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Abstract Statistical models associated with graphs, called graphical models,
have become a popular tool for representing network structures in many mod-
ern applications. Relevant features of the model are represented by vertices,
edges and other higher order structures. A fundamental structural component
of the network is represented by paths, which are a sequence of distinct ver-
tices joined by a sequence of edges. The collection of all the paths joining
two vertices provides a full description of the association structure between
the corresponding variables. In this context, it has been shown that certain
pairwise association measures can be decomposed into a sum of weights as-
sociated with each of the paths connecting the two variables. We consider a
pairwise measure called an inflated correlation coefficient and investigate the
properties of the corresponding path weights. We show that every inflated
correlation weight can be factorized into terms, each of which is associated
either to a vertex or to an edge of the path. This factorization allows one to
gain insight into the role played by a path in the network by highlighting the
contribution to the weight of each of the elementary units forming the path.
This is of theoretical interest because, by establishing a similarity between the
weights and the association measure they decompose, it provides a justifica-
tion for the use of these weights. Furthermore we show how this factorization
can be exploited in the computation of centrality measures and describe their
use with an application to the analysis of a dietary pattern.

Keywords Betweenness centrality; Inflation factor; Partial correlation; Path
weight; Undirected path.

1 Introduction

Graphical models provide a compact and efficient representation of the asso-
ciation structure of a multivariate distribution by means of a graph and have
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Fig. 1 Concentration graph for the covariance matrix of Table 1

become a popular tool for representing network structures in many applied
contexts; see Maathuis et al. (2019) for a recent review of the state of art
of graphical models. If XV is a vector of continuous random variables then
an undirected network, called a concentration graph of XV , is constructed
in such a way that every vertex is associated with a variable and a missing
edge between two vertices implies that the corresponding partial correlation is
equal to zero (Lauritzen, 1996). In this way, the association structure of XV is
encoded by the paths connecting the variables. Paths are the main tools used
in the definition of separation criteria and therefore of the Markov properties
characterizing these statistical models. More concretely, an edge joining two
vertices can be regarded as a single-edge path and encodes a direct associa-
tion between the corresponding variables, whereas a path made up of two or
more edges represents an indirect association mediated by the intermediate
variables in the path. It follows that the collection of all the paths joining a
pair of vertices provides a full description of the association structure between
the corresponding variables.

Example 1 The upper triangle of Table 1 contains the entries of the variance
and covariance matrix of a random vector XV with V = {x, 1, 2, 3, 4, 5, y}.
From the covariance matrix one can compute the partial correlations for every
pair of variables given the remaining variables (lower triangle), and Figure 1
shows a concentration graph of XV . One can see, for instance, that the analysis
of the association structure of Xx and Xy can be carried out by investigating
the role played by the six different paths joining x and y in the graph; these
are detailed in Table 2.

In models for directed acyclic graphs the well-established theory of path
analysis (Wright, 1921) provides a method that allows one to quantify the rel-
evance of a directed path. On the other hand, in models for undirected graphs
the problem of quantifying the strength of the association encoded by paths
has been investigated only more recently. Jones and West (2005) considered
the measure of association between two variables provided by the covariance
and showed that this quantity can be decomposed in terms of additive weights
associated with the paths joining the corresponding vertices. Roverato and
Castelo (2020) provided an analysis of the properties of the covariance path
weights introduced by Jones and West (2005) and showed that inflation factors
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Table 1 Instance of covariance matrix whose inverse is adapted to the graph of Figure 1.
In this matrix the variances are all equal to 9 (main diagonal) and the covariances (upper
triangle) are such that the values associated with the edges of the graph are all equal to 4.5.
The lower triangle (in bold) gives the corresponding partial correlations.

x 1 2 3 4 5 y
x 9.00 4.50 4.50 4.50 3.29 2.09 2.41
1 0.31 9.00 4.50 2.60 2.60 1.79 2.30
2 0.22 0.29 9.00 3.29 4.50 3.29 4.50
3 0.35 0.00 0.00 9.00 4.50 2.41 2.09
4 0.00 0.00 0.26 0.34 9.00 4.50 3.29
5 0.00 0.00 0.00 0.00 0.34 9.00 4.50
y 0.00 0.00 0.33 0.00 0.00 0.37 9.00

play a key role in the interpretation of these quantities; see also Roverato and
Castelo (2017, 2018); Peeters et al. (2020).

The comparison of paths with different endpoint requires the use of nor-
malized measures of association and, to this aim, Roverato and Castelo (2020)
considered the weights obtained for the decomposition of correlation coeffi-
cients. Furthermore, they introduced a novel normalized measure of linear
association, named the inflated correlation coefficient, and showed that the
weights obtained from the decomposition of this quantity satisfy useful proper-
ties that, as far as the strength of paths is of concern, make them an appealing
alternative to the classical correlation coefficients.

Here, we focus on the weights obtained from the decomposition of inflated
correlations. A path weight quantifies the relevance of the corresponding path.
A path can be seen as an ordered sequence of vertices and edges, and we
show that every inflated correlation weight can be factorized into terms, each
of which is associated either with a vertex or to an edge of the path. More
specifically, every vertex is associated with an inflation factor quantifying the
contribution of the variable to the path. Furthermore, every edge is associated
with a partial correlation quantifying the contribution to the path of the cor-
responding pairwise association. This factorization allows one to gain insight
into the role played by a path in the network by highlighting the contribu-
tion to the weight of each of the building blocks forming the path. This is of
special interest in the comparison of paths. Moreover, it provides a theoret-
ical justification for the use of these weights because it shows that inflated
correlations can be decomposed into the sum of weights which can themselves
be interpreted as inflated (partial) correlations, thereby conferring consistency
between the weights and the association measure they decompose. We then
show how this factorization can be used to construct betweenness centrality
measures specifically designed to suit the graphical model framework. Finally,
an application in the context of dietary pattern analysis is provided.

