, although a
slightly higher C/N0 will be necessary for lock-in.

Clearly there is a trade-off to be chosen, in the design of
such schemes, as reducing the correlation loss and increasing
the encrypted code unpredictability are conflicting objectives,
depending in opposite ways on the number of chips that remain
equal between the two codes. Moreover, the amount of se-
cure information that needs to be cryptographically generated
and shared among the receivers to reconstruct the encrypted
code is itself a cost that increases with the encrypted code
unpredictability, so that the designer also faces a security vs
efficiency trade-off.

In the literature, the performances of SCA mechanisms
have been evaluated in terms of correlation loss and resilience
to an attack that plainly replicates the open code. In this
paper, we approach the problem from a general point of view
and aim to derive the optimal trade-off among correlation,



unpredictability and amount of information to be disclosed.
The paper is organized as follows. In Section II we formu-

late the general model of SCA and introduce the performance
and security metrics that will be employed in the design trade-
off. In Section III we derive the optimal design in terms of
the defined trade-offs, and also propose a suboptimal design
that calls for a simpler implementation, yet is asymptotically
optimal in the infinite block length limit. In Section IV we pro-
vide analytical expressions for the security and performance
metrics of the proposed schemes and the available literature
solutions and compare them with numerical results. Then, we
evaluate the robustness of the presented schemes with respect
to partial observations by the attacker in Section V, and finally
we draw conclusions in Section VI.

II. SYSTEM MODEL

A. General model and examples

We consider that a block c = [c1, . . . , cL] of L contiguous
chips ci ∈ {0, 1} from the publicly known open PRN code for
SVn is overwritten by a new block c′ = [c′1, . . . , c

′
L], randomly

generated, according to some probability distribution pc′|c.
For instance, in the time division scheme [3], [4], a subset

of the chips, corresponding to a predetermined set of indices
I = {i1, . . . , ik} ⊂ {1, . . . , L} are replaced by k secret,
cryptographically generated bits [d1, . . . , dk], that is

c′i =

{
ci , i 6∈ I
dj , i = ij ∈ I

(1)

Ideally, in the random oracle security model, the bits
[d1, . . . , dk] would be independent and uniformly distributed,
so the conditional probability distribution pc′|c would be
pc′|c(a|b) = 1/2k for the 2k pairs (a, b) with ai = bi, ∀i 6∈ I.

On the other hand, in the time hopping scheme as introduced
in [4], [5] the index set I is itself cryptographically generated,
to make c′ even less predictable and offer an increased robust-
ness against denial of service attacks [9], [10]. Ideally, the
index set I is uniformly chosen among all the combinations
of k distinct indices from {1, . . . , L}, whereas the k bits
[d1, . . . , dk] are chosen independently of each other and of
I, so that we can write

pc′|c(a|b) =
1

2k

(
L−dH(a,b)
k−dH(a,b)

)(
L
k

) (2)

where dH(a, b) is the number of different chip values (Ham-
ming distance) between a and b. Typically, the index set I
is represented through a separate bit sequence from the chip
values [d1, . . . , dk].

An approach similar to time hopping, yet with a limited
variability of the index set I, is adopted in the Chimera
scheme for authentication of the GPS L1C signal. In the initial
proposal [7], analyzed in [11], for each block of L = 33
chips (“marker frame”) the set I (of “marker locations”) is
randomly chosen from a list of M = 512 predetermined k-ples
patterns with either k = 3 or k = 4, whereas [d1, . . . , dk] (the
“marker values”) are separately generated. In the more recent

version [8], each “sector” of L = 1023 chips is divided into 31
“segments” of 33 consecutive chips and the set I of “marker
locations” is made of n segments, with n ∈ {1, . . . , 7} gov-
erning the unpredictability vs correlation trade-off, except that
chip locations {0, 4, 6, 29} in each segment are not included
in I. Therefore, k = 29n and I is uniquely determined by
identifying the n segments out of 31 that make it, while the
marker values [d1, . . . , dk] are separately determined.

B. Security and performance metrics

The unpredictability of the signed code from the point of
view of a spoofing adversary should be evaluated taking into
account that the public code is known, and is thus measured
by the conditional guessing probability

Pg(c
′|c) =

∑
b

max
a

pc′|c(a|b)pc(b) (3)

or equivalently by the guessing (or min-) entropy [12]

Hmin(c
′|c) = log1/2 Pg(c

′|c) [bit] (4)

representing the security level (in bits) against a guessing
attack. Note that using either (3) or (4) as a security measure
means assuming that the verifying receiver can perfectly
distinguish between the correct signed code block c′ and any
other L-bit sequence, and that the attacker has no other means
to succeed than guessing the exact signed code sequence, with
no prior information except knowledge of the public code.
This represents an ideal situation, but it makes for a significant
upper bound to the achievable security level by these solutions
in the real world, and hence a useful design guideline. Also,
it has the benefit of abstracting the analysis from the specific
cryptographic mechanism used to generate the secret bits.

