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Abstract
Neuroimaging is the growing area of neuroscience devoted 
to produce data with the goal of capturing processes and 
dynamics of the human brain. We consider the problem 
of inferring the brain connectivity network from time-
dependent functional magnetic resonance imaging (fMRI) 
scans. To this aim we propose the symmetric graphical 
lasso, a penalized likelihood method with a fused type 
penalty function that takes into explicit account the natural 
symmetrical structure of the brain. Symmetric graphical 
lasso allows one to learn simultaneously both the network 
structure and a set of symmetries across the two hemi-
spheres. We implement an alternating directions method 
of multipliers algorithm to solve the corresponding convex 
optimization problem. Furthermore, we apply our methods 
to estimate the brain networks of two subjects, one healthy 
and one affected by mental disorder, and to compare them 
with respect to their symmetric structure. The method ap-
plies once the temporal dependence characterizing fMRI 
data have been accounted for and we compare the impact 
on the analysis of different detrending techniques on the 
estimated brain networks. Although we focus on brain 
networks, symmetric graphical lasso is a tool which can 
be more generally applied to learn multiple networks in a 
context of dependent samples.
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1  |   INTRODUCTION

A brain network is a model of a nervous system represented as a set of nodes, also called vertices, 
interconnected by a set of edges; see Bullmore and Bassett (2011) for a review on the use of brain 
graphs for modelling the human brain connectome. Within the domain of human brain mapping, 
great interest has been posed in the estimation of brain networks from functional magnetic resonance  
imaging (fMRI) data (Smith et al., 2011).

Functional MRI is a non-invasive technique for collecting data on brain activity, with a good res-
olution in terms of space and time. Essentially, fMRI measures the increase in the oxygenation level 
at some specific brain region, as long as an increase in blood flow occurs, due to some brain activity. 
The latent signal in the observed fMRI data is referred to as the blood oxygenation level-dependent 
(BOLD) signal. The BOLD signal arises from the interplay of blood flow, blood volume and blood 
oxygenation in response to changes in neural activity. Under an active state, the local concentration 
of oxygenated haemoglobin increases, with a corresponding increase in the homogeneity of magnetic 
susceptibility, which, in turn, results in an increase in MRI signal. Typically, active states are observed 
in task-based experiments in response to an exogenous event. In recent years, the attention has been 
concentrating towards resting state fMRI (R-fMRI) data, collected on subjects at rest and in the ab-
sence of any external stimulus, as the key to understand the neuronal organization of the brain through 
the investigation of the spatial and temporal structure of spontaneous neural activity. Smith et  al. 
(2009) carried out an analysis to assess how functional networks at rest match the ones detected under 
activation tasks. The authors conclude that the resting brain functional dynamics are fully utilizing 
the set of functional networks exhibited by the brain over the range of its possible tasks. In the review 
paper by Biswal et al. (2010), R-fMRI is described as the candidate approach capable of addressing 
the core challenge in neuroimage, that is, the development of common paradigms for interrogating the 
functional systems in the brain, without the constraints of a priori hypotheses.

The construction of a network from fMRI data requires first the identification of a set of functional 
vertices, such as spatial regions of interest (ROIs), and then the analysis of connectivity patterns 
across ROIs. It is also relevant that the human brain has a natural symmetric structure. More specifi-
cally, it is made up of two hemispheres such that for every spatial ROI on the left hemisphere there is a 
homologous ROI on the right hemisphere. Accordingly, in the brain network one can identify pairs of 
homologous vertices and edges, and R-fMRI studies have suggested a highly symmetric connectivity; 
see Section 2 for additional details.

In this paper, we address the problem of estimating the brain network from R-fMRI data by keeping 
symmetries into explicit account. Special attention is also posed in the temporal dependence charac-
terizing fMRI data and the impact of alternative detrending approaches on the estimated brain net-
work. We remark that we consider undirected graphs, that is, graphs where the edges are of symmetric 
type. However, following Højsgaard and Lauritzen (2008), throughout this paper the term ‘symmetry’ 
refers to similarities across the two hemispheres with respect to their network structure and equality 
in parameter values.

Undirected graphical models (Lauritzen, 1996) are widely applied in network modelling from 
fMRI data (see, among others, Marrelec et al., 2006; Smith et al., 2011; Zhu & Cribben, 2018). In this 
framework, the network structure follows from the sparsity pattern of the inverse covariance matrix 
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of ROI values, and a popular approach to estimate sparse undirected graphical models is the graphical 
lasso technique (Banerjee et al., 2008; Friedman et al., 2008). This method is based on the optimiza-
tion of a penalized log-likelihood function, where the role of the penalty term is to encourage sparsity 
in the network. One drawback of the graphical lasso, in the present context, is the fact that it ignores 
the symmetric structure of the brain. For this reason, we propose a fused graphical lasso method based 
on the optimization of a penalized log-likelihood where the penalty function is obtained by the sum 
of two distinct terms. Like the graphical lasso, the first term encourages sparsity in the solution. On 
the other hand, the second one is a fused type penalty (Tibshirani et al., 2005) that encourages sym-
metry by penalizing differences between the left and right hemispheres. As detailed more formally 
in Section 3, symmetries are implemented in the form of equality constraints between entries of the 
inverse covariance matrix of ROI values. This leads to a convex optimization problem and we provide 
an alternating direction method of multiplier (ADMM) algorithm for its solution.

The method applies once the temporal dependence characterizing fMRI data have been accounted 
for and the BOLD signal has been extracted. We assume a simple decomposition of pre-processed 
R-fMRI data into an unobserved signal plus noise. The underlying hypotheses on the two latent vari-
ables are related to the evolution of the components in time and determine the method adopted for 
their estimation. As the dynamics of fMRI time series are controversial, we shall assess the impact of 
detrending on the estimated ROI connectivity network using three methods, representative of different 
approaches to trend estimation, based on different assumptions and including possible misspecifi-
cation. In particular, we shall specify a linear Gaussian multivariate parametric model, a non-linear 
observation-driven model for unobserved components and possibly heavy tailed data, and a non-
parametric local polynomial regression method. Details are deferred to Section 4.2.

We carried out an extensive analysis and provide an illustration using R-fMRI data from two rep-
resentative subjects who have similar characteristics in terms of age and handedness, although one of 
the two is healthy while the other has been diagnosed with some mental disorder. We may anticipate 
that the results show a lack of brain asymmetry in the latter individual.

In summary, the novel contribution of this paper is twofold. First, we introduce a fused graphical 
lasso approach to estimate sparse undirected graphical models with a specific symmetric structure 
and provide an ADMM algorithm for its solution. An implementation of the latter, written in the R 
language (R Core Team, 2020), can be found at https://github.com/savra​nciat​i/sgl. Second, we com-
pare the impact on the analysis of different detrending techniques, thereby providing insight into the 
robustness of the estimated network on such a preliminary step.

