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Distribuzioni a priori per l’analisi di raggruppamento
basate sulla conoscenza di settore
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Abstract The construction of informative priors based on domain knowledge is a
delicate problem, complicated by the fact that the human mind finds it difficult to
quantify qualitative knowledge. We focus on the situation in which a prior guess of
the data partition is provided, and illustrate how to include such information in a
Bayesian mixture model framework. The methodology builds on class of perturbed
EPPFs (Exchangeable Partition Probability Function) which centers the prior prob-
ability on the most compatible set of partitions, according to the provided guess.
Abstract La costruzione di distribuzioni a priori informative basate sulla conoscenza
di settore è una problematica delicata, complicata dal fatto che la mente umana
trova difficoltà nel quantificare le conoscenze di tipo qualitativo. Questo lavoro
prende in esame il contesto in cui si ha disposizione una plausibile proposta di
partizione dei dati, e illustra come includere tale informazione in modelli di mis-
tura di tipo bayesiano. La metodologia considerata si basa su una classe di EPPF
(Exchangeable Partition Probability Function) penalizzate che centrano la dis-
tribuzione di probabilità a priori intorno all’insieme di partizioni maggiormente
compatibili con la partizione data.

Key words: Bayesian clustering, centered process, domain knowledge, partition
models.

1 Introduction

Mixture models have become increasingly popular tools to model data character-
ized by the presence of subpopulations, in which each observation belongs to one
of a certain number of groups. In particular, observations y1, . . . ,yN can be divided
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into K ≤ N groups, according to a partition c = {B1, . . . ,BK} with Bk comprising
all the indices of data points in cluster k, for k = 1, . . . ,K. The main underlying as-
sumption of a mixture model is that observations are independent conditional on the
partition c and on the vector of unknown parameters θ = (θ1, . . . ,θK) indexing the
distribution of observations within each cluster. Hence the joint probability density
of observations y1, . . . ,yN can be expressed as

p(y|c,θ) =
K

∏
k=1

∏
i∈Bk

p(yi|θk) =
K

∏
k=1

p(yk|θk),

with yk = {yi}i∈Bk indicating all the observations in cluster k for k = 1, . . . ,K. In the
full Bayesian formulation, a prior distribution is assigned to each possible partition
c, leading to a posterior of the form

p(c|y,θ) ∝ p(c)
K

∏
k=1

p(yk|θk).

The data partition c is conceived as a random object and elicitation of its prior dis-
tribution is a critical issue in Bayesian modeling since the space of all possible
partitions grows exponentially fast given its combinatorial nature. Current Bayesian
methods often relies on Species Sampling Models (SSM) [7], which avoid dealing
with the clustering space directly by inducing a latent partitioning of the data. The
induced probability distribution is known in literature as Exchangeable Partition
Probability Function (EPPF).

Despite providing tractable tools to deal with mixture models, Bayesian non-
parametric priors may be too flexible especially when relevant prior information is
available about the clustering, since they lack of a simple way to include this type
of information. In particular we focus on the situation in which a base partition c0 is
provided as a prior guess, and we wish to include this information in the prior distri-
bution. To address this problem [6] propose a general strategy to modify a baseline
EPPF to shrink the prior probability on partitions towards c0. In particular, the prior
distribution on all the possible clusterings is defined as proportional to a baseline
EPPF multiplied by a penalization term of the type

p(c|c0,ψ) ∝ p0(c)e−ψd(c,c0), (1)

with ψ > 0 a tuning parameter, d(c,c0) a suitable distance measuring how far c is
from c0 and p0(c) indicates a baseline EPPF, that may depend on some parameters.
Notice that as ψ→ 0 then p(c|c0,ψ) corresponds to the baseline EPPF p0(c), while
as ψ → ∞ then p(c = c0)→ 1.

The general formulation given in (1) leads to different results on the basis of
different choices of EPPF, tuning parameter and distance between partitions. While
we refer to [6] for considerations about the choice of EPPFs and tuning parame-
ter, this work focus on characterizing the distance term by providing the definition
of a class of a suitable metric between partitions, along with a characterization of
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Fig. 1 Genji-mon symbols for all the possible grouping of 5 elements.

neighborhoods induced by the distance. In the following, Section 2 introduces the
mathematical definition of set partitions along with concepts derived from lattice
theory while Section 3 gives the general definition of distance between partitions.
Finally Section 4 provides a characterization of the distance neighborhoods induced
by the distance.