For those receivers that do not know the actual realization of
c′ prior to acquire the transmitted signal and will use the public
open code c in generating the local replica, the correlation
peak in the signal acquisition block will be proportional to
the cross correlation between the blocks c and c′

rcc′ =
L∑
i=1

(−1)ci+c
′
i = L− 2dH(c, c

′) (5)

which is itself a random variable. Thus we will evaluate the
expected multiplicative loss in the correlation peak by the
average correlation coefficient

ρcc′ =
E [rcc′ ]

L
= 1− 2

E [dH(c, c
′)]

L
(6)

and will use this metric as a measure of the availability offered
by the authentication system to this class of receivers.

Finally, the amount of cryptographic resources (number of
secure bits) that are needed to represent the actual choice of
c′, it is given by the log2 of the number of probable sequences,
also called the conditional Hartley (or max-) entropy [12]

H0(c
′|c) = log2 max

b

∣∣{a : pc′|c(a|b) > 0
}∣∣ (7)

Knowing that maximizing Hmin(c
′|c) and rcc′ for a given

block length L are conflicting objectives, we seek a trade-off



between them, ideally achieving the maximum possible value
of one while constraining the other, and vice versa.

Similarly, we seek a trade-off between maximizing
Hmin(c

′|c) and minimizing H0(c
′|c), as both entropies rep-

resent a measure of unpredictability, are maximized for c′

uniform among all L-bit sequences independently of c, and
vanish for c′ uniquely determined by c.

III. OPTIMAL TRADE-OFFS

In this section we derive the optimization of both trade-
offs by following a general approach, then provide an explicit
constructive procedure for applying it.

A. General necessary conditions for the optimal trade-offs

Lemma 1: The optimal trade-off between Hmin(c
′|c) and

ρc′c can be sought among the strategies of the type1

c′ = c⊕ x (8)

where:
1) x is a random L-bit string independent of c;
2) in the distribution of x, strings ξ with the same number

of 1’s (Hamming weight, wH(ξ)) are equally probable.
Proof: We prove that for any possible choice of pc′|c there

is a distribution p?c′|c satisfying equation (8), points 1) and
2) in the statement, that yields the same average correlation
and improves on the unpredictability (or at least maintains the
same), thus achieving a better (or at least equal) trade-off.

In fact, since the average signal correlation depends only
on the average Hamming distance, under pc′|c we have

E [dH(c, c
′)] =

L∑
δ=0

δqδ , with qδ =
∑

dH(a,b)=δ

pcc′(a, b)

(9)
If we let x be as in points 1) and 2) with

px(ξ) = qδ/
(
L
δ

)
, ∀ξ : wH(ξ) = δ (10)

and p?c′|c(a|b) = px(a ⊕ b) according to (8), with p?c′|c we
obtain

E [dH(c, c
′)] = E [wH(x)] =

∑
ξ

wH(ξ)px(ξ) =

L∑
δ=0

δqδ

obtaining the same average Hamming distance as with pc′|c.
Moreover, since the distribution p?c′|c(a|b) is obtained as
the convex combination of the pc′|c(a|b) corresponding to
different b, it increases its min-entropy.
Observe that both the time division and time hopping schemes
satisfy (8) and 1), and time hopping also satisfies 2).

Lemma 2: The optimal trade-off between Hmin(c
′|c) and

H0(c
′|c) is achieved with any distribution pc′|c that is uniform

over its support.
Proof: Since the conditional guessing and Hartley entropy

represent the conditional Rényi entropy of order 0 and ∞,
respectively, by [12, Prop. 3] we have

H0(c
′|c) ≥ Hmin(c

′|c) (11)

1As customary, ⊕ denotes bitwise XOR between two binary strings

with equality if and only if pc′|c(a|b) is uniform over its
support. Hence, this condition represents the best trade-off
between maximizing Hmin and minimizing H0.
Observe that time division satisfies uniformity of the distribu-
tion pc′|c(a|b) over its support.

Theorem 1: For a fixed block length L, the optimal trade-
offs
• between Hmin(c

′|c) and ρc′c, and
• between Hmin(c

′|c) and H0(c
′|c)

are jointly achieved by the strategy (8), where x is uniformly
distributed among the N binary strings with lowest Hamming
weight, and N is the parameter governing the trade-off.