This paper is organized as follows. Background on inflation factors, inflated
correlation matrices, concentration graph models and path weighs is given in
Section 2. In Section 3 we establish a connection between inflation factors and
the determinant of inflated correlation matrices, whereas Section 4 deals with
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inflated correlation weights and describes their decompostion. The between-
ness centrality measures based on path weights and their decomposition are
introduced in Section 5, where an application to the analysis of the eating be-
haviour of a group of subject is also given. Finally, Section 6 contains a brief
discussion.

2 Background and notation

2.1 Inflation factors and the inflated correlation matrix

Let X = XV be a random vector indexed by a finite set V = {u, v, . . . , z}
with covariance matrix Σ = {σuv}u,v∈V . We denote by K = {κuv}u,v∈V
the concentration matrix of XV and recall that K = Σ−1. For two subsets
A,B ⊆ V , such that A ∩ B = ∅, we consider the subvectors XA and XB

of XV and denote by XA | XB the residual vector deriving from the linear
least square predictor of XA on XB (see Whittaker, 1990, p. 134). It follows
that the covariance matrices of XA and XA | XB are ΣAA and ΣAA·B =
ΣAA −ΣABΣ−1

BBΣBA, respectively, where we use the convention that Σ−1
AA =

(ΣAA)−1 and, similarly, Σ−1
AA·B = (ΣAA·B)−1. We denote by σuv·B , for u, v ∈

A, the entries of ΣAA·B and recall that, in the Gaussian case, ΣAA·B coincides
with the covariance matrix of the conditional distribution of XA given XB .
We write Ā to denote the complement of A relative to V , that is Ā = V \ A
and remark that the concentration matrix of XA | XĀ is the submatrix of K
with entries indexed by A because it follows from the rule for the inversion of
a partitioned matrix that Σ−1

AA·Ā = KAA.
In linear regression diagnostics, the effect of multicollinearity may be quan-

tified by means of the variance inflation factor. The inflation factor of Xv on
XV \{v} is defined as IFv = 1/(1 − ρ2

(v)(V \{v})) where ρ(v)(V \{v}) is the multi-

ple correlation of Xv on XV \{v}. IFv takes values in the interval [1,+∞); it
is equal to one if and only if Xv and XV \{v} are uncorrelated and its value
increases as ρ(v)(V \{v}) increases (see Belsley et al., 2005; Chatterjee and Hadi,
2012).

Fox and Monette (1992) considered the case where one is concerned with
sets of regressors rather than with individual regressors and introduced a gen-
eralized version of the variance inflation factor; specifically, for a pair of subsets
A,B ⊆ V , with A ∩B = ∅ this is given by,

IFBA =
|ΣAA||ΣBB |
|ΣA∪BA∪B |

, (1)

so that IFBA = IFv when A = {v} and B = V \{v}. We will refer to IFBA as the
inflation factor of A on B and in order to simplify the notation we will write
IFA when B = Ā. Throughout this paper, the covariance matrices we consider
are assumed to be positive definite and, furthermore, we use the convention
that the determinant of a submatrix whose rows and columns are indexed by
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the empty set is equal to one. In this way, the inflation factor in (1) is always
well-defined with IFBA = 1 whenever either A = ∅ or B = ∅.

Fox and Monette (1992) also suggested a generalization (1) to the case
where XV is partitioned into k sets, A1, . . . , Ak. In the special case where
k = p so that every set contains a single variable, such inflation factor be-
comes a global measure of association and it is equal to 1/|Ω|, where Ω =

diag(Σ)−
1
2Σ diag(Σ)−

1
2 is the correlation matrix of XV , with entries ρuv, for

u, v ∈ V . This result is consistent with the usual interpretation of the deter-
minant of Ω as common global measure of collinearity, justified by noting that
|Ω| = 1 for mutually uncorrelated variables and |Ω| = 0 for perfectly collinear
variables.

Roverato and Castelo (2020) introduced the matrix

ΩV = diag(K)
1
2Σ diag(K)

1
2 , (2)

and named ΩV the inflated correlation matrix because its entries are given by
%Vvv = IFv for every v ∈ V and by %Vuv = ρuv

√
IFu IFv for every u, v ∈ V with

v 6= u. Note that for |V | = 2 the inflated correlation %Vuv becomes %
{u,v}
uv =

ρuv/(1− ρ2
uv). Furthermore, they showed that the determinant of ΩV can be

computed as

|ΩV | = |Σ|∏
v∈V σvv·V \{v}

and that this determinant provides an alternative global measures of linear
association which, like 1/|Ω|, takes values in the interval [1,+∞) and is equal
to one if and only if Σ is diagonal.

The quantities defined in this section can also be computed with respect
to the distribution of XA | XB . More specifically, we will denoted by ΩVAA·B =
{%Vuv·B}u,v∈A the inflated correlation matrix of XA | XB and we remark that if
A∪B = V then, similarly to the covariance matrix ΣAA·Ā, the matrix ΩVAA·B
can be computed as ΩVAA·B = ΩVAA −ΩVAB(ΩVBB)−1ΩVBA.

2.2 Concentration graph models

An undirected graph with vertex set V is a pair G = (V, E) where E is a set of
edges, which are unordered pairs of vertices; formally E ⊆ V × V . The graphs
we consider have no self-loops, that is {v, v} 6∈ E for any v ∈ V . A path of
length k ≥ 2 between x and y in G is a sequence π = 〈x = v1, . . . , vk = y〉
of distinct vertices such that {vi, vi+1} ∈ E for every i = 1, . . . , k − 1. We
denote by V (π) ⊆ V and E(π) ⊆ E the set of vertices and edges of the path π,
respectively. We write πxy when we want to make more explicit which are the
endpoints of the path and, furthermore, when clear from the context we will
set P ≡ V (π) thereby improving the readability of sub- and super-scripts. For
a pair of vertices x, y ∈ A we denote by ΠV

xy ≡ Πxy the collection of all paths
between x and y in G.
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If K is the concentration matrix of XV then for every u, v ∈ V it holds
that

σvv·V \{v} =
1

κvv
and ρuv|V \{u,v} =

−κuv√
κuuκvv

where ρuv|V \{u,v} is the partial correlation coefficient of Xu and Xv given
XV \{u,v}; see Whittaker (1990, section 5.7). It follows that ρuv|V \{u,v} = 0 if
and only if κuv = 0 and we say that K is adapted to a graph G = (V, E) if for
every κuv 6= 0, with u 6= v, it holds that {u, v} ∈ E and, accordingly, we call G
a concentration graph of XV .

