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Abstract
We show that in analytic sub-Riemannian manifolds of rank 2 satisfying a commutativity
condition spiral-like curves are not length minimizing near the center of the spiral. The proof
relies upon the delicate construction of a competing curve.

Mathematics Subject Classification 53C17 · 49K30 · 28A75 · 49K21

1 Introduction

The regularity of geodesics (length-minimizing curves) in sub-Riemannian geometry is an
open problem since forty years. Its difficulty is due to the presence of singular (or abnormal)
extremals, i.e., curves where the differential of the end-point map is singular (it is not sur-
jective). There exist singular curves that are as a matter of fact length-minimizing. The first
example was discovered in [12] and other classes of examples (regular abnormal extremals)
are studied in [11]. All such examples are smooth curves.

When the end-point map is singular, it is not possible to deduce the Euler–Lagrange
equations with their regularizing effect for minimizers constrained on a nonsmooth set.
On the other hand, in the case of singular extremals the necessary conditions given by
Optimal Control Theory (Pontryagin Maximum Principle) do not provide in general any
further regularity beyond the starting one, absolute continuity or Lipschitz continuity of the
curve.

The most elementary kind of singularity for a Lipschitz curve is of the corner-type: at
a given point, the curve has a left and a right tangent that are linearly independent. In [10]
and [4] it was proved that length minimizers cannot have singular points of this kind. These
results have been improved in [14]: at any point, the tangent cone to a length-minimizing
curve contains at least one line (a half line, for extreme points), see also [5]. The uniqueness
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of this tangent line for length minimizers is an open problem. Indeed, there exist other types
of singularities related to the non-uniqueness of the tangent. In particular, there exist spiral-
like curves whose tangent cone at the center contains many and in fact all tangent lines, see
Example 2.6 below. These curves may appear as Goh extremals in Carnot groups, see [8] and
[9, Section 5]. For these reasons, the results of [14] are not enough to prove the nonminimality
of spiral-like extremals. Goal of this paper is to show that curves with this kind of singularity
are not length-minimizing.

Let M be an n-dimensional, n ≥ 3, analytic manifold endowed with a rank 2 analytic
distribution D ⊂ T M that is bracket generating (Hörmander condition). An absolutely
continuous curve γ ∈ AC([0, 1]; M) is horizontal if γ̇ ∈ D(γ ) almost everywhere. The
length of γ is defined fixing a metric tensor g on D and letting

L(γ ) =
∫

[0,1]
gγ (γ̇ , γ̇ )1/2dt . (1.1)

The curve γ is a length-minimizer between its end-points if for any other horizontal curve
γ̄ ∈ AC([0, 1]; M) such that γ̄ (0) = γ (0) and γ̄ (1) = γ (1) we have L(γ ) ≤ L(γ̄ ).

Our notionof horizontal spiral in a sub-Riemannianmanifold of rank2 is fixed inDefinition
1.1. We will show that spirals are not length-minimizing when the horizontal distribution D
satisfies the following commutativity condition. Fix two vector fields X1, X2 ∈ D that are
linearly independent at some point p ∈ M . For k ∈ N and for amulti-index J = ( j1, . . . , jk),
with ji ∈ {1, 2}, we denote by X J = [X j1 , [. . . , [X jk−1 , X jk ] · · · ]] the iterated commutator
associated with J . We define its length as the length of the multi-index J , i.e., len(X J ) =
len(J ) = k. Then, our commutativity assumption is that, in a neighborhood of the point p,

[XI , X J ] = 0 for all multi-indices with len(I ), len(J ) ≥ 2. (1.2)

This condition is not intrinsic and depends on the basis X1, X2 of the distribution D. After
introducing exponential coordinates of the second type, the vector fields X1, X2 can be
assumed to be of the form (2.3) below, and the point p will be the center of the spiral.

A curve γ ∈ AC([0, 1]; M) is horizontal if γ̇ (t) ∈ D(γ (t)) for a.e. t ∈ [0, 1]. In
coordinates we have γ = (γ1, . . . , γn) and, by (2.3), the γ j ’s satisfy for j = 3, . . . , n the
following integral identities

γ j (t) = γ j (0) +
∫ t

0
a j (γ (s))γ̇2(s)ds, t ∈ [0, 1]. (1.3)

When γ (0) and γ1, γ2 are given, these formulas determine in a unique way the whole hor-
izontal curve γ . We call κ ∈ AC([0, 1];R2), κ = (γ1, γ2), the horizontal coordinates of
γ .