Proof: Follows from the lemmas above, and the fact that
among all the uniform distributions over N distinct strings
(yielding Pg(x) = 1/N ), the expected Hamming weight is
minimized by choosing the N lowest weight strings.

B. Explicit procedures for the optimal trade-off

We outline two explicit procedures to achieve the optimal
distribution, starting from a given block length L and a
constraint either on the guessing probability or the correlation.
Procedure 1: given the length L and the constraint on the
guessing probability Pg ≤ Pmax, the generation of the signed
code block c′ that minimizes the average Hamming distance
(9) can be performed as follows:

1) let N = d1/Pmaxe;
2) build the set N of the N binary strings with lowest

Hamming weight;
3) for every open code block c that needs to be authenti-

cated, draw an independent and uniform x from N ;
4) let c′ = c⊕ x.

Procedure 2: given the length L and the constraint over the
correlation loss ρcc′ ≥ ρmin, the generation of the signed code
block c′ that maximizes the guessing entropy can be performed
as follows:

1) start with k = bL(1− ρmin)/2c;
2) compute ρcc′ : if ρ > ρmin, increase k and repeat until

a k is found such that ρcc′ ≤ ρmin;

3) let N =
k∑
δ=0

(
L
δ

)
;

4) compute ρcc′ ; if ρcc′ < ρmin, decrease N and repeat this
step until the largest N such that ρ ≥ ρmin is found;

5) proceed as in steps 2)–4) of Procedure 1.

C. A suboptimal alternative

A suboptimal solution, which calls for a simpler implemen-
tation, is to still use (8) but choose x uniformly only among
all the

(
L
k

)
L-bit strings with Hamming weight k, where:

• k = bL(1 − ρmin)/2c, if the constraint is set on the
correlation coefficient ρcc′ ≥ ρmin

• k is the smallest integer for which
(
L
k

)
≥ 1/Pmax, if the

constraint is set on the guessing probability Pg(c
′|c) ≤

Pmax

Such solution is still optimal in the security vs resources trade-
off, due to its uniformity, and is suboptimal in the security
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Fig. 1. Security vs availability trade-off: guessing entropy rate
Hmin(c

′|c)/L vs mean correlation coefficient ρcc′ for the existing and
proposed solutions.

vs correlation trade-off, due to removing the lower weight se-
quences. However, it calls for a simple implementation, where
independent uniform integers in {1, . . . , L} are iteratively
drawn until k different values are obtained. Also, it offers
constant Hamming distance dH(c, c′) = k between public and
secret code, which provides some margin for distinguishability
even in a noisy channel scenario.

IV. EXPLICIT EXPRESSIONS AND NUMERICAL RESULTS

Let us derive expressions for the metrics and schemes
described in Section II and Section III, and plot the results
for the sake of comparison. In order to show general results
applicable to any choice of the block length L, we plot
entropies normalized by L, thus bounded in [0, 1] and the
correlation coefficient ρcc′ .

For the optimal scheme with L chips and maximum Ham-
ming distance k, let N(L, k) =

∑k
i=0

(
L
i

)
; we get

Pg(x) =
1

N(L, k)
, Hmin(x) = log2N(L, k) (12)

and

E [wH(x)] =

k∑
i=0

i

(
L

i

)
= L

N(L− 1, k − 1)

N(L, k)
(13)

which are represented by the blue lines in Fig. 1, for different
values of L and by varying the parameter k which governs the
trade-off along each curve. It is interesting to also derive the
asymptotic curve as L→∞, obtained by letting k = [αL] be
a fixed fraction of L: by the asymptotic values [13]

N(L,αL)→ 2Lh2(α)− 1
2 log2 L+O(1)

E [wH(x)]→ αL+ o(L)

where h2(α) = −α log2 α− (1−α) log2(1−α) is the binary
Shannon entropy function, we get the asymptotic curve

1
LHmin(x)→ h2((1− ρ)/2) . (14)

Observe that the curves for a low L = 50, and even more for
L = 500 tightly approach the asymptotic curve, which can
thus be taken as representative for any practical length.

For the suboptimal scheme with L chips and Hamming
distance k, we get

Pg(x) =
1(
L
k

) , Hmin(x) = log2

(
L

k

)
, wH(x) = k (15)

as represented by the green lines in Fig. 1. Observe that while
the loss from the optimal scheme is significant for lower values
such as L = 50, the asymptotic curve for L → ∞ coincides
with that for the optimal scheme, since [13]

log2

(
L

[αL]

)
∼ Lh2(α) . (16)

This shows that the suboptimal scheme is asymptotically
optimal, i.e. it achieves optimality in the infinite block length
limit, and is very close to optimal for L = 500 already.