1.1  |  Related works and possible applications

The novel contribution of this paper pertains the research area usually referred to as joint learning of 
multiple graphical models. In this framework, the observations come from two or more groups where 
each group shares the same variables and some of the dependence structure. Accordingly, every group 
is associated with a network and it is expected that some edges are common across all groups and 
other edges are unique to each group. More specifically, the literature has focused on the case where 
the groups correspond to independent experimental conditions so that every network is a distinct unit, 
disconnected from the other networks; see, among others, Danaher et al. (2014); Yang et al. (2015). 
Examples of possible applications include genetic networks (see Danaher et al., 2014) and brain net-
works from neuroimaging data (see Yang et al., 2015). In the former, the groups are normal tissue 
from healthy subjects and one or more different types of cancer tissues whereas in the latter groups 
correspond to normal subjects and subjects with different degrees of cognitive impairment.

https://github.com/savranciati/sgl
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Our work is motivated by brain network inference where the groups are given by the two hemi-
spheres. The independence assumption does not hold in this case because every observation from the 
left hemisphere is paired with an observation from the right hemisphere. Thus, existing methods for 
joint learning of graphical models no longer apply, and one should distinguish between independent 
samples and paired data, the latter being a largely unexplored area of research. Note also that, unlike 
the case of independent samples, with paired data the networks associated with different groups are 
not expected to be disconnected from each other. Although we focus on brain networks, our approach 
applies to other settings, and another relevant example comes from cancer genomics where control 
samples are often obtained from histologically normal tissues adjacent to the tumour (NAT), so that 
every observation from a cancer tissue is paired with an observation from a normal tissue; see for 
example, Aran et al. (2017).

A central role in the theory of joint learning of multiple graphical models for independent samples 
is played by the group and the fused graphical lasso (Danaher et al., 2014). The penalty term of the 
group graphical lasso encourages both sparsity and a similar structure of the networks. On the other 
hand, the fused graphical lasso encourages sparsity and, at the same time, the parameters of the model 
to be identical across groups. In this way, the groups are encouraged to have both similar network 
structure and identical parameter values, thereby typically resulting in more parsimonious models. 
Procedures for applying both the group and the fused graphical lasso are not available for paired data 
and the symmetric graphical lasso introduced in this paper contributes to fill this gap.

Interestingly, the application of fused graphical lasso for paired data results in a model that belongs 
to the family of Gaussian graphical models with edge and vertex symmetries, shortly RCON models, 
introduced by Højsgaard and Lauritzen (2008). Note that, as pointed out in that paper, symmetry 
restrictions in the multivariate Gaussian distribution have a long history and RCON models can be 
identified as a special case within this framework. For recent applications of these models see Gao 
and Massam (2015); Vinciotti et al. (2016); Massam et al. (2018). Although the theory of estimation 
and testing for RCON models is well-established, a procedure that performs model selection within 
the family of RCON models is not available, with the relevant exception of the procedures introduced 
by Gehrmann (2011) and by Li et al. (2020), within the frequentist and the Bayesian approach, re-
spectively, which are of theoretical interest but whose computational complexity restricts their ap-
plication to low-dimensional settings. More specifically, the problem of model selection for RCON 
model is discussed in Gehrmann (2011) where it is shown that the number of RCON models grows 
super-exponentially in the number of variables. For this reason, Gehrmann (2011) suggested that lasso 
procedures with fused type penalties might represent a useful alternative to traditional model selection 
approaches. The symmetric graphical lasso does not constitute a general solution to this problem but 
it represents, to the best of our knowledge, the first instance of a lasso procedure specifically designed 
for RCON models.

A further contribution of the paper is concerned with the prewhitening of fMRI data that, mea-
sured at each region, are characterized by temporal dependence. There is a longstanding debate on 
the dynamic properties of fMRI data and parametric models have been employed along with fully 
non-parametric methods. Autoregressive errors have been considered, see for example, Worsley et al. 
(2002), Lindquist (2008) and Zhu and Cribben (2018), as well as fractional noise error processes, 
as in Bullmore et al. (2003) or change point methods, see Aston and Kirsch (2012). Semiparametric 
methods and high pass filters are also applied to fMRI data, see Zhang and Yu (2008) and Schmal 
et al. (2017), who use the Hodrick–Prescott filter as in St. John and Doyle (2015). Lund (2006) de-
duced that no commonly accepted model for noise in fMRI exists and that regressors may whiten the 
noise as well as non-parametric smoothing methods. In a Bayesian setting, the relevance of prewhit-
ening has been investigated by Kundu and Risk (2020), who model the temporal covariance under an 
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inverse-Wishart prior. The discussion in the latter paper leads to the overall conclusion that prewhit-
ening is a crucial step yet not fully solved when modelling fMRI data. Against this background, the 
paper provides a contribution by assessing the impact of different signal extraction methods, applied 
to the same dataset, to the whitening of the original, temporally correlated, series.

2  |   PROBLEM AND DATA DESCRIPTION

Structural symmetry of human brain is concerned with anatomical or physiological similarities be-
tween the left and the right hemisphere. Otherwise, functional asymmetry is referred to activity-related 
differences, in a similar way in which left and right hands operate differently, although being anatomi-
cally symmetric. As it is related to behavioural differences, functional asymmetry, also known as lat-
eralization, is usually detected with respect to some specific tasks, the most relevant being connected 
to language organization and handedness. Non-invasive methods for exploring the brain organization 
with respect to lateralization are electroencephalography, positron emission tomology and fMRI, the 
latter being the most used in research, which generally display bilateral activations that contrast with 
the asymmetric effect of lateralization.

So far, R-fMRI studies have suggested a highly symmetric connectivity. Indeed, along with the rec-
ognition of the relevance of analysing the brain at rest, the focus has moved from detecting functional 
asymmetries to detecting structural symmetries. In some sense, the two methods are complementary, 
but clearly task-based analyses tend to evidence asymmetries whereas resting state analyses are de-
signed to shed light on symmetric structures. In a recent R-fMRI analysis, Raemaekers et al. (2018) 
focus on differences between hemispheres that are reflected in asymmetric functional connectivity in 
resting state subjects and recognize that any asymmetries are prone to be relatively minute. They also 
observe that a direct quantification of the extent of the hemispheric symmetry is missing.

The fused graphical lasso procedure introduced in this paper provides a methodological contribu-
tion for analysing functional symmetries between the left and right hemisphere of the brain. We apply 
our method to a multimodal imaging dataset which comes from a pilot study of the Enhanced Nathan 
Kline Institute-Rockland Sample project. This project aims at providing a large cross-sectional sam-
ple of publicly shared multimodal neuroimaging data and psychological information to support and 
motivate researchers in the relevant scientific goal of understanding the mechanisms underlying the 
complex brain system. A detailed description of the project, scopes and technical aspects can be found 
at http://fcon_1000.proje​cts.nitrc.org/indi/enhan​ced/. The pilot NKI1 study comprises multimodal im-
aging data and subject-specific covariates for n = 24 subjects. Detailed information can be found at 
http://fcon_1000.proje​cts.nitrc.org/indi/CoRR/html/nki_1.html.