Definition 1.1 (Spiral) We say that a horizontal curve γ ∈ AC([0, 1]; M) is a spiral if,
in exponential coordinates of the second type centered at γ (0), the horizontal coordinates
κ ∈ AC([0, 1];R2) are of the form

κ(t) = teiϕ(t), t ∈]0, 1], (1.4)

where ϕ ∈ C1(]0, 1];R+) is a function, called phase of the spiral, such that |ϕ(t)| → ∞
and |ϕ̇(t)| → ∞ as t → 0+. The point γ (0) is called center of the spiral.

Apriori,Definition 1.1 depends on the basis X1, X2 ofD, see however our comments about
its intrinsic nature in Remark 2.5. Without loss of generality, we shall focus our attention on
spirals that are oriented clock-wise, i.e., with a phase satisfying ϕ(t) → ∞ and ϕ̇(t) → −∞

123



Non-minimality of spirals in sub-Riemannian manifolds Page 3 of 20   218 

as t → 0+. Such a phase is decreasing near 0. Notice that if ϕ(t) → ∞ and ϕ̇(t) has a limit
as t → 0+ then this limit must be −∞.

Our main result is the following

Theorem 1.2 Let (M,D, g) be an analytic sub-Riemmanian manifold of rank 2 satisfying
(1.2). Any horizontal spiral γ ∈ AC([0, 1]; M) is not length-minimizing near its center.

Differently from [4,5,10,14] and similarly to [13], the proof of this theorem cannot be
reduced to the case of Carnot groups, the infinitesimal models of equiregular sub-Riemanian
manifolds. This is because the blow-up of the spiral could be a horizontal line, that is indeed
length-minimizing.

The nonminimality of spirals combinedwith the necessary conditions given by Pontryagin
Maximum Principle is likely to give new regularity results on classes of sub-Riemannian
manifolds, in the spirit of [1]. We think, however, that the main interest of Theorem 1.2 is in
the deeper understanding that it provides on the loss of minimality caused by singularities.

The proof of Theorem 1.2 consists in constructing a competing curve shorter than the
spiral. The construction uses exponential coordinates of the second type and our first step
is a review of Hermes’ theorem on the structure of vector-fields in such coordinates. In this
situation, the commutativity condition (1.2) has a clear meaning explained in Theorem 2.2,
that may be of independent interest.

In Sect. 3, we start the construction of the competing curve. Here we use the specific
structure of a spiral. The curve obtained by cutting one spire near the center is shorter. The
error appearing at the end-point will be corrected modifying the spiral in a certain number
of locations with “devices” depending on a set of parameters. The horizontal coordinates
of the spiral are a planar curve intersecting the positive x1-axis infinitely many times. The
possibility of adding devices at such locations arbitrarily close to the origin will be a crucial
fact.

In Sect. 4, we develop an integral calculus on monomials that is used to estimate the
effect of cut and devices on the end-point of the modified spiral. Then, in Sect. 5, we fix the
parameters of the devices in such a way that the end-point of the modified curve coincides
with the end-point of the spiral. This is done in Theorem 5.1 by a linearization argument.
Sections 3–5 contain the technical core of the paper.

We use the specific structure of the length-functional in Sect. 6, where we prove that the
modified curve is shorter than the spiral, provided that the cut is sufficiently close to the
origin. This will be the conclusion of the proof of Theorem 1.2.

We briefly comment on the assumptions made in Theorem 1.2. The analyticity of M and
D is needed only in Sect. 2. In the analytic case, it is known that length-minimizers are
smooth in an open and dense set, see [15]. See also [3] for a C1-regularity result when M is
an analytic manifold of dimension 3.

The assumption that the distribution D has rank 2 is natural when considering horizontal
spirals. When the rank is higher there is room for more complicated singularities in the
horizontal coordinates, raising challenging questions about the regularity problem.

Dropping the commutativity assumption (1.2) is a major technical problem: getting sharp
estimates from below for the effect produced by cut and devices on the end-point seems
extremely difficult when the coefficients of the horizontal vector fields depend also on non-
horizontal coordinates, see Remark 4.3.

We thank Marco F. Sica for his help with the pictures and the referee for his comments
that improved the exposition of the paper.
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2 Exponential coordinates at the center of the spiral

In this section, we introduce in M exponential coordinates of the second type centered at a
point p ∈ M , that will be the center of the spiral.