2 Set partitions

Let c be a generic clustering of indices {1, . . . ,N}= [N]. It can be either represented
as a vector of indices {c1, . . . ,cN} with ci ∈ {1, . . . ,K} for i = 1, . . . ,N and ci =
c j when i and j belong to the same cluster, or as a collection of disjoint subsets
(blocks) {B1,B2, . . . ,BK} where Bk contains all the indices of data points in the k-th
cluster and K is the number of clusters in the sample of size N. From a mathematical
perspective c = {B1, . . . ,BK} is a combinatorial object known as set partition of
[N]. In denoting a set partition, we either write {{1,2,4},{3,5}} or 124|35 using
a vertical bar to indicate a break in blocks. By convention, elements are ordered
from least to greatest and from left to right within a block; we then order the blocks
by their least element from left to right. The collection of all possible set partitions
of [N], denoted with ΠN , is known as partition lattice. We refer to [8, 1] for an
introduction to lattice theory, reporting here some of the base concepts.

According to [4], set partitions seem to have been systematically studied for the
first time in Japan (1500 A.D.), due to a parlor game popular in the upper class
society known as genji-ko; 5 unknown incense were burned and players were asked
to identify which of the scents were the same, and which were different. Ceremony
masters soon developed symbols to represent all the possible 52 outcomes, so called
genji-mon represented in Figure 1. Each symbol consists of five vertical bars, with
some of them connected by horizontal bars, in correspondence of grouped elements.
As an aid to memory, each of the patterns was made after a famous 11th-century
novel, Tales of Genji by Lady Murasaki, whose original manuscript is now lost, but
has made genji-mon an integral part of the Japanese culture. In fact, such symbols
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continued to be employed as family crests or in Japanese kimono patterns until the
early 20th century, and can be found printed in many dresses sold today.

First results in combinatorics focused on enumerating the elements of the space,
making their appearance during the 17th century, still in Japan. For example, the
number of ways to assign N elements to a fixed number of K groups is described by
the Stirling number of the second kind

SN,K =
1

K!

K

∑
j=0

(−1) j
(

K
j

)
(K− j)N ,

while the Bell number BN = ∑
N
K=1 SN,K describes the number of all possible set

partitions of N elements. Refer to [4] for more information on history and algorithms
related to set partitions and other combinatorial objects.

2.1 Poset representation of partition lattice

The interest progressively shift from counting elements of the space to char-
acterizing the structure of space partitions using the notion of partial order. Con-
sider ΠN endowed with the set containment relation ≤, meaning that for c =
{B1, . . . ,BK},c′ = {B′1, . . . ,B′K′} belonging to ΠN , c≤ c′ if for all i = 1, . . . ,K,Bi ⊆
B′j for some j ∈ {1, . . . ,K′}. Then the space (ΠN ,≤) is a partially ordered set
(poset), which satisfies the following properties:

1. Reflexivity: for every c ∈ΠN , c≤ c,
2. Antisymmetry: if c≤ c′ and c′ ≤ c, then c = c′,
3. Transitivity: if c≤ c′ and c′ ≤ c′′, then c≤ c′′.

Let < be the relation on ΠN such that c < c′ if and only if c≤ c′ and c 6= c′. For any
c,c′ ∈ΠN , it is said that c is covered (or refined) by c′ if c≤ c′ and there is no c′′ such
that c < c′′ < c′ and indicate with c≺ c′ such relation. This covering relation allows
one to represent the space of partitions by means of the Hasse diagram, in which the
elements of ΠN correspond to nodes in a graph and a line is drawn from c to c′ when
c≺ c′; in other words, there is a connection from a partition c to another one when
the second can be obtained from the first by splitting or merging one of the blocks
in c. See Figure 2 for an example of Hasse diagram of Π4. If two elements are not
connected, as for example partitions {1,2}{3,4} and {1,3}{2,4}, they are said to
be incomparable. Conventionally the partition with just one cluster is represented at
the top of the diagram and denoted as 1, while the partition having every observation
in its own cluster at the bottom and indicated with 0.