For each subject several information are collected as personal covariates, such as anxiety diagno-
sis, age, gender and handedness. The fMRI time series are recorded at p = 70 spatial ROI, clustering 
anatomically close and functionally similar voxels. The way ROIs are defined can depend on the scope 
of the analysis or on the design of the experiments and it has implications for fMRI analysis, see the 
discussion by Poldrack (2007). In our case, ROIs are pre-defined according to the Desikan atlas, see 
Desikan et  al. (2006). For any region, additional information on 3D spatial locations, hemisphere 
and lobe membership is available. As we have ROI-specific information, we apply a ROI analysis 
approach, based on the given anatomical parcellation. An alternative approach is to conduct a whole-
brain voxel-wise analysis, on a finer scale, but such an approach is computationally expensive, sensi-
tive to noise, and often difficult to interpret. The optimal means of combining voxels into functionally 
distinct ROIs remains to be determined. The issue of parcellation is largely discussed in Craddock 

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
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et al. (2012), where the authors develop a spatially constrained spectral clustering approach for group 
clustering of the whole resting state fMRI data into functionally and spatially coherent regions.

As far as dynamic functional activity is concerned, the dataset we are focusing on is composed of 
time series data collected for each of the 24 subjects in an imaging session. This imaging technology 
monitors brain functional activity in different regions via dynamic changes in blood flow creating 
a low-frequency BOLD signal when the subject is not performing an explicit task during the imag-
ing session. In the present NKI1 study, the subjects are simply asked to stay awake with eyes open. 
Focusing on subject i and on scan k, where i = 1: 24 and k = 1: 2, we have 70 × 404 matrix whose 
rows contain the dynamic activity data of the brain regions, collected at T = 404 equally spaced times 
(time lag is 1400 ms).

The data are provided by Greg Kiar and Eric Bridgeford from NeuroData at Johns Hopkins 
University, who graciously pre-processed the raw DTI and R-fMRI imaging data available at http://
fcon_1000.proje​cts.nitrc.org/indi/CoRR/html/nki_1.html, using the pipelines ndmg and C-PAC.

3  |   OVERVIEW ON THE METHODOLOGICAL  
FRAMEWORK

Let X(t) be a p dimensional time series vector collecting the fMRI series observed on each single sub-
ject over p = 70 regions, t = 1, … , T where T = 404, the length of each time series. We assume the 
general signal plus noise decomposition for X(t), 

where M(t) is the vector collecting the BOLD signal and Y (t) is the idiosyncratic noise component. Our 
input data for the analysis of the ROI network association structure will be the estimate of Y (t), obtained 
by contrast as the residual vector once the BOLD signal M(t) is extracted (see Section 4.2). More specifi-
cally, we denote by V = {1, … , p} the set indexing the p = 70 brain regions and by Y

V
= (Y1, … , Y70)⊤ 

the zero mean residual vector, where we have dropped the time index as we assume that the time series 
dynamics are fully captured by the time-varying BOLD signal (Section 4.2).

We assume YV ∼ Np(0, Σ) and consider the ROI connectivity network obtained from the applica-
tion of the theory of undirected graphical models (Lauritzen, 1996). In this framework, the network 
structure follows from the sparsity pattern of the concentration matrix Θ = Σ−1. More specifically, if 
the entry �ij of Θ, with i ≠ j, is such that �ij ≠ 0 then the brain regions indexed by i and j are connected 
by an edge in the network. Conversely, for every missing edge in the network the corresponding entry 
of Θ is equal to zero. Concentrations can be interpreted by exploiting their connection with partial 
correlation and regression coefficients, because for every pair i, j  ∈  V with i ≠ j it holds that (see Cox 
& Wermuth, 1996, Section 3.2), 

where �ij|V�{i,j} is the partial correlation between Yi and Yj given the remaining components YV�{i, j} whereas 
� i←j|V�{i, j} is the regression coefficient of Yi on Yj given YV�{i, j} and �2

i |V �{i}
 is the partial variance of Yi 

given YV�{i}. Hence, if the brain regions indexed by i and j are not connected by an edge it holds that �ij = 0 
and this is equivalent to �ij|V�{i, j} = 0 but also to � i←j|V�{i, j} = 0 and to � j←i|V�{i, j} = 0. Furthermore, in 
this case, Yi and Yj are conditionally independent given YV�{i, j}.

(1)X(t) = M(t) + Y (t)

(2)�ij�V�{i,j} = −
�ij

√
�ii�jj

, � i←j�V�{i,j} = −
�ij

�ii

and �
2
i �V �{i}

= �
−1
ii

,

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
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Every region in the left hemisphere has a homologous region in the right hemisphere so that the 
vector YV can be naturally partitioned into two subvectors. More formally, we set q=p/2 and let the sets 
L = {1, … ,q} and R={q+1, … ,p} index the subvectors YL and YR associated with the left and right 
hemispheres, respectively, so that the region relative to Yi of YL is homologous to the region relative to 
Yi+q of YR; furthermore, to shorten the notation, we set i� = i + q for every i  ∈  L. Accordingly, the 
concentration matrix Θ can be partitioned as 

We investigate the presence of symmetries in the ROI association network that take the form of identities 
between concentrations in ΘLL with the corresponding concentrations in ΘRR. This is motivated by the in-
terpretation of such equality restrictions that, by (2), allows one to identify equality relationships involving 
partial correlation and regression coefficients. Specifically:

1.	 Equalities involving the diagonal entries imply equality in partial covariances, that is �ii = �i�i� 
implies �2

i |V �{i}
= �

2
i� |V �{i�}

.
2.	 If in addition to the equality �ii = �i�i� in (i) it also holds that �ij = �i�j� then we have 

� i←j|V�{i,j} = � i�←j�|V�{i�,j�} so that the contribution of Yj to the prediction of Yi is identical to the con-
tribution of Yj′ to the prediction of Yi′.

3.	 If in addition to the equalities �ii = �i�i� and �ij = �i�j� in (ii) it also holds that �jj = �j�j� then the partial 
correlation between Yi and Yj is identical to that between Yi′ and Yj′; formally �ij|V�{i,j} = �i�j�|V�{i�,j�}.  
It is also worth remarking that in this case it follows from (ii) that both � i←j|V�{i,j} = � i�←j�|V�{i�,j�} 
and � j←i|V�{i,j} = � j�←i�|V�{i�,j�}.

4  |   BACKGROUND

4.1  |  Graphical models, graphical lasso and symmetries

We represent the ROI connectivity network by means of an undirected graph � = (V , E) where 
the vertex set V indexes the brain regions and E⊂V × V is a set of edges, which are unordered pairs 
of vertices. Let YV be a multivariate normal random vector with zero mean vector, variance and co-
variance matrix Σ = {�ij}i,j∈V and concentration matrix Σ−1 = Θ = {�ij}i,j∈V. The concentration graph 
model (Cox & Wermuth, 1996) with graph � = (V , E) is the family of multivariate normal distribu-
tions with Θ ∈ � + (�), the set of (symmetric) positive definite matrices which have zero elements 
�ij = 0 whenever {i, j}\not\in E. The latter model has also been called a covariance selection model 
(Dempster, 1972) and a graphical Gaussian model (Whittaker, 1990); we refer the reader to Lauritzen 
(1996) for details and discussion.

Let S = n−1
∑

n
i=1

y
(i)

V
(y

(i)

V
)⊤ be the matrix of sums of squares and products for a sample y(1)

V
, …, y

(n)

V
 

of n i.i.d. observations of YV. The maximum likelihood estimator (MLE) Θ̂
mle

 in the concentration 
graph model with graph � maximizes the log-likelihood 

Θ =

(
ΘLL ΘLR

ΘRL ΘRR

)
.