Let X1, X2 ∈ D be linearly independent at p. Since the distributionD is bracket-generating
we can find vector-fields X3, . . . , Xn , with n = dim(M), such that each Xi is an iterated
commutator of X1, X2 with length wi = len(Xi ), i = 3, . . . , n, and such that X1, . . . , Xn

at p are a basis for TpM . By continuity, there exists an open neighborhood U of p such that
X1(q), . . . , Xn(q) form a basis for TqM , for any q ∈ U . We call X1, . . . , Xn a stratified
basis of vector-fields in M .

Let ϕ ∈ C∞(U ;Rn) be a chart such that ϕ(p) = 0 and ϕ(U ) = V , with V ⊂ R
n open

neighborhood of 0 ∈ R
n . Then X̃1 = ϕ∗X1, . . . , X̃n = ϕ∗Xn is a system of point-wise

linearly independent vector fields in V ⊂ R
n . Since our problem has a local nature, we can

without loss of generality assume that M = V = R
n and p = 0.

After these identifications, we have a stratified basis of vector-fields X1, . . . , Xn in R
n .

We say that x = (x1, . . . , xn) ∈ R
n are exponential coordinates of the second type associated

with the vector fields X1, . . . , Xn if we have

x = �X1
x1 ◦ · · · ◦ �Xn

xn (0), x ∈ R
n . (2.1)

We are using the notation �X
s = exp(sX), s ∈ R, to denote the flow of a vector-field X .

From now on, we assume without loss of generality that X1, . . . , Xn are complete and induce
exponential coordinates of the second type.

We define the homogeneous degree of the coordinate xi of Rn as wi = len(Xi ). We
introduce the 1-parameter group of dilations δλ : Rn → R

n , λ > 0,

δλ(x) = (λw1x1, . . . , λ
wn xn), x ∈ R

n,

and we say that a function f : Rn → R is δ-homogeneous of degree w ∈ N if f (δλ(x)) =
λw f (x) for all x ∈ R

n and λ > 0. An example of δ-homogeneous function of degree 1 is
the pseudo-norm

‖x‖ =
n∑
j=1

|xi |1/wi , x ∈ R
n . (2.2)

The following theorem is proved in [6] in the case of general rank. A more modern
approach to nilpotentization can be found in [2] and [7].

Theorem 2.1 Let D = span{X1, X2} ⊂ T M be an analytic distribution of rank 2. In expo-
nential coordinates of the second type around a point p ∈ M identified with 0 ∈ R

n, the
vector fields X1 and X2 have the form

X1(x) = ∂x1 ,

X2(x) = ∂x2 +
n∑
j=3

a j (x)∂x j ,
(2.3)

for x ∈ U, where U is a neighborhood of 0. The analytic functions a j ∈ C∞(U ), j =
3, . . . , n, have the structure a j = p j + r j , where:

(i) p j are δ-homogeneous polynomials of degree w j − 1 such that p j (0, x2, . . . , xn) = 0;
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(ii) r j ∈ C∞(U ) are analytic functions such that, for some constants C1,C2 > 0 and for
x ∈ U,

|r j (x)| ≤ C1‖x‖w j and |∂xi r j (x)| ≤ C2‖x‖w j−wi . (2.4)

Proof The proof that a j = p j + r j where p j are polynomials as in (i) and the remainders r j
are real-analytic functions such that r j (0) = 0 can be found in [6]. The proof of (ii) is also
implicitly contained in [6]. Here, we add some details. The Taylor series of r j has the form

r j (x) =
∞∑

	=w j

r j	(x) =
∞∑

	=w j

∑
α∈A	

cα	x
α,

where A	 = {α ∈ N
n : α1w1 + · · · + αnwn = 	}, xα = xα1

1 · · · xαn
n and cα	 ∈ R are

constants. Here and in the following, N = {0, 1, 2, . . .}. The series converges absolutely in a
small homogeneous cube Qδ = {x ∈ R

n : ‖x‖ ≤ δ} for some δ > 0, and in particular

∞∑
	=w j

δ	
∑

α∈A	

|cα	| < ∞.

Using the inequality |xα| ≤ ‖x‖	 for α ∈ A	, for x ∈ Qδ we get

|r j (x)| ≤ C1‖x‖w j , with C1 =
∞∑

	=w j

δ	−w j
∑

α∈A	

|cα| < ∞.