The concentration graph model (Cox and Wermuth, 1996) with graph G =
(V, E) is the family of multivariate normal distributions whose concentration
matrix is adapted to G. The latter model has also been called a covariance
selection model (Dempster, 1972) and a graphical Gaussian model (Whittaker,
1990); we refer the reader to Lauritzen (1996) for details and discussion.

2.3 Decomposition of association measures over G

In the analysis of concentration graph models, Jones and West (2005) showed
that the covariance between two variables can be computed as the sum of
weights associated with the paths joining the two variables. More specifically,
if the concentration matrix K of XV is adapted to the graph G = (V, E) then
for every x, y ∈ V it holds that

σxy =
∑

π∈Πxy

ω(π,Σ) (3)

where

ω(π,Σ) = (−1)|P |+1 |KP̄ P̄ |
|K|

∏
{u,v}∈E(π)

κuv. (4)

The quantity ω(π,Σ) in (4) represents the contribution of the path π to the
covariance σxy and for this reason we call it the covariance weight of π relative
to XV . More generally, we will refer to (3) with the name of the covariance
decomposition over G.

An issue concerning the covariance decomposition in (3) is the interpreta-
tion of the values taken by the weights of a path. From this perspective, Rover-
ato and Castelo (2020) showed that every covariance weight can be factorized
as ω(π,Σ) = ω(π,ΣPP ·P̄ )×IFP , with the two factors which provide two clearly
distinct pieces of information. More specifically, the first term , ω(π,ΣPP ·P̄ ), is
the covariance weight computed on the distribution of XP | XP̄ and captures
the strength of the path, after adjusting for all the variables outside the path,
while the inflation factor IFP captures the connectivity of the vertices of the
path with the rest of the multivariate system.
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Table 2 All the paths between x and y in the graph of Figure 1 with the corresponding
weights, proportion of covariance due to the weight, partial weight and inflation factor,
where Pi = V (πi).

i πi ω(πi, Σ) perc. ω(πi, ΣPiPi·P̄i
) IFPi

1 〈x, 1, 2, y〉 0.487 20.19 % 0.249 1.956
2 〈x, 1, 2, 4, 5, y〉 0.062 2.58 % 0.039 1.577
3 〈x, 2, y〉 1.200 49.75 % 0.462 2.598
4 〈x, 2, 4, 5, y〉 0.153 6.35 % 0.071 2.169
5 〈x, 3, 4, 2, y〉 0.215 8.93 % 0.095 2.272
6 〈x, 3, 4, 5, y〉 0.294 12.20 % 0.144 2.049

Example 2 Table 1 gives the entries of a covariance matrix, Σ, whose inverse
K is adapted to the graph G of Figure 1. There are |Πxy| = 6 paths between
x and y in G and these are given in Table 2, together with the corresponding
weights. The covariance of Xx and Xy is equal to σxy = 2.411, and it can be

readily checked that
∑
π∈Πxy

ω(π,Σ) =
∑6
i=1 ω(πi, Σ) = σxy. Because the six

weights have the same sign (they are actually all positive) it makes sense to
include in Table 2 a column with the relative contribution of every path to the
covariance. This shows, for example, that almost 50% of the value of σxy is
due to path π3. The decomposition of covariance weights into partial weighs
and inflation factor is given in the last two columns of Table 2. One can see
that the relevance of path π3 with respect to the other paths is mainly due to
its partial weight because its inflation factor is only slightly larger than those
of the other paths.

It can be shown that the value of a covariance weight depends on the scale
of the variables which are endpoint of the path. Hence, in order to compare
paths with different endpoints it is necessary to deal with normalized quan-
tities. Roverato and Castelo (2020) noticed that the decomposition in (3) is
not restricted to covariance matrices but it can be straightforwardly extended
to any positive definite matrix Γ = {γuv}u,v∈V obtained as Γ = ∆Σ∆ where
∆ = {δuv}u,v∈V is a diagonal matrix with nonzero diagonal entries. More
specifically, both Ω and ΩV are specific instances of this general setting with
∆ = diag(Σ)−

1
2 and ∆ = diag(K)

1
2 , respectively. Indeed, both correlations

and inflated correlations are normalized measures of association and for this
reason the corresponding weights are of interest. More specifically, Roverato
and Castelo (2020) provided the following decomposition of inflated correla-
tions,

%Vxy =
∑

π∈Πxy

ω(π,ΩV ) (5)

where
ω(π,ΩV ) = |ΩVPP |

∏
{u.v}∈E(π)

ρuv|V \{u,v}; (6)

we refer to Roverato and Castelo (2020) for details on the properties of in-
flated correlation weights. Here we remark that, as well as the weight in (4)
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also inflated correlation weights can be factorized into a partial weight and an
inflation factor, ω(π,ΩV ) = ω(π,ΩV

PP ·P̄ )× IFP and, furthermore, all the fac-
tors in (6) are feasible of a clear interpretation because it is the product of the
partial correlations corresponding to the edges of the path and of |ΩVPP | ≥ 1
which “inflates” the partial correlations.

3 On the relationship between inflation factors and inflated
correlation matrices

In the theory of path weights a key role is played by both inflation factors
and inflated correlation matrices. The inflation factor IFBA provides a well-
established way to quantify the linear association between two random vectors
XA and XB . On the other hand, the inflated correlation matrix ΩV was firstly
introduced by Roverato and Castelo (2020) who showed that the determinant
of this matrix can be regarded as multivariate generalization of the inflation
factor, and therefore as a global measure of linear association of XV . As well
as the inflation factor, also |ΩV | takes values in the interval [1; +∞) where the
value 1 represents absence of linear association, and in this section we formally
establish a connection between these two quantities. The stated relationship
between inflation factors and inflated correlation matrices will be exploited
in the next section to the computation and interpretation of path weights.
However, it is also of theoretical interest because it provides a clear way to
interpret the value of |ΩV |, thereby allowing us to gain insight into the type
of information conveyed by this quantity.