(3)l(Θ) = log det(Θ) − tr(SΘ),
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subject to Θ ∈ � + (�); see Lauritzen (1996) Section 5.2) for details. On the other hand, the structure of 
a concentration graph can be estimated from data by determining the zero entries of the concentration  
matrix. We refer the reader to Drton and Maathuis (2017) for a comprehensive review on structure learn-
ing for graphical models.

In recent years, much interest has focused on the estimation of concentration graph models through 
the use of �1 (lasso) regularization. More specifically, Yuan and Lin (2007), Banerjee et al. (2008) and 
Friedman et al. (2008) proposed the graphical lasso estimator 

where minimization is over the set � + of p × p positive definite matrices, λ ≥ 0 and the �1-norm ||Θ||1 is 
the sum of the absolute values of the elements of Θ. The graphical lasso adds to the log-likelihood func-
tion from (3) a �1-penalty pushing the solutions to be sparse, in the sense that due to the geometry of the 
�1-penalty, typically some of the off-diagonal entries of the correlation matrix are shrunk to exactly zero. 
The term λ is the regularization parameter that controls the amount of shrinkage applied to the elements 
of Θ, and therefore controlling the sparsity of the solution. Thus, graphical lasso is an effective proce-
dure that conducts model selection and estimation simultaneously. Finally, we remark that for λ > 0 the 
minimum in (4) is achieved uniquely because the objective is strictly convex, and this holds true also in 
high-dimensional settings where p > n.

Højsgaard and Lauritzen (2008) investigated the properties of subfamilies of concentration graph 
models, named RCON models, obtained by imposing additional equality restrictions between specified 
entries of the concentration matrix. RCON models are commonly referred to as coloured graphical mod-
els because equality constraints can be represented by colouring of edges and vertices of the concentration 
graph �. Edges of the same colour correspond to off-diagonal entries of Θ with identical values, and 
similarly for vertices with respect to diagonal entries. The model is thus identified by the structure of � 
together with a collection of colour classes. Højsgaard and Lauritzen (2008) showed that, as well as con-
centration graph models, RCON models are regular exponential families and provided an algorithm for 
the computation of the MLE of Θ, implemented in the R package gRc (Højsgaard & Lauritzen, 2007).

4.2  |  Time series analysis

To assess the impact of detrending on our procedure, we consider three different specifications for 
the latent components in Equation (1). Each one is representative of a wide class of methods for sig-
nal extraction and is based on different assumptions on the latent components and their dependence 
relation. In particular, we specify a Gaussian vector autoregressive model (Section 4.2.1), a univari-
ate Student-t score-driven model (Section 4.2.2) and a local polynomial regression filter, that is the 
Henderson filter (Section 4.2.3). In the univariate case, we shall denote the elements of the vectors 
X(t), M(t), Y (t) as x(t),�(t), y(t) respectively.

4.2.1  |  Vector autoregressive models

In the class of multivariate linear models, we consider a first-order vector autoregressive process, 
VAR(1), see Tunnicliffe-Wilson et al. (2015), where 

(4)Θ̂
gl
= arg minΘ

{
− log det(Θ) + tr(SΘ) + �||Θ||1

}

M(t) = ΦX(t−1)
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and Y (t) is assumed to be multivariate normal with zero mean, covariance matrix Σ and uncorrelated with 
Xs for s < t. The coefficient matrix Φ ∈ ℝ

p×p is required to have eigenvalues that are in modulus smaller 
than one and it is usually estimated by least squares. Under distributional assumptions on Y (t) maximum 
likelihood estimation can be carried out and for VAR processes of higher order, the latter can be selected 
by means of information criteria.

4.2.2  |  Score-driven models

Among non-linear models for unobserved components, we focus on the class of score-driven models, 
recently introduced by Creal et al. (2013) and Harvey (2013) as flexible observation-driven models 
for time-varying parameters that characterize a given conditional distribution. Specifically, we con-
sider the first-order dynamic conditional score (DCS) model for the location discussed by Harvey and 
Luati (2014), where each x(t) is assumed to be conditionally distributed as a Student-t random variable 
with ν degrees of freedom, x(t) |ℱt−1 ∼ t

�
(�(t), �2), with the filtration ℱs representing the information 

set up to time s. The signal �(t) is estimated based on an autoregressive mechanism, 

where û(t) is a realization of a martingale difference sequence, that is, E(u(t) |ℱt−1) = 0, proportional to 
the score of the conditional likelihood of the time-varying location, that is, u(t) ∝ (�∕��(t))𝓁(�(t) |ℱt−1),  
|ϕ|<1 and �̂(0) is set equal to a fixed value. In this framework, the dynamic BOLD signal is updated by 
a filter that is robust with respect to extreme values (Calvet et al., 2015). The robustness comes from the 
properties of the martingale difference sequence u(t): if the data arise from a heavy tail distribution, then 
the score û(t) is less sensitive to extreme values than the score of a Gaussian distribution or than the inno-
vation error v̂(t) = x(t) − �̂

(t). An important property of the proposed specification is that it encompasses 
the Gaussian case, in that the score of the Student-t converges to that of the Gaussian distribution when the 
degrees of freedom tend to infinity. In practice, if a score- driven model is specified when the underlying 
dataset is in fact Gaussian, a very high value for the degrees of freedom is estimated and a Gaussian model 
is eventually fitted with the time-varying parameter updated through the Kalman filter. The static param-
eters, ω, ν, ϕ, κ, σ, are consistently estimated by maximum likelihood and asymptotic standard errors can 
be derived (see Harvey, 2013; Harvey & Luati, 2014).

It is important to remark that by applying this method, we are taking into account the possibility 
that the distribution of the input vector, Y (t), is misspecified, as it is allowed to come from an heavy 
tailed, rather than Gaussian, distribution.

4.2.3  |  Local polynomial regression

Filters that arise from fitting a local polynomial have a well-established tradition in time series analysis 
and signal extraction, see Cleveland and Loader (1996). With no parametric assumptions on the error 
term, the signal is approximated locally by a polynomial of degree d, so that in the neighbourhood of 
time t, for t = h+1, ⋯ , n−h one has, for j = 0, ±1, ⋯ , ±h, �(t+ j) = �0 + �1j + �2j2 +⋯ + �djd. Using 
this design, the estimate of the trend at time t is simply given by the intercept, �̂(t)

= �̂0. Provided that 
2h ≥ d, the d+1 unknown coefficients �k, k = 0, …, d, can be estimated by the method of weighted 
least squares (see Proietti & Luati, 2007) which eventually produce the trend estimate at time t as the 
result of a weighted average, 

�̂
(t)
= � + ��̂

(t−1)
+ �û(t−1)
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The Henderson filter (Henderson, 1916) arises as the weighted least squares estimator of a local 
cubic trend, that is, d=3, at time t using 2h+1 consecutive observations. Henderson (1916) addressed 
the problem of defining a set of weights that maximize the smoothness of the estimated trend, in the 
sense that the variance of its third differences is minimum. He showed that up to a factor of propor-
tionality, the resulting weights are the following wj ∝ [(h + 1)2 − j2][(h + 2)2 − j2][(h + 3)2 − j2].