The space ΠN is also a lattice, for the fact that every pair of elements has a
greatest lower bound (g.l.b.) and a least upper bound (l.u.b.) indicated with the
“meet” ∧ and the “join” ∨ operators, i.e. c∧c′ = g.l.b.(c,c′) and c∨c′ = l.u.b.(c,c′)
and equality holds under a permutation of the cluster labels. An element c ∈ ΠN
is an upper bound for a subset S ⊆ ΠN if s ≤ c for all s ∈ S, and it is the least
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{1,2,3,4}

{4}{1,2,3}{3}{1,2,4}{2}{1,3,4}{1}{2,3,4} {1,2}{3,4} {1,3}{2,4} {1,4}{2,3}

{1}{2}{3,4} {1}{3}{2,4} {1}{4}{2,3} {2}{3}{1,4} {2}{4}{1,3} {3}{4}{1,2}

{1}{2}{3}{4}

Fig. 2 Hasse diagram for the lattice of set partitions of 4 elements. A line is drawn when two
partitions have a covering relation. For example {1}{2,3,4} is connected with 3 partitions obtained
by splitting the block {2,3,4} in every possible way, and partition 1 obtained by merging the two
clusters.

upper bound for a subset S ⊆ ΠN if c is an upper bound for S and c ≤ c′ for all
upper bounds c′ of S. The lower bound and the greatest lower bound are defined
similarly, and the definition applies also to the elements of the space IN . Consider
as an example c = {1}{2,3,4},c′ = {3}{1,2,4}; their greatest lower bound (g.l.b.)
is c∧ c′ = {1}{3}{2,4} while the least upper bound (l.u.b.) is c∨ c′ = {1,2,3,4}.
Looking at the Hasse diagram in Fig 2 the g.l.b. and l.u.b. are in general the two
partitions which reach both c and c′ through the shortest path, respectively from
below and from above.

3 Distances on the partition lattice

The representation of the space of set partitions ΠN from lattice theory, provides a
useful framework to define metrics between partitions. In fact, the distance between
any two partitions can be defined by means of the Hasse diagram as the length of
any shortest path between them, which necessarily passes through the meet or join
of two partitions.

More general distances arise when the graph is weighted, meaning that every
edge is associated with a strictly positive weight; then the distance between any two
elements is the weight of the lightest path between them, where the weight of a
path is the sum over its edges of their weight. Weights over the edges of the Hasse
diagram are usually defined starting from a function ν on the lattice ΠN having the
following properties.

Definition 1. A lattice function ν : ΠN → R+, is said to be

• strictly order-preserving if ν(c)> ν(c′) , for c,c′ ∈ΠN such that c > c′.
• strictly order-reversing if ν(c)> ν(c′) , for c,c′ ∈ΠN such that c < c′.
• supermodular if ν(c∨ c′)+ν(c∧ c′)−ν(c)−ν(c′)≥ 0 , for any c,c′ ∈ΠN .
• submodular if ν(c∨ c′)+ν(c∧ c′)−ν(c)−ν(c′)≤ 0 , for any c,c′ ∈ΠN .
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We report here a useful result from lattice theory referring to [3] and [2]. Given
a lattice function ν weights wν on edges between {c,c′} are defined as

wν({c,c′}) = |ν(c)−ν(c′)|,

with distance between two partitions being the minimum-ν-weighted path. Proper-
ties outlined in Definition 1 guarantee that such path visits either the meet or the
join of any two incomparable partitions; which one of the two depends on whether
the function ν is supermodular or submodular.

Proposition 1. For any strictly order-preserving (order-reversing) function ν , if
ν is supermodular, the minimum-ν-weight partition distance is

dν(c,c′) = ν(c)+ν(c′)−2ν(c∧ c′) (dν(c,c′) = ν(c)+ν(c′)−2ν(c∨ c′)),

while if ν is submodular

dν(c,c′) = 2ν(c∨ c′)−ν(c)−ν(c′) (dν(c,c′) = 2ν(c∧ c′)−ν(c)−ν(c′)).