We first need to prove the following lemma.

Lemma 1 Let XV be a random vector indexed by a finite set V and let ΩV

be its inflated correlation matrix. If A,B ⊆ V is a pair of subsets of V with
A 6= ∅, then for every v ∈ A the following factorizations hold true,

(i) IFBA = IFBv|A′ × IFBA′ ;

(ii) |ΩVAA| = |ΩVA′A′·{v}| × IFv;

(iii) |ΩVAA·B | = |ΩVA′A′·B∪{v}| × IFv|B.

where A′ = A \ {v}. Note that in the case where A = {v} and B = V \ {v} the
identity (iii) becomes |ΩV{v}{v}·V \{v}| = ΩV{v}{v}·V \{v} = 1.

Proof In the case where A = {v}, so that A′ = ∅, the results (i) and (ii) are
trivially true because the identity (i) becomes IFBA = IFBv|∅ whereas the identity

(ii) is |ΩVAA| = ΩV{v}{v} = IFv. Furthermore, in (iii) |ΩV
AA·Ā| = ΩV{v}{v}·Ā =

σvv·Ā × κvv = σvv·Ā
σvv·Ā

= 1.

The identity (i) can be shown by using the alternative formulation of the
inflation factor given in Roverato and Castelo (2020, eqn. (4)) and then ap-
plying the Schur’s determinant identity formula as follows,

IFBA =
|ΣAA|
|ΣAA·B |

=
σvv·A′

σvv·A′∪B
× |ΣA′A′ |
|ΣA′A′·B |

= IFBv|A′ × IFBA′ ; (7)
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notice that (7) is still valid if either A′ or B are equal to the empty set because
if A′ = ∅ then, by convention, |ΣA′A′ | = |ΣA′A′·B | = IFBA′ and, similarly, if
B = ∅ then IFBv|A′ = IFBA′ = 1.

In order to show (iii) we first apply the Schur’s determinant identity for-
mula to |ΩVAA·B | as follows,

|ΩVAA·B | = |ΩVA′A′·B∪{v}| × |Ω
V
{v}{v}·B |

with

|ΩV{v}{v}·B | = ΩV{v}{v}·B = κvv × σvv·B =
σvv·B

σvv·V \{v}
= IFv|B . (8)

where kvv is the relevant entry of the concentration matrix K of XV . We also
notice that in the case where A = {v} and B = Ā = V \ {v} then (8) becomes

|ΩV{v}{v}·V \{v}| = ΩV{v}{v}·V \{v} = 1.

Finally, (ii) is a special case of (iii) obtained by setting B = ∅.

It is worth remarking that, in order to apply Lemma 1 in the case where
either A′ or B are empty, one has to recall that in this paper we use the
convention that the determinant of matrices indexed by the empty set are
equal to one and this also implies, for instance, that IFB∅ = IF∅v = 1.

For a nonempty set A ⊆ V consider a numbering of the elements of
A = {v1, . . . , v|A|}. Then the predecessors of a vertex vi ∈ A, denoted by
pr(vi), are those vertices that have lower number than vi, formally pr(vi) =
{v1, . . . , vi−1}; hence, pr(v1) = ∅.

Theorem 2 Let XV be a random vector indexed by a finite set V with |V | = p,
and let ΩV be its inflated correlation matrix. Then for any nonempty subset
A ⊆ V and any numbering of the elements of A = {v1, . . . , v|A|} it holds that,

|ΩVAA| =
|A|∏
i=1

IFvi|pr(vi) . (9)

Furthermore, when A = V the last term of the factorization (11) is equal to
one, that is IFvp|pr(vp) = 1.

Proof If |A| = 1 then (9) is equivalent to point (ii) of Lemma 1. Hence we as-
sume |A| = q with q ≥ 2 and consider an arbitrary numbering A = {v1, . . . , vq}
of the elements of A. Hence, we can first apply the factorization (ii) of Lemma 1
to obtain |ΩVAA| = |ΩVA′A′·{v1}| × IFv1

, where A′ = A \ {v1} and then we can

apply (iii) iteratively to v2, . . . , vq−1 to obtain the factorization in (9).

This theorem deals with an arbitrary submatrix of ΩV and shows that
its determinant can be written as the product of inflation factors. On the
right side of (9) the elements of A are taken one at the time and the term
relative to vi, for i = 1, . . . , |A|, captures the additional contribution of Xvi
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to |ΩVAA| with respect to the previous variables considered. Concretely, this is
given by IFvi|pr(vi), the inflation factor of Xvi computed on the distribution
of XV \pr(vi) | Xpr(i), that is the inflation factor of Xvi on all the remaining
variables linearly adjusted for Xpr(vi). It is worth noting that the contribution
of the last variable in the numbering is IFv|A||pr(v|A|), that is the inflation
factor of Xv|A| on XĀ adjusted for XA\{v|A|}, and in the case where A = V

this is equal to 1 and therefore uninfluential. In turn, this implies that |ΩV | =
|ΩVV \{v}| for every v ∈ V . It is also useful to compare (9) with the following
factorization of IFA.

Theorem 3 Let XV be a random vector indexed by a finite set V . Then for
any nonempty subset A ⊆ V and any numbering of the elements of A =
{v1, . . . , v|A|} it holds that,

IFA =

|A|∏
i=1

IFĀvi|pr(vi) . (10)

Proof The result follows from the iterative application of the factorization (i)
of Lemma 1.