Note that, with local polynomial regression methods, 2h trend estimates are missing, correspond-
ing to the first and last h time points. Even if the latter are not relevant in the present paper, the reader 
is referred to Proietti and Luati (2008) for estimation of the signal at the boundaries by asymmetric 
filters.

5  |   THE SYMMETRIC GRAPHICAL LASSO

5.1  |  The penalized log-likelihood

In order to encourage both sparsity in the graph structure and similarity across the two brain hem-
ispheres, we introduce a specific fused-type penalty (Hoefling, 2010; Tibshirani & Taylor, 2011) 
especially designed to encourage the equality between the concentration values of the relevant sub-
graphs. Hence, we propose the following estimator of Θ, which we name the symmetric graphical 
lasso estimator, 

where �1, �2 ≥ 0 are regularization parameters that control the amount of shrinkage. Equation (5) is 
obtained by adding to the (minus) log-likelihood in Equation (3) a convex penalty function obtained as 
the sum of two �1-penalties, that is, the penalty �1||Θ||1 that, like the graphical lasso, for large values  
of �1 encourages sparsity in Θ̂

sgl
, and the penalty �2‖ΘLL−ΘRR‖1 that, for large values of �2 encourages 

the elements of Θ̂
sgl

LL
 to be identical to the corresponding elements of Θ̂

sgl

RR
 (Danaher et al., 2014; Tibshirani 

et al., 2005). Recall that, as described in Section 3, such equality constraints may, in turn, imply the equal-
ity of other quantities of interest, such as regression coefficients and partial correlation coefficients.

One of the appealing features of the lasso is that it typically performs model selection and estima-
tion simultaneously. From this perspective, it is worth remarking that the symmetric graphical lasso 
performs model selection and estimation within the class of RCON models. More precisely, it is suited 
to identify colour classes of the form {�ij, �i�j� } corresponding to �̂

sgl

ij
= �̂

sgl

i�j�
, which are of natural inter-

est in the analysis of brain networks.

5.2  |  An algorithm for the symmetric graphical lasso problem

In order to solve Equation (5) we use an ADMM algorithm. A comprehensive exposition of ADMM 
algorithm can be found in Boyd et  al. (2011) whereas we refer to Danaher et  al. (2014) and Tan 
et al. (2014), and references therein, for applications of ADMM to related problems. ADMM is an 
attractive algorithm for this problem because it allows us to split the optimization procedure into two 

�̂
(t)
=

h∑

j=− h

wjx
(t+ j).

(5)Θ̂
sgl

= arg minΘ{− log det(Θ) + tr(SΘ) + �1‖Θ‖1 + �2‖ΘLL −ΘRR‖1},
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nested, less involved, convex optimization problems. These can be both solved using suitable ADMM 
algorithms.

First, we note that the optimization problem in Equation (5) is equivalent to minimize with respect 
to Θ and Z the quantity 

where Θ and Z are restricted to belong to � + and subject to the linear constraint Z=Θ. We remark that 
ZLL and ZRR in Equation (6) are the relevant diagonal submatrices of Z. Hence, the scaled form of the 
augmented Lagrangian can be written as (Boyd et al., 2011, Section 3.1.1), 

where U is the scaled dual variable and the symbol ‖ ⋅‖F denotes the Frobenius norm, that is, the square 
root of the sum of the squared entries of its argument. The ADMM algorithm for the optimization of 
(7) uses the augmented Lagrangian parameter 𝜌1 > 0 as ‘step size’ and, when the algorithm is at con-
vergence, due to the constraint Z = Θ, the last two terms of Equation (7) cancel out and one obtains the 
solution to (5).

ADMM iterates three fundamental steps in order to minimize (7) (see Boyd et al., 2011, Equations 
(3.5) to (3.6)). More formally, we initialize Z1 and U1 equal to the zero matrix and for l = 1, 2, 3, … the 
updates for the quantities (Θ, Z, U) are obtained as (see also Boyd et al., 2011, Section 6.6):

1.	Θl+1: = arg min
Θ

(
− log det(Θ) + tr(SΘ) +

�1

2
‖‖Θ− Zl + Ul‖‖

2

F

)
;

2.	 Zl+1: = arg min
Z

�
�1‖Z‖1 + �2‖ZLL−ZRR‖1 +

�1

2

���Θ
l+1 − Z + Ul���

2

F

�
;

3.	Ul+1: = Ul +Θl+1 − Zl+1.

The implementation of step (3) is straightforward and in the following we describe steps (1) and 
(2) in detail.

Step (1) has an analytical solution, with computational complexity given by performing an ei-
gendecomposition of a p  ×  p matrix. More specifically, if QDQ⊤ is the eigendecomposition of 
�1(Zl − Ul) − S then the solution is given by Θl+1: = QD̃Q⊤ where D̃ is the diagonal matrix with ith 
diagonal entry (dii +

√
d2

ii
+ 4�1)∕(2�1) and dii is the ith diagonal entry of D. Note that the diagonal 

entries of D̃ are always positive because 𝜌1 > 0 and therefore Θl+1 ∈ � +, as required. Finally, we 
remark that this step of ADMM coincides with the corresponding step of ADMM for graphical lasso 
and the reader can see Boyd et al. (2011) Section 6.6) for further details.

We turn now to step (2) of the algorithm. For a matrix Q with rows and columns indexed by 
V = L ∪ R we let v(Q) be the vector defined as 

where vec(·) and vech(·) are the vectorization and half-vectorization operators respectively. Hence, we set 

(6)− log det(Θ) + tr(SΘ) + �1‖Z‖1 + �2‖ZLL−ZRR‖1,

(7)
L
�1

(Θ, Z, U)=−logdet(Θ)+ tr(SΘ)+�1‖Z‖1+�2‖ZLL−ZRR‖1+

+
�1

2
‖Θ−Z+U‖2

F
−
�1

2
‖U‖2

F
,

v(Q)⊤ =
[
vech(QLL)⊤ vech(QRR)⊤ vec(QLR)⊤

]
,

z = v(Z), bl = v(Θl) + v(Ul) and F =
[

I −I O

]
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where I is the identity matrix of dimension q(q+1)/2 and O is the q(q + 1)∕2 × q2 zero matrix. We can 
thus write the second step of the main ADMM algorithm in the form, 

where ‖ ⋅‖2 is the Euclidean norm, ��
1
= �1∕�1, ��2 = �2∕�1 and, to simplify the notation, we have omit-

ted the superscript from b. Equation (8) shows that the optimization problem in the second step of 
ADMM is a special variant of the classical fused lasso called the fused lasso signal approximator. 
This allows us to exploit known results for this class of problems. More specifically, Friedman et al. 
(2007) Lemma A.1) showed that if a solution of (8) for ��

1
= 0 and 𝜆′

2
> 0 is known, then the solution 

for 𝜆′
1
> 0 can be easily obtain in closed form through a soft-thresholding operation. Hence, we can 

focus on the solution of 

that is a generalized lasso problem (Tibshirani & Taylor, 2011), and an ADMM algorithm for its solution 
can be found in Boyd et al. (2011) Section 6.4.1). Concretely, the ADMM algorithm iterates until conver-
gence through the following steps:

1.	 zm+1: = (I + 𝜌2F⊤F)−1
{

b + 𝜌2F⊤(vm − tm)
}
;

2.	 vm+1: = �
�
�
2
∕�2

(Fzm+1 + tm);
3.	 tm+1: = tm + Fwm+1 − vm+1

In step (i), I is an identity matrix of appropriate dimension and 𝜌2 > 0 is the ‘step size’ for the inner 
ADMM. In step (ii), 𝒮

�
( ⋅ ) is the soft-thresholding operator (see Boyd et al., 2011, Section 4.4.3). The 

vectors v and t mimic the role of Z and U of the outer ADMM and can be initialized to the zero vector. 
If we denote by z[��

1
=0,��

2
] the optimal solution at convergence of (9), then we can apply Friedman et al. 