In the time division scheme, we trivially have

Pg(x) = 1/2k , Hmin(x) = k , E [wH(x)] = k/2 (17)

and the same identical values hold for the time hopping, due
to the fact that Pg(x) = maxξ px(ξ) = px(0) = 1/2k, so
that both the time division and time hopping schemes exhibit
the same poor trade-off between security and correlation, as
shown in Fig. 1. While for time division this is obviously due
to fixing the indices of possibly flipped chips to a small subset,
for the time hopping scheme the poor guessing entropy is due
to the statistics of x being distinctly nonuniform, with 0 (that
is no chips flipped) being the most likely choice.

As an example case for comparison, consider a block length
L = 500 chips, and a customary cross correlation ρcc′ = 0.9.
Then, all the existing schemes yield Hmin = 50 bit of security
and a guessing probability Pg = 9 · 10−16, while the optimal
and suboptimal schemes we propose would both yield Hmin =
140 security bits with Pg = 9 · 10−43.

As for the Chimera scheme in its first version [7], where
L = 33 and the average Hamming weight is E [wH(x)] =
L/20 obtaining a correlation loss ρcc′ = 0.9, the authors
showed in [11] that Pg(x) = 0.1062 and Hmin(x) = 3.23 bit,
which gives the single point identified by the purple circle in
Fig. 1. For the more recent version of Chimera [8], where
L = 1023 and k = 29n, for n = 1, . . . , 7 as discussed in
Section II, the expressions for ρcc′ and Pg(c

′|c) in terms of
k are the same as for the general time hopping scheme, and
the same poor performance in the trade-off is represented by
the purple bullets (one for each value of n) in Fig. 1.

As regards the trade-off between security and cryptographic
resources, that is between guessing and Hartley entropies, this
is optimized (with the equality Hmin(c

′|c) = H0(c
′|c)) by the

proposed schemes and time division, owing to their uniform
distribution of x, as shown by the blue line in Fig. 2.
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On the contrary, the large non uniformity of the time
hopping solution causes a mismatch

H0(x) = log2N(L, k) > k = Hmin(x) (18)

representing a rather poor trade-off, as shown by the red curves
in Fig. 2. Moreover, considering that in many implementations
the bits for identifying the index set I and the chip values di
are separately chosen, the number of required secure bits per
chip (which is not an actual entropy) becomes

H ′0(x) = log2

(
L

k

)
+ k > H0(x) (19)

an even worse trade-off, shown by the orange curves.
As an example, in order to provide Hmin = 100 bits of

security for a block of L = 500 chips, the proposed optimal
schemes require to generate exactly H0 = 100 secure random
bits, while the time hopping scheme requires H0 = 357 secure
bits, and H ′0 = 457 secure bits if positions and values are
separately encoded.

For the first version of Chimera [7], since it employs on
average H ′0(x) = log2M + L/10 = 12.3 secure bits per
frame, the representation cost is also much larger than the
guessing entropy, as shown by the purple circle in Fig. 2. On
the contrary, the more recent version [8], owing to the rigid
segment structure, only requires H ′0(x) = 5 + 4n + k secure
bits per frame to specify the chosen sequence, and hence it
is close to efficient in terms of cryptographic resources, as
shown by the purple bullets in Fig. 2.

V. ROBUSTNESS TO PARTIAL OBSERVATIONS BY THE
SPOOFER

In this section we consider the possibility that the attacker
has observed part of the SCA authenticated signal before

attempting to guess the secret code, thanks to a time advantage
over the victim receiver. We assume that, due to a high C/N0

condition, such observation allows him to exactly learn the
value of the initial ` < L chips in block c′, so that he
only needs to guess the values of the remaining L− ` chips,
and we evaluate the robustness of SCA schemes against this
rather conservative hypothesis. A potential drawback in the
schemes proposed in Section III is that since the distribution
of dH(c′, c) is more concentrated than in the time hopping
scheme, the observation of i flips in the first ` chips may give
the attacker enough information to significantly increase his
probability of correctly guessing the remaining L − ` chips
(e.g., if i = k, then there are no other flips in the remaining
L− ` chips, or if i = `+ k − L then all the remaining chips
must be flipped).

We denote by c′`1 = [c′1, . . . , c
′
`] the portion of signed

code block that has been observed by the attacker, and by
c′L`+1 = [c′`+1, . . . , c

′
L] the remaining chips he needs to guess.