In a similar fashion to (9), each term of the factorization (10) captures the
additional contribution of Xvi to IFA. In order to understand the different
type of information provided by |ΩVAA| with respect to IFA it is useful to
compare every term on the right hand side of (9) with the corresponding term

in (10). In this way we see that both IFĀvi|pr(vi) and IFvi|pr(vi) are computed on
the distribution of XV \pr(vi) | Xpr(i), however the former inflation factor only
involves the linear association between Xvi and the variables not in A, XĀ,
whereas the latter inflation factor involves the linear association between Xvi

and both the variables not in A and the remaining variables in A, that is both
XĀ and XA\pr(vi)∪{vi}. The following result gives an additional relationship
between IFA and |ΩVAA|.
Corollary 4 Let XV be a random vector indexed by a finite set V and let ΩV

be its inflated correlation matrix. If A,B ⊆ V is a pair of subsets of V with
A 6= ∅, then for any numbering of the elements of A = {v1, . . . , v|A|} it holds
that,

|ΩVAA·B | =
|A|∏
i=1

IFvi|B∪pr(vi) . (11)

Furthermore, when A∪B = V so B = Ā the last term of the factorization (11)
is equal to one, that is IFv|A||Ā∪pr(v|A|)

= IFv|A||V \{v} = 1 and, furthermore it
holds that

|ΩVAA| = IFA×|ΩVAA·Ā|. (12)

Proof The equality (11) follows from the iterative application of the fac-
torization in (iii) of Lemma 1. The equality (12) follows by noticing that

IFvi|pr(vi) / IFvi|Ā∪pr(vi) = IFĀvi|pr(vi), for every i = 1 . . . , |A|, so that it follows

from (9) and (11) that |ΩVAA|/|ΩVAA·Ā| = IFA in (10)
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Equation (12) show that |ΩVAA| can be computed as the product of two
quantities, |ΩV

AA·Ā| and IFA. The former, |ΩV
AA·Ā|, is a measure of global as-

sociation of variables in XA linearly adjusted for XĀ whereas the former, IFA,
measures the strength of the linear association between XA and XĀ. Recall
that both |ΩV

AA·Ā| ≥ 1 and IFA ≥ 1 and therefore |ΩVAA| = 1 if and only if
ΣAA·Ā is diagonal and ΣAĀ = 0.

4 Decomposition of inflated correlation weights

In this section we consider the inflated correlation weights in (6) and exploit
the results of the previous section to provide an alternative formulation of
these quantities that identifies the role played by every vertex and edge of the
path.

Assume that the concentration matrix K of the random vector XV is
adapted to the undirected graph G = (V, E) and let let π = 〈v1, . . . , vk〉 be
a path between v1 and vk in G. The vertices P = V (π) of π are naturally
ordered along the path and, more precisely, because the paths we consider are
undirected, every path identifies two different orderings of its vertices each
starting from one of the two endpoints of the path. We will refer to these
orderings as the two natural numberings of the vertices of the path.

Proposition 5 Let K be the concentration matrix of XV . If K is adapted to
the graph G = (V, E) then for every path π = 〈v1, . . . , vk〉 between v1 and vk in
G it holds that

ω(π,ΩV ) =

|V (π)|∏
i=1

IFvi| pr(vi)

∏
{u,v}∈E(π)

ρuv|V \{u,v}. (13)

Proof The result follows from the application of Theorem 2 to the definition
of ω(π,ΩV ) in (6).

We illustrate the application of Proposition 5 with an example.

Example 3 The covariance matrix given in the Example 1 can be inverted
to obtain a concentration matrix that is adapted to the graph depicted in
Figure 1. The path πxy = 〈x, 1, 2, y〉 has inflated correlation weight equal to
ω(πxy, Ω

V ) = 0.09 and if we apply Proposition 5 with respect to the natural
vertex numbering starting from the endpoint x we can associate to every vertex
of the path an inflation factor and to every edge a partial correlation, as follows,
where we write ρuv|rest to denote the partial correlation between Xu and Xv

given all the remaining variables XV \{u,v}.

x−−−−−−−−−−−−−−− 1−−−−−−−−−−−−−−− 2−−−−−−−−−−−−−−− y

IFx ρx1|rest IF1|x ρ12|rest IF2|x1 ρ2y|rest IFy|x12

1.74 0.31 1.13 0.29 1.33 0.33 1.18
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The factorization of ω(π,ΩV ) in (13) can be carried out with respect to
any of the two natural numberings of the vertices of the path.

Example 3 (Continued) An alternative decomposition of the weight ω(πxy, Ω
V )

for πxy = 〈x, 1, 2, y〉 can be obtained from the natural ordering of the vertices
of the path starting from the endpoint y, as follows.

x−−−−−−−−−−−−−−− 1−−−−−−−−−−−−−−− 2−−−−−−−−−−−−−−− y

IFx|12y ρx1|rest IF1|2y ρ12|rest IF2|y ρ2y|rest IFy

1.16 0.31 1.12 0.29 1.49 0.33 1.58

The possible choice of different vertex numbering may be an advantage. For
instance, as shown below, the comparison of the two paths πxy and πxz in
(16) becomes straightforward if one considers for both weights the natural
numbering starting from the endpoint x of the two paths. On the other hand,
the paths we consider are undirected and it is desirable to have a decomposition
of path weights that is symmetric with respect to the two endpoints of the path.
To this aim, for a path πxy we consider the two natural ordering of its vertices
and denote by prx(v) and pry(v) the predecessor of v ∈ V with respect to
numbering starting from x and y respectively. Hence, we introduce an inflation
factor computed as the geometric mean of the corresponding inflation factors
in the two natural numbering of the vertices.

IF〈v,πxy〉 =
(

IFv| prx(v)× IFv| pry(v)

) 1
2

(14)

and we will simply write IF〈v〉 when it is clear from the context which path
we are referring to. We can now state the main result of this section.

Theorem 6 Let K be the concentration matrix of XV . If K is adapted to the
graph G = (V, E) then for every path π = 〈v1, . . . , vk〉 between v1 and vk in G
it holds that

ω(π,ΩV ) =
∏

v∈V (π)

IF〈v〉
∏

{u,v}∈E(π)

ρuv|V \{u,v}. (15)

Proof The result follows because∏
v∈V (πxy)

IF〈v,πxy〉 =
∏

v∈V (πxy)

(
IFv| prx(v)× IFv| pry(v)

) 1
2

= (
∏

v∈V (πxy)

IFv| prx(v))
1
2 (

∏
v∈V (πxy)

IFv| pry(v))
1
2

= |ΩVPP |.