4 Distance neighborhoods on the partition lattice

Due to the discrete nature of the space of partition, the distance dν(c,c0) takes a
finite number of discrete values ∆ = {δ0, . . . ,δL}, with L depending on c0 and on
the distance d(·, ·). We can define distance neighborhoods as

sl(c0) = {c ∈ΠN : dν(c,c0) = δl}, l = 0,1, . . . ,L, (2)

hence sets of partitions having the same fixed distance from c0. For δ0 = 0, s0(c0)
denotes the set of partitions equal to the base one, meaning that they differ from c0
only by a permutation of the cluster labels. Then s1(c0) denotes the set of partitions
with minimum distance δ1 from c0, s2(c0) the set of partitions with the second
minimum distance δ2 from c0 and so on. Hence the exponential term in (1) penalizes
equally partitions in the same set sl(c0) for a given δl .

A trivial example can be obtained by considering the rank function, i.e. r(·) :
ΠN → Z+ such that r(c) = N−|c|, which is a strictly order-preserving lattice func-
tion. For example, considering partitions in the Hasse diagram in Figure 2, the rank
of the bottom partition 0 is equal to 0 and increases by 1 for each level of the graph
up to 3 for top partition 1. Then the minimum-rank-weighted distance can be com-
puted as dr(c,c′) = 2r(c∨ c′)− r(c)− r(c′), since the function is also submodular.
Notice that the rank assigns to every edge between partitions a unit weight, and then
dr is indeed the shortest path distance.

Figure 3 provides a representation of the distance neighborhoods as defined
in 2 induced by the rank function when the base partition corresponds to c0 =
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{1,2,3,4}

{4}{1,2,3}{3}{1,2,4}{2}{1,3,4}{1}{2,3,4} {1,2}{3,4} {1,3}{2,4} {1,4}{2,3}

{1}{2}{3,4} {1}{3}{2,4} {1}{4}{2,3} {2}{3}{1,4} {2}{4}{1,3} {3}{4}{1,2}

{1}{2}{3}{4}

Fig. 3 Representation of distance neighborhoods on the poset lattice Π4 for c0 = {1}{2,3,4} when
the chosen distance is induced from the rank function. Partitions are colored from the closest to the
most distant according to dark-light gradient.

{1}{2,3,4}. It can be notice that the closest partitions, besides c0 itself, in s1(c0)
are the ones obtained with a single operation of split or merge on c0, while the sec-
ond closest ones by applying another operation of split or merge on the partitions
in s1(c0), and so on. This kind of behavior can be observed for all functions which
induce unit weight on the edges of the partition lattice.

Another important measure of distance between two partitions, is the Variation of
Information (VI), introduced axiomatically in information theory [5], which also be-
longs to the class of distances derived from a lattice function. In particular, consider
the Shannon entropy H(·) : ΠN→R+ defined as H(c) =−∑

K
i=1 |Bi|/N log2(|Bi|/N)

which is a submodular and strictly order-reversing function, hence inducing distance

dH(c,c′) =V I(c,c′) = 2H(c∧ c′)−H(c)−H(c′). (3)

The VI ranges on a finite subset in [0, log2 N], and in this case the weights as-
signed to the edges differs from the unit weight, leading to finer characterization of
the distance neighborhoods as it can be seen from Figure 4. In general the closest
partitions are the ones which differs from c0 by merging two singleton clusters or
splitting a cluster of size two into singletons. If neither is possible, the closest par-
titions differs from c0 by a split operation on the smallest cluster of size k into a
singleton and a cluster of size k−1 or, as in the example, by a merge operations on
these last two clusters.
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5. Meilă, M.: Comparing clusterings - an information based distance. Journal of Multivariate
Analysis 98(5), 873 – 895. (2007)

6. Paganin, S., Herring, A. H, Olshan, A. F., Dunson, D. B. and The National Birth De-
fect Study: Centered Partition Process: Informative Priors for Clustering. arXiv preprint
arXiv:1901.10225. (2018)

7. Pitman J.: Exchangeable and partially exchangeable random partitions. Probability theory
and related fields 102, 145–158. (1995)

8. Stanley, R. P.: Enumerative Combinatorics. Vol. 1. Cambridge University Press. (1997)