(2007) Lemma A.1) and adjust z[��
1
=0, ��

2
] element-wise to obtain the optimal solution of (8) for a given 

𝜆
′
1
> 0 as z[��

1
,��

2
] = �

�1∕�1
(z[��

1
=0,��

2
]). The update Zl+1 for step (2) of the outer ADMM algorithm is thus 

the symmetric matrix such that v(Zl+1) = z[��
1
,��

2
].

Finally, as stopping rule we use a tolerance check on the total relative change of the current esti-
mate of the solution. In particular, if ‖Θ

m −Θm − 1 ‖
‖Θm − 1 ‖

 is lower than the chosen tolerance, the algorithm is 
stopped and assumed to be at convergence.

6  |   SIMULATION STUDY

We carry out a simulation study which aims to assess the performance of symmetric graphical lasso in 
a framework that mimics the structure of the R-fMRI data in Section 2. For this reason, we apply our 
procedure to simulated datasets sampled from normally distributed random vectors YV of |V| = p = 70 
variables with V = L ∪ R, as in Section 3. We consider two scenarios, denoted by A and B, that differ 
in their edge and symmetry degrees, with scenario A being sparser than B. The experiment is de-
signed as follows. First, we randomly generate two undirected graphs, �A and �B, with edge degrees, 
computed as the ratio of the number of edges of the graph over the number of edges of the complete 
graph, p(p − 1)/2, equal to dA = 23.1% and dB = 31.6% respectively. Next, for each scenario, we 

(8)arg min
z

�
1

2
‖z − b‖2

2
+ �

�
1
‖z‖1 + �

�
2
‖Fz‖1

�
,

(9)arg min
z

�
1

2
‖z − b‖2

2
+ �

�
2
‖Fz‖1

�
,
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randomly generate four positive definite concentration matrices ΘA

true,i
 and ΘB

true,i
, for i = 1, … , 4 with 

zero pattern corresponding to the missing edges of �A and �B respectively. The concentration ma-
trices are constructed in order for a given proportion of randomly selected pairs of homologous con-
centrations across the two brain hemispheres to have the same value. More specifically, we focus on 
present edges, with nonzero concentration values, and the proportion of pairs of symmetric nonzero 
concentration is dA

sym
= 10.8% for scenario A and dB

sym
= 30.1% for scenario B. The eight generated 

concentration matrices characterize eight normal distributions with zero mean vector, and from each 
of these distributions we extract nine i.i.d. samples of size n = 400, so as to resemble the sample size 
of the data in Section 2.

In the penalized likelihood framework, a controversial question is how to choose the regularization 
parameter and several methods have been proposed in the literature. This issue is beyond the scope of 
this paper and, in order to avoid that the performance of symmetric graphical lasso is confounded by 
the choice of a selection method, we follow an ‘oracle’ procedure, described in the following. In each 
of the 72 generated datasets, we apply the graphical lasso and choose the value of �1 that produces a 
graph with an edge density equal to the density of the graph used to simulate the data. Next, condi-
tional on the selected value of �1, we apply the symmetric graphical lasso for 10 different logarithmi-
cally spaced values of �2.

For every selected model, we consider some well-established measures to assess the performance 
in recovering the graph structure. The same quantities are then adapted to assess the performance 
in recovering the symmetric structure. Specifically, we compute the edge positive-predicted value 
(ePPV), also called precision, as the ratio between the number of true edges (eTP) and the number of 
edges (#edges) in the selected graph, and the symmetry positive-predicted value (sPPV) as the ratio 
between the number of true symmetric nonzero concentrations (sTP) and the number of nonzero 
symmetric concentrations (#symm) in the estimated concentration matrix. Furthermore, we compute 
the edge true-positive rate (eTPR) as the ratio between eTP and the number of edges (eP) in the true 
graph and the symmetry true-positive rate (sTPR) as the ratio between sTP and the number sym-
metric nonzero concentrations (sP) in the true concentration matrix. Similarly, we compute the edge 
true-negative rate (eTNR) and the symmetry true-negative rate (sTNR). In this way, we consider the 
quantities 

which we use to assess how much the symmetric graphical lasso procedure recovers the graph structure, 
and the quantities 

used to assess the ability of the symmetric graphical lasso to identify symmetries. It is worth remarking 
that symmetric graphical lasso tends to encourage equality between both zero and nonzero concentrations 
but we evaluate its performance only with respect to nonzero concentrations whose identification is of 
greater interest in applied contexts.

Table 1 summarizes the behaviour of the symmetric graphical lasso for a dataset in the scenario 
A. More specifically, we report the performance measures for the model selected by the graphical 
lasso and each of the 10 models obtained from the 10 values of �2 in the application of the symmet-
ric graphical lasso. As shown in the first two lines of Table 1, the results for the graphical lasso and 

(10)ePPV =
eTP

#edges
, eTPR =

eTP

eP
and eTNR =

eTN

eN
,

(11)sPPV =
sTP

#symm
, sTPR =

sTP

sP
and sTNR =

sTN

sN
,
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the symmetric graphical lasso with the lowest value of �2 are virtually identical, which is expected 
given the equivalence between our proposed approach and graphical lasso when �2 = 0. Increasing 
values of �2 tend to increase the sparsity of the selected graph, which can be explained by the fact that 
symmetric graphical lasso encourages symmetries also for zero concentrations. As a consequence, 
increasing values of �2 tend to correspond to a moderate decrease in the values of ePPV and eTPR; on 
the other hand, eTNT tends to increase as �2 increases.

To choose the value of �2 we adopt the ‘oracle’ criterion that selects the model corresponding 
to the highest sum sTPR+sTNR, highlighted in bold in Table 1. We note that this corresponds to 
the sparsest graph, with 496 present edges. Focusing on the symmetric concentrations, we see, 
as expected, an increase in sTPR for increasing values of �2, with a steady decrease in terms of 
sTNR, with an appreciable value of 89.92 for the selected model. If we piece together both the 
considerations, we can see from Table 1 that the price in terms of eTPR and eTNR paid by using 
symmetric graphical lasso instead of the graphical lasso is worth the additional information we 
gain by recovering the symmetric structure of the two blocks of the concentration matrix, and the 
associated graph.