The residual unpredictability of c′ can thus be measured by
the conditional guessing probability of the unobserved chips
given the knowledge of public code and observed signed chips

Pg(c
′L
`+1|c, c′`1 ) =

∑
b,a′

max
a

pc′L
`+1
|c,c′`1

(a|b,a′)pc,c′`1 (b,a
′)

(20)
or the corresponding guessing entropy Hmin(c

′L
`+1|c, c′`1 ). In

the assumption (8), the probability can be computed as

Pg(x
L
`+1|x`1) =

∑
a′

max
a

pxL
`+1
|x`

1
(a|a′)px`

1
(a′)

=
∑
a′

max
a

px([a
′,a])

=
∑
i

max
h

n(i, h, `)g(i+ h)

where n(i, h, `) is the number of sequences ξ in the alphabet
of x such that wH(ξ

`
1) = i and wH(ξ

L
`+1) = h, while g(δ) is

the value of px(ξ) when wH(ξ) = δ.
For the optimal trade-off scheme with maximum Hamming

weight k , we have g(δ) = 1/N(L, k), ∀δ ≤ k and n(i, h, `) =(
`
i

)(
L−`
h

)
for i+ h ≤ k so we obtain

Pg(c
′L
`+1|c, c′`1 ) =

1

N(L, k)

min{`,k}∑
i=0

(
`

i

)
(21)

whereas for the suboptimal scheme, with fixed Hamming
weight wH(ξ) = k, we have g(k) = 1/

(
L
k

)
, and g(δ) = 0,

∀δ 6= k and n(i, h, `) =
(
`
i

)(
L−`
h

)
for i + h = k and

n(i, h, `) = 0 otherwise, so we obtain

Pg(c
′L
`+1|c, c′`1 ) =

1(
L
k

) min{`,k}∑
i=max{0,`+k−L}

(
`

i

)
. (22)

Finally, for the time hopping scheme, g(δ) =
(
L−δ
k−δ
)
/2k and

n(i, h, `) =
(
`
i

)(
L−`
h

)
for i+ h ≤ k, so we obtain

Pg(c
′L
`+1|c, c′`1 ) =

1

2k
(
L
k

) min{`,k}∑
i=0

(
`

i

)(
`− i
k − i

)
(23)
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In Fig. 3 we plot the residual guessing entropy rate
Hmin(c

′L
`+1|c, c′`1 )/(L − `) vs the fraction `/L of the signed

block that has been observed by the attacker, for the three
schemes considered, block length L = 500, and two different
values of the mean correlation coefficient ρcc′ = 0.8, 0.9.
Observe that, as expected, while in the time hopping scheme
the residual guessing entropy rate decreases linearly and very
slowly with `, such decrease is much sharper for the optimal
and suboptimal schemes. However, the optimal scheme main-
tains a better security rate than time hopping for all `, whereas
the suboptimal scheme plunges to a negligible rate only when
the signed block has been almost entirely observed. Hence,
both schemes prove their robustness to this attack.

VI. CONCLUSIONS

In this work, we have introduced a general model of GNSS
signal integrity protection through spreading code authenti-
cation (SCA), a technique also known as partial spreading
code encryption. The model allows to evaluate and compare
different schemes in terms of their offered security level
(expressed by the guessing probability or entropy), availability
to non authenticating receivers (in terms of cross correlation
with the public open code) and representation efficiency (in
terms of the Hartley entropy), while abstracting from specific
implementation details.

A second main result of our paper is the derivation of a
mechanism that achieves the best possible trade-off between
security and availability, and between security and efficiency,
by choosing the secret code uniformly among the N blocks
that are closest to the open code. We have shown that such
an optimal scheme improves significantly, in either trade-off
or both, over existing proposals from the literature such as

SSSC [3], Time Division and Time Hopping SAS [4], [6] or
Chimera [7], [8], as those lack uniformity in choosing the
secret code. We have also proposed a suboptimal solution that,
while being amenable to a simpler implementation than the
optimal, closely approaches the optimum performance, and
asymptotically achieves it in the limit of infinitely long blocks.

Finally, we have explored the robustness of the existing
and proposed schemes to partial error-free observation of the
transmitted spreading code by an attacker that can exploit a
time advantage with respect to the victim receiver. We observe
that the superiority of our proposed schemes over the existing
ones is preserved even in this conservative hypothesis.

In a critical view of our contribution, it should be noted
that the security metric we employ is representative of an
ideal model, with error free chip detection by the receiver
and complete ignorance on the secret code by the attacker.
However, our results provide significant bounds with respect to
the performances that are actually achievable by each scheme
in realistic scenarios, and thus represent relevant guidelines
for a practical design. Introducing proper security metrics for
the noisy channel and evaluating the achievable trade-offs in
that context is our aim for upcoming work along this line of
research.
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