The estimate for the derivatives of r j is analogous. Indeed, we have

∂xi r j (x) =
∞∑

	=w j

∑
α∈A	

αi cα	x
α−ei ,

where α − ei ∈ A	−wi whenever α ∈ A	. Above, ei = (0, . . . , 1, . . . , 0) with 1 at position i
is the canonical i th versor ofRn . Thus the leading term in the series has homogeneous degree
w j − wi and repeating the argument above we get the estimate |∂xi r j (x)| ≤ C2‖x‖w j−wi

for x ∈ Qδ . ��
When the distribution D satisfies the commutativity assumption (1.2) the coefficients a j

appearing in the vector-field X2 in (2.3) enjoy additional properties. In the next theorem, the
specific structure of exponential coordinates of the second type will be very helpful in the
computation of various derivatives. In particular, in Lemma 2.3 we need a nontrivial formula
from [6, Appendix A], given in such coordinates.

Theorem 2.2 If D ⊂ T M is an analytic distribution of rank 2 satisfying (1.2) then the
functions a3, . . . , an of Theorem 2.1 depend only on the variables x1 and x2.

Proof Let � : R×R
n → R

n be the map �(t, x) = �
X2
t (x), where x ∈ R

n and t ∈ R. Here,
we are using the exponential coordinates (2.1). In the following we omit the composition sign
◦. Defining � : R3 × R

n → R
n as the map �t,x1,x2(p) = �

X2
−(x2+t)�

X1−x1�
X2
t �

X1
x1 �

X2
x2 (p),

we have

�(t, x) = �X1
x1 �

X2
x2+t�t,x1,x2�

X3
x3 . . . �Xn

xn (0).

We claim that there exists a C > 0 independent of t such that, for t → 0,

|�t,x1,x2�
X j
s − �

X j
s �t,x1,x2 | ≤ Ct2. (2.5)
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Wewill prove claim (2.5) in Lemma 2.3 below. From (2.5) it follows that there exist mappings
Rt ∈ C∞(Rn,Rn) such that

�(t, x) = �X1
x1 �

X2
x2+t�

X3
x3 . . . �Xn

xn �t,x1,x2(0) + Rt (x), (2.6)

and such that |Rt | ≤ Ct2 for t → 0.
By the structure (2.3) of the vector fields X1 and X2 and since �t,x1,x2 is the composition

of C∞ maps, there exist C∞ functions f j = f j (t, x1, x2) such that

�t,x1,x2(0) = (
0, 0, f3(t, x1, x2), . . . , fn(t, x1, x2)

) = exp
( n∑

j=3

f j (t, x1x2)X j

)
(0).

(2.7)

By (1.2), from (2.6) and (2.7) we obtain

�(t, x) = �X1
x1 �

X2
x2+t exp

( n∑
i=3

(x j + f j (t, x1, x2))X j

)
(0) + Rt (x)

= (
x1, x2 + t, x3 + f3(t, x1, x2), . . . , xn + fn(t, x1, x2)

) + Rt (x),

and we conclude that

X2(x) = d

dt
�(x, t)

∣∣∣
t=0

= ∂2 +
n∑
j=3

d

dt
f j (t, x1, x2)

∣∣∣
t=0

∂ j .

Thus the coefficients a j (x1, x2) = d
dt f j (t, x1, x2)|t=0, j = 3, . . . , n, depend only on the

first two variables, completing the proof. ��

In the following lemma, we prove our claim (2.5).

Lemma 2.3 Let D ⊂ T M be an analytic distribution satisfying (1.2). Then for any j =
3, . . . , n the claim in (2.5) holds.

Proof Let X = X j for any j = 3, . . . , n and define the map T X
t,x1,x2;s = �t,x1,x2�

X
s −

�X
s �t,x1,x2 . For t = 0 the map�0,x1,x2 is the identity and thus T

X
0,x1,x2;s = 0. So, claim (2.5)

follows as soon as we show that

Ṫ X
0,x1,x2;s = ∂

∂t

∣∣∣
t=0

T X
t,x1,x2;s = 0,

for any s ∈ R and for all x1, x2 ∈ R.
Wefirst compute the derivative of�t,x1,x2 with respect to t . Letting
t,x1 = �

X1−x1�
X2
t �

X1
x1

we have �t,x1,x2 = �
X2
−(x2+t)
t,x1�

X2
x2 , and, thanks to [6, Appendix A], the derivative of


t,x1 at t = 0 is


̇0,x1 =
∞∑

ν=0

cν,x1Wν,
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where Wν = [X1, [· · · , [X1, X2] · · · ]] with X1 appearing ν times and cν,x1 = (−1)νxν
1/ν!.