The decomposition of ω(π,ΩV ) in (15) is uniquely associated to a path and
can effectively capture the role played by the building blocks of the path, as
shown in the example below.
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Example 3 (Continued) The decomposition (15) of ω(πxy, Ω
V ) is as follows.

x−−−−−−−−−−−−−−− 1−−−−−−−−−−−−−−− 2−−−−−−−−−−−−−−− y

IF〈x〉 ρx1|rest IF〈1〉 ρ12|rest IF〈2〉 ρ2y|rest IF〈y〉

1.42 0.31 1.12 0.29 1.41 0.33 1.37

Unlike each of the two decompositions obtained from the two natural number-
ing of vertices, this decomposition shows that the variables Xx, X2 and Xy

play a similar role in the path. On the other and, the smallest inflation factor
is associated with the vertex 1 and, interestingly, this is the only vertex in the
path that is not linked with any vertex outside the path.

In graphical modelling the distinction between directed and undirected
edges is important. A directed edge indicates the direction of dependence of
a response on an explanatory variable. In a directed path every intermediate
vertex is at the same time a response for the previous variables and explanatory
for the following variables. Thus, for any directed graph there exists a natural
ordering of variables that can be exploited to obtain a recursive factorization
of the probability distribution. In turn, the terms of such factorization can be
used to assess the contribution of each of the elementary units forming the
path. On the other hand, undirected edges represent symmetric relationships
whose interpretation is less straightforward, possibly resulting from a feedback
relationship (Lauritzen and Richardson, 2002). Thus, when investigating the
interpretation of a path weight, the two endpoints of the undirected path
need to be put on an equal footing. The decomposition given Theorem 6
satisfies this requirement because it is obtained from the geometric mean of
the two alternative decompositions of the same weight with respect to the two
natural orderings of the vertices. From this viewpoint, Proposition 5 could
have been stated as a lemma preliminary to Theorem 6. However, we deem
that Proposition 5 has its own interest because it can be readily applied to the
comparison of paths. Consider, for instance, the case where we have a path
πxy = 〈x, . . . , y〉 and πxz = 〈πxy, z〉 = 〈x, . . . , y, z〉 so that πxz is exactly one
edge longer than πxy.

πxz : x−−−−−− · · · −−−−−− y −−−−−− z (16)

πxy : x−−−−−− · · · −−−−−− y

Then we can compute the ratio of the two relevant weights thereby obtaining,

ω(πxz, Ω
V )

ω(πxy, ΩV )
= ρyz|rest × IFz|V (πxy) . (17)
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The path πxz has one edge and one vertex more than πxy, and the contribution
of these additional components can be quantified as the product of the partial
correlation associated with the additional edge and the inflated correlation
associated with the additional vertex. Although the role played by the partial
correlation in (17) is somehow intuitive because in concentration graph models
partial correlations are naturally associated with edges, the role played by
the inflation factor is more subtle. The relevance of a path within a network
also depends on how its vertices interact with the rest of the network. The
inflation factor in (17) quantifies the contribution of the additional variable
Xz to the interaction with the rest of the network. This quantity is computed
after the variables are adjusted with respect to XV (πxy), so as that it gives the
“additional” contribution of z with respect to the vertices already present in
V (πxy). In fact, if the additional vertex z is connected with vertices forming
the path but with no other vertex outside V (πxy), then IFz|V (πxy) = 1.

We close this section by remarking that the factorization in (15) is also
of theoretical interest. Equation (5) shows the decomposition of the inflated

correlation %Vxy over the paths of G where %Vxy = ρxy(IFx× IFy)
1
2 . It is theo-

retically relevant that an association measure might be decomposed into path
weights with have the same type of interpretation. An inflated correlation co-
efficients is obtained from the product of a correlation and the geometric mean
of two inflation factor. The right hand side of (15) is consistent with this type
of interpretation because its elements are (partial) correlations and quantities
obtained as geometric mean of two inflation factors.

5 Application to the construction of betweenness centrality
measures

In these section we apply Theorem 6 to the construction of centrality measures
and describe their use to the analysis of a network representing the eating
behaviour of a group of subjects.

Undirected graphs can effectively be used to model the structure of complex
systems and, in many applied contexts, the association network is expected to
be very heterogeneous with some vertices and edges being more important than
others is some sense. This importance can be referred to as network centrality
and it is typically quantified by means of centrality measures; see Rodrigues
(2019). Centrality is one of the most fundamental metrics in network science,
but there is no general definition of centrality and a wide range of centrality
measures focusing on different features of the network are available. One of the
most prominent measure of centrality, called betweenness centrality, relies on
the idea that information flows along paths. The most widely used betweenness
measure is due to Freeman (1977) and it is based on the idea that a vertex has
a high betweenness centrality if a large number of shortest paths crosses it.
Accordingly, betweenness of a vertex is computed by summing up the fractions
of shortest paths between every pairs of vertices that pass through it.
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The choice to focus on shortest paths was motivated in a context of so-
cial network analysis. On the other hand, in other fields of application the
assumption that information flows only along shortest paths is not justified.
This has led to the introduction of alternative betweenness centrality measures
where all paths contribute, possibly with different values, to the computation
(Freeman et al., 1991; Newman, 2005). More specifically, one can use different
criteria to quantify the relevance of a path to the centrality of a vertex and this
results in different betweenness measures. From this perspective, we consider
the following comprehensive way to compute the betweenness of the vertex
v ∈ V ,

Bχ(v) =
∑

x,y∈V \{v}

Bχxy(v) (18)

where Bχxy(v) is a measure of betweenness of vertex v relative to vertices x and
y, x 6= y, based on the criterion χ. Although centrality is most commonly com-
puted for vertices, also edge centrality is of interest; see Girvan and Newman
(2002); Bröhl and Lehnertz (2019) and references therein. Hence, similarly to
(18), we compute betweenness of an edge {u, v} according to the criterion χ,
as

Bχ({u, v}) =
∑
x,y∈V

Bχxy({u, v}). (19)

Some applications of betweenness centrality in graphical models can be
found in Bringmann et al. (2019), Dablander and Hinne (2019), Peeters et al.
(2020) and Roverato and Castelo (2020). However, the construction of cen-
trality measures specifically designed to suit the graphical model framework
is a recent, and largely unexplored, area of research. In the following, we con-
sider three different types of vertex/edge betweenness centrality. The first type
is based exclusively on the graph structure and therefore not specific of the
graphical model field. The second and third types are specific of concentration
graph models and are based on the theory of path weights and on the weight
decomposition given in Section 4, respectively.