We apply this procedure to the 72 generated datasets thereby obtaining 72 models identified by 
graphical lasso and 72 models identified by symmetric graphical lasso. The result of these analyses is 
summarized in Table 2 and Figure 1. These show that, as far as the structure of the graph is concerned, 
the graphs obtained from symmetric graphical lasso have smaller values of eTPR and ePPV with 
respect to graphical lasso, and higher values of eTNR. However, the reduction in eTPR and ePPV is 
moderate in the sparser scenario A, about 10% for eTPR and 2.5% for ePPV, and, in fact, quite small in 
the denser scenario B, about 5% for eTPR and 1.5% for ePPV. Nonetheless, these moderate reductions 
in eTPR and ePPV are compensated by an increase in eTNR and, most importantly, by a satisfying 
performance in terms of recovery of symmetries. Interestingly, the symmetric graphical lasso seems 
to have a very similar behaviour in the two scenarios as far as sTPR and sTNR are concerned, but 
scenario B shows higher values of sPPV.

T A B L E  1   Performance measures in Equations (10)  and  (11) from the application of graphical lasso (gl) and 
symmetric graphical lasso (sgl) to one of the datasets in the simulated scenario A. All values, except #edges and 
#symm, are reported in percentages and the line in bold corresponds to the model for which sTPR+sTNR is maximal

Method

Graph structure Symmetric nonzero concentrations

ePPV eTPR eTNR #edges sPPV sTPR sTNR sTPR+sTNR #symm

gl 56.09 56.29 86.82 558 – – – – –

56.01 56.12 86.82 557 0.00 0.00 100.00 100.00 0

55.94 55.94 86.82 556 0.00 0.00 100.00 100.00 0

sgl (increasing 
values of �2)

56.39 55.58 87.14 548 0.00 0.00 99.65 99.65 2

57.89 55.40 87.95 532 25.00 1.67 98.77 100.44 8

58.98 54.32 88.70 512 41.67 8.33 97.37 105.70 20

60.16 54.86 89.13 507 42.86 20.00 95.26 115.26 39

56.45 50.36 88.38 496 37.31 41.67 89.82 131.49 83

53.51 48.02 87.52 499 28.87 46.67 82.28 128.95 129

52.98 48.02 87.25 504 28.00 46.67 81.23 127.90 135

52.98 48.02 87.25 504 28.00 46.67 81.23 127.90 135
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F I G U R E  1   Difference between a given performance measure (top panel: ePPV; middle panel: eTPR; bottom 
panel: eTNR) computed on the model selected by symmetric graphical lasso and the same measure computed on the 
model selected by graphical lasso, for each of the 8 × 9 datasets. Every boxplot summarizes the nine datasets of the 
corresponding environment
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7  |   ANALYSIS OF R-fMRI DATA

The symmetric graphical lasso is applied to the data described in Section 2. The analysis is focused on 
two subjects, indexed as subject 18 and subject 22, who show homogeneous characteristics in terms 
of age and handedness but different diagnosis status. According to the available explanatory variables, 
subject 18 is 46 years old, right-handed, and healthy, whereas subject 22 is 42 years old, right-handed 
as well, but had a current and recurring diagnosis of drug abuse and mental disorders at the time of 
the fMRI scan recording.

We first account for the temporal dependence, with the tools and methodologies discussed in 
Section 4.2. In particular, for each subject, we obtain a matrix of residuals of dimension n × p from 
a VAR(1) model, a first-order score-driven model, and a Henderson filter with h  =  6 (a 13-term 
weighted average). We then apply the symmetric graphical lasso to the residuals. As criteria for choos-
ing the optimal value of �1 and �2 we use the Bayesian information criterion (BIC) and the extended 
BIC (eBIC; Foygel & Drton, 2010), 

where l(Θ̂
mle

) and d denote the maximized log-likelihood function and the number of free parameters of 
the relevant model respectively. The eBIC depends on the parameter γ  ∈  [0; 1] that controls how much 
the criterion prefers simpler models. The limit case γ = 0 corresponds to the classical BIC. As suggested 
in Foygel and Drton (2010) we set γ = 0.5. For the computation of the maximum likelihood estimates 
within the family of RCON models, we use the gRc package for R (Højsgaard & Lauritzen, 2007). As a 
joint grid search over �1 and �2 could be computationally prohibitive (see also Danaher et al., 2014), we 
fix first �2 to a low value—close to zero—while performing a dense grid search over �1. After selecting 
the best value of 𝜆⋆

1
, a conditional sweep on a grid of 20 equally spaced values on a logarithmic scale for 

�2 can be performed to select the final pair of optimal values (𝜆⋆

1
, 𝜆⋆

2
).

The empirical results of graphical lasso (gl) and symmetric graphical lasso (sgl) fit on the re-
siduals estimates for the two subjects are reported in Table 3 (vector autoregressive model, VAR), 
Table 4 (score-driven model, DCS) and Table 5 (Henderson filter, H13), according to the different 

eBIC = −2l(Θ̂
mle

) + log(n)d + 4d�log(p),

T A B L E  3   Empirical results for graphical lasso (gl) symmetric graphical lasso (sgl) fit on residuals from a 
VAR(1) model on two subjects. The last three columns provide a description of the symmetric structure, that is the 
number of pairs of symmetric: (i) edges, (ii) off-diagonal nonzero concentrations and (iii) diagonal concentrations

Subject Criterion Method #edges Density

Pairs of symmetric

edges

nonzero concentrations

off-diagonal diagonal

18 BIC gl 876 36.27% 120 – –

sgl 910 37.68% 171 87 6

eBIC γ=0.5 gl 366 15.16% 48 – –

sgl 373 15.45% 92 89 31

22 BIC gl 879 36.40% 128 – –

sgl 891 36.89% 202 160 14

eBIC γ=0.5 gl 624 25.84% 91 – –

sgl 649 26.87% 158 149 27
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filtering techniques. For sake of comparison, we report the results obtained by using both eBIC and its 
limit value BIC. However, we focus on the models obtained from the minimization of eBIC that are 
more parsimonious than the corresponding models selected from BIC, in particular for the symmetric 
graphical lasso. A more direct visual representation of the results detailed in Tables 3–5 is summa-
rized in Figures 2 and 3, which provide a graphical representation of the brain symmetry structure. 
Specifically, the edges of the graphs encode symmetric nonzero off-diagonal concentrations whereas 
shaded vertices denote symmetric diagonal concentrations. While Figure 2 summarizes the results for 
the two subjects across the three filtering methods, Figure 3 reports the symmetries which turn out 
to be common to the three methods for subject 18 (left) and 22 (right). Moreover, in every Figure we 

T A B L E  4   Empirical results for graphical lasso (gl) symmetric graphical lasso (sgl) fit on residuals from a 
score-driven model on two subjects. The last three columns provide a description of the symmetric structure, that is 
the number of pairs of symmetric: (i) edges, (ii) off-diagonal nonzero concentrations and (iii) diagonal concentrations