In particular, we have c0,x1 = 1. Then the derivative of �t,x1,x2 at t = 0 is

�̇0,x1,x2 = −X2 + d�
X2−x2

(

̇0,x1(�

X2
x2 )

)

= −X2 +
∞∑

ν=0

cν,x1d�
X2−x2

(
Wν(�

X2
x2 )

)

=
∞∑

ν=1

cν,x1d�
X2−x2

(
Wν(�

X2
x2 )

)
,

because the term in the sum with ν = 0 is d�
X2−x2

(
X2(�

X2
x2 )

) = X2. Inserting this formula
for �̇0,x1,x2 into

Ṫ X
0,x1,x2;s = �̇0,x1,x2(�

X
s ) − d�X

s (�̇0,x1,x2), (2.8)

we obtain

Ṫ X
0,x1,x2;s =

∞∑
ν=1

cν,x1d�
X2−x2

(
Wν(�

X2
x2 �X

s )
) − d�X

s

∞∑
ν=1

cν,x1d�
X2−x2

(
Wν

(
�X2

x2 )
)

= d�X
s

∞∑
ν=1

cν,x1

(
d�X−sd�

X2−x2

(
Wν(�

X2
x2 �X

s )
) − d�

X2−x2

(
Wν(�

X2
x2 )

))
.

In order to prove that Ṫ X
0,x1,x2;s vanishes for all x1, x2 and s, we have to show that

g(x2, s) := d�X−sd�
X2−x2

(
Wν(�

X2
x2 �X

s )
) − d�

X2−x2

(
Wν(�

X2
x2 )

) = 0, (2.9)

for any ν ≥ 1 and for any x2 and s. From �X
0 = id it follows that g(x2, 0) = 0. Then, our

claim (2.9) is implied by

h(x2, s) := ∂

∂s
g(x2, s) = 0. (2.10)

Actually, this is a Lie derivative and, namely,

h(x2, s) = −d�X−s

[
X , d�

X2−x2

(
Wν(�

X2
x2 )

)]
.

Notice that h(0, s) = −d�X−s[X ,Wν] = 0 by our assumption (1.2). In a similar way, for any
k ∈ N we have

∂k

∂xk2
h(0, s) = (−1)k+1d�X−s[X , [X2, · · · [X2,Wν] · · · ]] = 0,

with X2 appearing k times. Since the function x2 
→ h(x2, s) is analytic our claim (2.10)
follows. ��

We conclude this sections with some general remarks.

Remark 2.4 By Theorem 2.2, we can assume that a j (x) = a j (x1, x2) are functions of the
variables x1, x2. In this case, formula (1.3) for the coordinates of a horizontal curve γ ∈
AC([0, 1]; M) reads, for j = 3, . . . , n,

γ j (t) = γ j (0) +
∫ t

0
a j (γ1(s), γ2(s))γ̇2(s)ds, t ∈ [0, 1]. (2.11)
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Remark 2.5 Definition 1.1 of horizontal spiral is stable with respect to change of coordinates
in the following sense.

After fixing exponential coordinates, we have that 0 ∈ R
n is the center of the spiral

γ : [0, 1] → R
n , with horizontal projection κ(t) as in Definition 1.1.

We consider a diffeomorphism F̃ ∈ C∞(Rn;Rn) such that F̃(0) = 0. In the new coor-
dinates, our spiral γ is ζ(t) = F̃(γ (t)). We define the horizontal coordinates of ζ in the
following way: the set d0 F̃(D(0)), where d0 F̃ is the differential of F̃ at 0, is a 2-dimensional
subspace of Rn = Im(d0 F̃); denoting by π : Rn → d0 F̃(D(0)) the orthogonal projection,
we define the horizontal coordinates of ζ as ξ(t) = π(F̃(γ (t)).

We claim that ξ , in the plane d0 F̃(D(0)), is of the form (1.4), with a phase ω satisfying
|ω| → ∞ and |ω̇| → ∞. In particular, these properties of ξ are stable up to isometries of the
plane. Then, we can assume that ξ(t) = (F1(γ (t)), F2(γ (t))), with Fi : Rn → R of class
C∞, for i = 1, 2. In this setting, we will show that |ω̇| → ∞.