We refer to the first centrality measure with the name basic because it
differs from that of Freeman et al. (1991) only from the fact that it is computed
using all paths rather than shortest paths. More formally, it is denoted by Bφ(·)
and it is obtained by applying

Bφxy(v) =

∑
π∈Πxy

Iv(π)

|Πxy|
and Bφxy({u, v}) =

∑
π∈Πxy

I{u,v}(π)

|Πxy|
, (20)

in (18) and (19), respectively. Here, Iv(π) denotes the indicator function that
takes value one if v ∈ V (π) and zero otherwise; similarly, I{u,v}(π) = 1 if
{u, v} ∈ E(π) and zero otherwise.

We now turn to the specific case of concentration graph models. This is
done by keeping into account the meaning and role that paths play in these
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models, and we deem that the theory of path weights provides a natural frame-
work to address this issue. Consider the criterion χ = ω such that

Bωxy(v) =

∑
π∈Πxy

|ω(π,ΩV )| Iv(π)∑
π∈Πxy

|ω(π,ΩV )|
(21)

and

Bωxy({u, v}) =

∑
π∈Πxy

|ω(π,ΩV )| I{u,v}(π)∑
π∈Πxy

|ω(π,ΩV )|
, (22)

so that every path contributes to the computation with its absolute inflated
correlation weight. The vertex betweenness centrality based on (21) was first
introduced by Roverato and Castelo (2020) whereas in (22) we use the same cri-
terion to introduce a novel edge beweenness centrality based on path weights.
Note that, if all the paths between x and y have the same sign, then Bωxy(·)
can be interpreted as the proportion of the inflated correlation coefficients be-
tween Xx and Xy due to the paths involving the relevant vertex/edge. It is
also worth remarking that, in fact, Bωxy(v) can be equally interpreted as the
proportion of covariance or correlation. Hereafter, we will refer to Bω(·) as to
the weight betweenness.

The criterion applied in (21) and (22) is, perhaps, the most straightforward
way to apply the theory of path weights in the computation of betweenness
centralities. A more subtle way may be obtained by considering the factor-
ization in Theorem 6 and assigning to every path a value reflecting the role
played by the relevant vertex/edge in the determination of the path weight.
More specifically, we define

Bνxy(v) =
∑

π∈Πxy

(IF〈v,πxy〉−1) Iv(π) (23)

where IF〈v,πxy〉, given in (14), represents to the contribution of vertex v to

the path π. More specifically, IF〈v,πxy〉 ≥ 1 “inflates” the path ω(π,ΩV ) of a
factor equal to (IF〈v,πxy〉−1). Similarly, from Theorem 6, the contribution of
an edge {u, v} to the weight of a path π between x and y may be quantified
by (IF〈u,πxy〉 |ρuv|rest| IF〈v,πxy〉−1), thereby giving,

Bνxy({u, v}) =
∑

π∈Πxy

(IF〈u,πxy〉 |ρuv|rest| IF〈v,πxy〉−1) I{u,v}(π). (24)

We will refer to Bν(·) as to the inflation betweenness.
The rest of this section is devoted to an application where we compare

the behaviour of the three types of centrality measures on a food network.
Hoang et al. (2020) applied concentration graph models to learn the networks
describing the eating behaviour of some distinct groups of subjects. Here, we
focus on the network, given in Figure 2, which represents the main dietary
pattern for the group of men. Every vertex is associated with a food group
whereas edges show how food groups are consumed in relation to each other.
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Fig. 2 Main dietary pattern for men from Hoang et al. (2020).

This graph was obtained in Hoang et al. (2020) by applying graphical lasso
(Friedman et al., 2008) to a sample of 3 769 subjects, and the estimates of the
nonzero partial correlations can be found in Table 4. This sample is part of a
larger dataset from a cross-sectional study carried out in South Korea between
2007 and 2019.

In the analysis of dietary patterns it is of interest to identify food groups
that play a central role in the eating behaviour (Iqbal et al., 2016; Schwedhelm
et al., 2018). For the concentration graph model of Figure 2 we computed the
centrality values of the vertices according to the three criteria given above.
More specifically, because betweeneess centralities scale with the number of
pairs of vertices, it is common practice to apply the following normalization,

B̃χ(·) =
Bχ(·)−Bχmin

Bχmax −Bχmin

where Bχmin and Bχmax are the minimal and maximal values of B̃χ(·), respec-
tively. Hence, the normalized vertex centralities are given in Table 3.

It is of interest to compare the generic basic centrality with the two spe-
cific weight and inflation centralities. To this aim we look at the correlation
coefficient between every pair of measures, which turns out to be always posi-
tive, ranging from 0.79 to 0.91. Hence, from this viewpoint the three measures
provide similar results. There are however also some differences of interest.
Both the basic and the weight centrality identify light-color vegetables

as the most central vertex, whereas the inflation centrality puts this vertex
in second position, behind condiment and seasoning. We can, somehow in-
formally, say that light-color vegetables is a central vertex because it
contributes to the computation of a high proportion of the correlation of other
variables, whereas condiment and seasoning is a central vertex because of
the number of paths it belongs to and the relevant contribution it gives to
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Table 3 Normalized vertex betweenness centralities for the dietary pattern of Figure 2.
Vertices are ordered by decreasing value of basic betweenness centrality.

normalized vertex betweenness
Food group (vertex) basic B̃φ weight B̃ω inflation B̃ν

light-colored vegetables 1.000 1.000 0.747
condiments and seasonings 0.799 0.712 1.000
other seafood 0.686 0.356 0.146
tubers and roots 0.675 0.107 0.180
tofu and soy milk 0.265 0.004 0.013
fish 0.242 0.000 0.002
green and yellow vegetables 0.230 0.071 0.132
mushrooms 0.000 0.000 0.000
seaweeds 0.000 0.000 0.000

the weight of such paths. Furthermore, basic betweenness identifies a cluster
of 4 vertices with high centrality value whereas both the weight and inflation
centralities restrict the set of highly central vertices to two elements, thereby
highlighting the relevance of these two vertices in the network.