Subject Criterion Method #edges Density

Pairs of symmetric

edges

nonzero concentrations

off-diagonal diagonal

18 BIC gl 815 33.75% 115 – –

sgl 826 34.20% 195 175 22

eBIC γ=0.5 gl 513 21.24% 72 – –

sgl 524 21.70% 123 120 27

22 BIC gl 894 37.02% 121 – –

sgl 885 36.65% 167 110 8

eBIC γ=0.5 gl 625 25.88% 91 – –

sgl 640 26.50% 149 134 14

T A B L E  5   Empirical results for graphical lasso (gl) symmetric graphical lasso (sgl) fit on residuals from a local 
polynomial regression with p = 3—Henderson filter weights—and h = 6 on two subjects. The last three columns 
provide a description of the symmetric structure, that is the number of pairs of symmetric: (i) edges, (ii) off-diagonal 
nonzero concentrations and (iii) diagonal concentrations

Subject Criterion Method #edges Density

Pairs of symmetric

edges

concentrations

off-diagonal diagonal

18 BIC gl 940 38.82% 133 – –

sgl 937 38.80% 188 135 15

eBIC γ=0.5 gl 285 11.80% 33 – –

sgl 282 11.68% 42 21 10

22 BIC gl 913 37.81% 119 – –

sgl 870 36.02% 173 123 10

eBIC γ=0.5 gl 644 26.67% 81 – –

sgl 645 26.71% 156 145 26
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omit non-symmetric edges from the visualization, in order to highlight the novelty aspect of the anal-
ysis and also to facilitate the reader with graphs that would otherwise be too densely plotted to be ap-
preciable; nevertheless, the overall edge density for each result is reported in the summary Tables 3–5.

The first evident result is that, regardless of the filtering method, subject 22 shows a denser and 
more symmetric graph than subject 18. Also, the three models selected by eBIC for subject 22 have 
both similar densities and similar amount of symmetric edges and nonzero concentrations; compare, 
for instance, the 649 edges of subject 22 and the 373 edges of subject 18 in Table 3, related to VAR 
estimation. On the other hand, filtering has an impact on subject 18, as it is evident that the three 
methods induce a different density (from 11.68% of H13 in Table 5, to 21.70% of DCS in Table 4) 
and a different amount of symmetries in the resulting graph (from the 42 pairs of symmetric edges of 
H13 to the 123 of DCS). These considerations are ever more pronounced in Figure 2, which shows 
how the graph associated with local polynomial regression is the one exhibiting the lowest number 
of symmetric concentrations, both diagonal (shaded nodes) and off-diagonal (black solid lines). The 
second lowest number of symmetric concentrations is observed for the graph identified from the 
residuals of a VAR(1) model, whereas the residuals from the score-driven model bring to a graph 
with the highest number of symmetric off-diagonal concentrations. This is in line with the idea that 
a robust detrending method leaves more information in the residuals; on the other hand, methods that 
tend to overfit the data, such as a high-degree local polynomial regression, may allocate most of the 
data dependence structure in the signal component, rather than in the noise. This can be quantitatively 

F I G U R E  2   Graphical representation of the models in Tables 3, 4 and 5 obtained from the application of 
symmetric graphical lasso with eBIC. Edges encode symmetric nonzero concentrations whereas shaded vertices 
represent symmetric diagonal concentrations. From left to right: VAR(1); score-driven model; local polynomial 
regression—Henderson filter with p = 3 and h = 6. From top to bottom: subject 18; subject 22



20  |        RANCIATI et al.

assessed by comparing the number of pairs of symmetrical concentrations, both off-diagonal and di-
agonal, reported as the last two columns of Tables 3–5.

Using different filtering techniques also allows one to extract the common information on the 
symmetric structure across the three filtering methods, by retaining the shared graph of the concentra-
tions for each subject, that is, the graph resulting from the intersection of the three graphs in Figure 2. 
After this marginalization, and in order to give a better insight, we juxtapose them in Figure 3. In this 
side-by-side comparison, subject 22 exhibits a higher number of off-diagonal concentrations, and it is 
worth noting both subject seems to share approximately the same number of core symmetric diagonal 
values.

F I G U R E  3   Common graph structure across the three different filter techniques obtained from the intersection of 
the graphs in Figure 2, for subject 18 (left of vertical dashed line) and subject 22 (right of vertical dashed line)
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In conclusion, we may envisage two main empirical findings emerging from the analysis. The first 
evidence is concerned with the fact that the subject with a diagnosis of disorder shows a more sym-
metric brain structure than the healthy one. This is in line with several studies that are in favour of an 
evidence of lack of asymmetry in schizophrenic patients, see Sun et al. (2015). Nevertheless, the liter-
ature is quite controversial on this theme, see the review paper by Stephane et al. (2001) Section 3.1.4) 
and our results just refer to a pair of subjects. Second, the impact of the detrending method appears to 
be stronger in a subject who presents a less symmetric brain structure while it seems to be irrelevant in 
the subject who shows a more defined symmetric pattern. In any case, the combination of different fil-
tering methods may shed light on the core symmetries that characterize the brain of different subjects.

8  |   DISCUSSION

The procedures introduced in this paper have been developed with a focus on the identification of 
brain networks from R-fMRI data. In this respect, we have first considered the problem of removing 
the temporal dependence from data and then we have designed our methods and algorithms to suit the 
natural partition of the brain into hemispheres. Nevertheless, symmetric graphical lasso identifies a 
model within the class of RCON models and, as such, it has a potentially wider range of applications. 
To the best of our knowledge, the symmetric graphical lasso proposed in this contribution is the first 
instance where the lasso procedure is used to perform model selection within the class of coloured 
graphical models. In this way, we are able to identify symmetries characterized by equality constraints 
in the entries of the concentration matrix. Methods not explicitly designed to identify symmetric 
nonzero concentrations, such as the graphical lasso, can still identify symmetries in the graph struc-
ture but only in terms of edges being present or absent. Tables 3–5 compare the graphical lasso and 
the symmetric graphical lasso in their ability to identify symmetric edges, and show that our method 
encourages structural symmetries without affecting the graph sparsity.

Our proposed approach has an associated computational complexity comparable with that of 
methods using penalties of similar type, such as a conventional fused or group lasso (Danaher et al., 
2014). The computational effort associated with using the ADMM algorithm to solve this class of 
convex quadratic programming optimizations is admittedly the eigendecomposition of a p × p matrix 
(Tibshirani et al., 2005). In the application considered in this manuscript, the dimensionality of the 
problem is bounded by the atlases used in resting state fMRI studies: usually, these atlases identify 
a number of ROIs close to p = 70, as in the data analysed in Section 5, which makes estimation 
times of our procedure not a concern. If indeed other applications are considered, such as cancer ge-
nomic where the number of variables is in the order of thousands, then exploring some potential pre-
screening procedures would be a very interesting avenue to pursue, maybe adapting those mentioned 
in Danaher et al. (2014) and Yang et al. (2015) to our symmetric penalty.

Future research directions involve the specification of a convex penalty function that allows a more 
flexible specification of colour classes, which could affect other sub-components of the main concen-
tration matrix, as well as consider different types of constraints.

SOFTWARE

The code implementing the ADMM algorithm described in this paper is available at the following 
GitHub repository: https://github.com/savra​nciat​i/sgl.

https://github.com/savranciati/sgl
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