The function s(t) = |ξ(t)| = |(F1(γ (t)), F2(γ (t)))| satisfies
0 < c0 ≤ ṡ(t) ≤ c1 < ∞, t ∈ (0, 1]. (2.12)

Define the function ω ∈ C1((0, 1]) letting ξ(t) = s(t)eiω(s(t)). Then differentiating the
identity obtained inverting

tan
(
ω(s(t))

) = F2(γ (t))

F1(γ (t))
, t ∈ (0, 1],

we obtain

ṡ(t)ω̇(s(t)) = 1

s(t)2
〈�(γ (t)), γ̇ (t)〉, t ∈ (0, 1], (2.13)

where the function �(x) = F1(x)∇F2(x) − F2(x)∇F1(x) has the Taylor development as
x → 0

�(x) =〈∇F1(0), x〉∇F2(0) − 〈∇F2(0), x〉∇F1(0) + O(|x |2).
Observe that from (2.11) it follows that |γ̇ j (t)| = O(t) for j ≥ 3. Denoting by ∇̄ the gradient
in the first two variables, we deduce that as t → 0+ we have

〈�(γ ), γ̇ 〉 = 〈F1(γ )∇̄F2(γ ) − F2(γ )∇̄F1(γ ), κ̇〉 + O(t2) (2.14)

with

F1(γ )∇̄F2(γ ) − F2(γ )∇̄F1(γ ) = 〈∇̄F1(0), κ〉∇̄F2(0) − 〈∇̄F2(0), κ〉∇̄F1(0) + O(t2).

Inserting the last identity and κ̇ = eiϕ + i t ϕ̇eiϕ into (2.14), after some computations we
obtain

〈�(γ ), γ̇ 〉 = ϕ̇t2 det(d0 F̄(0)) + O(t2),

where det(d0 F̄(0)) �= 0 is the determinant Jacobian at x1 = x2 = 0 of the mapping
(x1, x2) 
→ (F1(x1, x2, 0), F2(x1, x2, 0)). Now the claim |ω̇(s)| → ∞ as s → 0+ easily
follows from (2.12), (2.13) and from |ϕ̇(t)| → ∞ as t → 0+.

Example 2.6 An interesting example of horizontal spiral is the double-logarithm spiral, the
horizontal lift of the curve κ in the plane of the form (1.4) with phase ϕ(t) = log(− log t),
t ∈ (0, 1/2]. In this case, we have

ϕ̇(t) = 1

t log t
, t ∈ (0, 1/2],
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and clearly ϕ(t) → ∞ and ϕ̇(t) → −∞ as t → 0+. In fact, we also have t ϕ̇ ∈ L∞(0, 1/2),
whichmeans that κ and thusγ is Lipschitz continuous. This spiral has the following additional
properties:

(i) for any v ∈ R
2 with |v| = 1 there exists an infinitesimal sequence of positive real

numbers (λn)n∈N such that κ(λnt)/λn → tv locally uniformly, as n → ∞;
(ii) for any infinitesimal sequence of positive real numbers (λn)n∈N there exists a subsequence

and a v ∈ R
2 with |v| = 1 such that κ(λnk t)/λnk → tv as k → ∞, locally uniformly.

This means that the tangent cone of κ at t = 0 consists of all half-lines inR2 emanating from
0.

3 Cut and correction devices

In this section, we begin the construction of the competing curve. Let γ be a spiral with
horizontal coordinates κ as in (1.4). We can assume that ϕ is decreasing and that ϕ(1) = 1
and we denote by ψ : [1,∞) → (0, 1] the inverse function of ϕ. For k ∈ N and η ∈ [0, 2π)

we define tkη ∈ (0, 1] as the unique solution to the equation ϕ(tkη) = 2πk + η, i.e., we let
tkη = ψ(2πk + η). The times

tk = tk0 = ψ(2πk), k ∈ N, (3.1)

will play a special role in our construction. The points κ(tk) are in the positive x1-axis.
For a fixed k ∈ N, we cut the curve κ in the interval [tk+1, tk] following the line segment

joining κ(tk+1) to κ(tk) instead of the path κ , while we leave unchanged the remaining part
of the path. We call this new curve κcut

k and, namely, we let

κcut
k (t) = κ(t) for t ∈ [0, tk+1] ∪ [tk, 1],

κcut
k (t) = (t, 0) for t ∈ [tk+1, tk].