We turn now to edge betweenness, whose values are given in Table 4. Unlike
vertex centrality, there are important differences in this case. Indeed, the most
central vertex according to basic centrality is the least central vertex according
to the other two types of edge centrality. More generally, basic centrality is
negatively correlated with each of the other two centralities. In concentration
graph models, an edge is not present in the graph if its partial correlation is
equal to zero, and the absolute value of partial correlations are often regarded
as a measure of edge relevance. Partial correlations enter in the computation
of path weights whereas they play no role in the computation of the basic
centrality. More specifically, we note that the correlation between the values
of the basic centrality measures and the estimated of partial correlations is
equal to −0.11, and therefore negative. We also note that, for the most central
edge according to the basic centrality, that is the edge joining tubers and

roots with other seafood, the associated partial correlation is one of those
with smallest value. Hence, form this perspective, the edge basic centrality
measure does not seem to properly suit the graphical model framework. As
expected, both weight and inflation centrality have a positive correlation with
the estimated partial correlations. On the other hand, partial correlation is
only one of the determinant of these centrality values and, interestingly, the
two most central vertices according to both the weight and the inflation cen-
tralities are the edges joining light colored vegetables with mushrooms

and seaweeds, respectively, and the removal of any of these edges would make
the graph disconnected. The results provided by the weight and the inflation
edge centralities are similar, but not identical, and the correlation between the
values of these two measures is equal to 0.7. When comparing the three edge
centralities it is interesting to notice that the five most central edges accord-
ing to the inflation centrality have all one of the endpoints equal to light

colored vegetables.
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Table 4 Estimated partial correlations and normalized edge betweenness centralities for the dietary pattern of Figure 2. Edges are ordered by
decreasing value of basic betweenness centrality.

normalized edge betweenness
Edge ρ̂uv|rest

basic B̃φ weight B̃ω inflation B̃ν

tubers and roots other seafood 0.010 1.000 0.000 0.000
other seafood fish 0.020 0.677 0.713 0.162
tofu and soy milk tubers and roots 0.040 0.646 0.158 0.176
condiments and season. other seafood 0.090 0.600 0.823 0.360
condiments and season. green and yellow veg. 0.140 0.590 0.589 0.449
condiments and season. tofu and soy milk 0.040 0.558 0.681 0.272
condiments and season. tubers and roots 0.100 0.330 0.465 0.526
light-colored vegetables fish 0.001 0.312 0.109 0.387
light-colored vegetables tubers and roots 0.030 0.308 0.314 0.475
light-colored vegetables green and yellow veg. 0.120 0.292 0.548 0.570
light-colored vegetables mushrooms 0.030 0.110 1.000 1.000
light-colored vegetables seaweeds 0.020 0.110 1.000 0.992
light-colored vegetables other seafood 0.040 0.105 0.501 0.592
light-colored vegetables condiments and season. 0.100 0.000 0.868 0.766
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Indeed, the inflation centrality clearly identifies all the edges starting from
light colored vegetables as highly central so as to pinpoint the relevance
of the hub associated with this vertex. On the other hand, the basic edge
centrality ranks the vertices of this hub in its lowest positions thereby regarding
this structural component of the network as non-central. This seems to be in
contradiction with the basic vertex centrality which identifies light colored

vegetables as the most central vertex. Finally, the information provided by
the weight edge centrality with respect to this hub is more ambiguous giving
high centrality value to some edges but low value to others.

We close this section by noticing that, potentially, there are exponentially
many paths between two vertices of a graph and therefore, for large graphs,
the computation of centrality measures that requires the identification of all
paths may be computationally unfeasible. The weight and inflation centrality
measures introduced in this section seem to give comparable results; however,
inflation centrality has the advantage that it is computationally less demanding
because its computation does not involve all the paths between two vertices,
but only those involving the vertex of interest.

6 Discussion

In recent years there is a growing interest on how to make use and interpret the
properties of networks, such as the identification of relevant edges and paths,
the computation of centrality measures, the identification of communities. Of
special interest is the investigation of methods especially suited for graphical
models where the structure of the graph encodes the independence structure of
the variables. The theory developed in this paper goes in this direction. Paths
play a central role in undirected graphical models and are the key structures
to be used in the identification, for instance, of relevant patterns and of vertex
which may be regarded as central. It is therefore important to meaningfully
associate weights to the paths of a graph which may then be used in the
computation of summary measures, such as betweenness centrality measures,
and in the comparison of relevant patterns.

In the examples considered in this paper there seems to be a relationship
between weight and path length, in the sense that the shorter the path the
larger the path weight. This is due to the role played by partial correlations.
As shown in (17), if we start from a path and add one edge to it, then the
original weight is updated by multiplying it by two factors: (i) an inflation
factor that makes the weight value larger because it is greater than one, (ii)
a partial correlation that makes the weight value smaller because it belongs
to the interval (−1, 1). In the examples we consider, the partial correlation
component of the update has always a stronger effect and thus longer paths
tend to have smaller weight. A formal analysis of this behavior is an interesting
direction of future research so as to clarify to what extent, in large graphs, one
could discard large paths and restrict the attention to smaller ones.
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The family of undirected graph models and the family of models for di-
rected acyclic graphs (DAGs) have some elements in common. More specifi-
cally, there exists a one-to-one relationship between the family of models for
undirected decomposable graphs and the family of models for perfect DAGs.
In DAGs the relevance of a path is quantified by the theory of path analysis
and a second future research direction involve the comparison of the theory of
path weights in models which belong to both families.
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