We denote by γ cut
k ∈ AC([0, 1]; M) the horizontal curve with horizontal coordinates κcut

k
and such that γ cut

k (0) = γ (0). For t ∈ [0, tk+1], we have γ cut
k (t) = γ (t). To correct the errors

produced by the cut on the end-point, we modify the curve κcut
k using a certain number of

devices. The construction is made by induction.
We start with the base construction. Let E = (h, η, ε) be a triple such that h ∈ N,

0 < η < π/4, and ε ∈ R. Starting from a curve κ : [0, 1] → R
2, we define the curve

D(κ; E ) : [0, 1 + 2|ε|] → R
2 in the following way:

D(κ; E )(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

κ(t) t ∈ [0, thη]
κ(thη) + (sgn(ε)(t − thη), 0) t ∈ [thη, thη + |ε|]
κ(t − |ε|) + (ε, 0) t ∈ [thη + |ε|, th + |ε|]
κ(th) + (2ε + sgn(ε)(th − t), 0) t ∈ [th + |ε|, th + 2|ε|]
κ(t − 2|ε|) t ∈ [th + 2|ε|, 1 + 2|ε|].

(3.2)

We denote by D(γ ; E ) the horizontal curve with horizontal coordinates D(κ; E ). We let
Ḋ(γ ; E ) = d

dtD(γ ; E ) and we indicate by Di (γ ; E ) the i-th coordinate of the corrected curve
in exponential coordinates.

In the lifting formula (2.11), the intervals where γ̇2 = 0 do not contribute to the integral.
For this reason, in (3.2) we may cancel the second and fourth lines, where Ḋ2(γ ; E ) = 0,
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and then reparameterize the curve on [0, 1]. Namely, we define the discontinuous curve
D(κ; E ) : [0, 1] → R

2 as

D(κ; E )(t) =
⎧⎨
⎩

κ(t) t ∈ [0, thη]
κ(t) + (ε, 0) t ∈ (thη, th)
κ(t) t ∈ [th, 1].

(3.3)

The “formal” i th coordinate of the curve D(κ; E ) is given by

Di (γ ; E )(t) =
∫ t

0
ai (D(κ; E )(s))κ̇2(s)ds.

The following identities with ε > 0 can be checked by an elementary computation

D(γ ; E )(t) =
⎧⎨
⎩
D(γ ; E )(t) t ∈ [0, thη]
D(γ ; E )(t + ε) t ∈ (thη, th)
D(γ ; E )(t + 2ε) t ∈ [th, 1].

(3.4)
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When ε < 0 there are similar identities. With this notation, the final error produced on the
i th coordinate by the correction device E is

γi (1) − Di (γ ; E )(1 + 2|ε|) =
∫ 1

0

{
ai (κ(s)) − ai (D(κ; E )(s))

}
κ̇2(s)ds. (3.5)

The proof of this formula is elementary and can be omitted.
Wewill iterate the above construction a certain number of times depending on a collections

of triples E . We first fix the number of triples and iterations.
For i = 3, . . . , n, let Bi = {(α, β) ∈ N

2 : α + β = wi − 2}, where wi ≥ 2 is the
homogeneous degree of the coordinate xi . Then, the polynomials pi given by Theorem 2.1
and Theorem 2.2 are of the form

pi (x1, x2) =
∑

(α,β)∈Bi

cαβ xα+1
1 xβ

2 , (3.6)

for suitable constants cαβ ∈ R. We set

	 =
n∑

i=3

Card(Bi ), (3.7)

and we consider an (	 − 2)-tuple of triples Ē = (E3, . . . , E	) such that h	 < h	−1 < · · · <

h3 < k. Each triple is used to correct one monomial.
Without loss of generality, we simplify the construction in the following way. In the sum

(3.6), we can assume that cαβ = 0 for all (α, β) ∈ Bi but one. Namely, we can assume that

pi (x1, x2) = xαi+1
1 xβi

2 with αi + βi = wi − 2, (3.8)

and with cαiβi = 1. In this case, we have 	 = n and we will use n − 2 devices associated
with the triples E3, . . . , En to correct the coordinates i = 3, . . . , n. By the bracket generating
property of the vector fields X1 and X2 and by the stratified basis property for X1, . . . , Xn ,
the pairs (αi , βi ) satisfy the following condition

(αi , βi ) �= (α j , β j ) for i �= j . (3.9)

In the general case (3.6), we use a larger number 	 ≥ n of devices, one for each monomial
xα+1
1 xβ

2 appearing in p3(x1, x2), . . . , pn(x1, x2), and we correct the error produced by the
cut on each monomial. The argument showing the nonminimality of the spiral will be the
same. So, from now on in the rest of the paper we will assume that the polynomials pi are of
the form (3.8) with (3.9).

Now we clarify the inductive step of our construction. Let E3 = (h3, η3, ε3) be a triple
such that h3 < k. We define the curve κ(3) = D(κcut

k ; E3). Given a triple E4 = (h4, η4, ε4)
with h4 < h3 we then define κ(4) = D(κ(3); E4). By induction on 	 ∈ N, given a triple
E	 = (h	, η	, ε	) with h	 < h	−1, we define κ(	) = D(κ(	−1); E	). When 	 = n we stop.

We define the planar curve D(κ; k, Ē ) ∈ AC([0, 1 + 2ε̄];R2) as D(κ; k, Ē ) = κ(n)

according to the inductive construction explained above, where ε̄ = |ε3|+· · ·+|εn |. Thenwe
call D(γ ; k, Ē ) ∈ AC([0, 1+2ε̄]; M), the horizontal lift of D(κ; k, Ē )with D(γ ; k, E )(0) =
γ (0), the modified curve of γ associated with Ē and with cut of parameter k ∈ N. There is
a last adjustment to do. In [0, 1 + 2ε̄] there are 2(n − 2) subintervals where κ̇

(n)
2 = 0. On

each of these intervals the coordinates D j (γ ; k, Ē ) are constant. According to the procedure
explained in (3.2)–(3.4), we erase these intervals and we parametrize the resulting curve on
[0, 1]. We denote this curve by γ̄ = D(γ ; k, Ē ).
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Definition 3.1 (Adjusted modification of γ )We call the curve γ̄ = D(γ ; k, Ē ) : [0, 1] → M
the adjusted modification of γ relative to the collections of devices Ē = (E3, . . . , En) and
with cut of parameter k.

Our next task is to compute the error produced by cut and devices on the end-point of the
spiral. For i = 3, . . . , n and for t ∈ [0, 1] we let

�
γ

i (t) = ai (κ(t))κ̇2(t) − ai (κ̄(t)) ˙̄κ2(t). (3.10)

When t < tk+1 or t > tk we have κ̇2 = ˙̄κ2 and so the definition above reads

�
γ

i (t) = (
ai (κ(t)) − ai (κ̄(t))

)
κ̇2(t).

By the recursive application of the argument used to obtain (3.5), we get the following
formula for the error at the final time t̄ = thn :

Ek,Ē
i = γi (t̄) − γ̄i (t̄) =

∫ t̄

tk+1

�
γ

i (t)dt

=
∫
Fk

�
γ

i (t)dt +
n∑
j=3

( ∫
A j

�
γ

i (t)dt +
∫
Bj

�
γ

i (t)dt
)
.

(3.11)

In (3.11) and in the following, we use the following notation for the intervals:

Fk = [tk+1, tk], A j = [th j−1 , th jη j ], Bj = [th jη j , th j ], (3.12)

with th2 = tk . We used also the fact that on [0, tk+1] we have γ = γ̄ .
On the interval Fk we have ˙̄κ2 = 0 and thus∫

Fk
�

γ

i dt =
∫
Fk

{
pi (κ) + ri (κ)

}
κ̇2dt . (3.13)

On the intervals A j we have κ = κ̄ and thus
∫
A j

�
γ

i dt = 0, (3.14)

because the functions ai depend only on κ . Finally, on the intervals Bj we have κ̄1 = κ1 + ε j

and κ2 = κ̄2 and thus∫
Bj

�
γ

i dt =
∫
Bj

{pi (κ) − pi (κ + (ε j , 0))}κ̇2dt +
∫
Bj

{ri (κ) − ri (κ + (ε j , 0))}κ̇2dt .
(3.15)

Our goal is to find k ∈ N and devices Ē such that Ek,Ē
i = 0 for all i = 3, . . . , n and such

that the modified curve D(γ ; k, Ē ) is shorter than γ .

4 Effect of cut and devices onmonomials and remainders

Let γ be a horizontal spiral with horizontal coordinates κ ∈ AC([0, 1];R2) of the form
(1.4). We prove some estimates about the integrals of the polynomials (3.8) along the curve
κ . These estimates are preliminary to the study of the errors introduced in (3.11).
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For α, β ∈ N, we associate with the monomial pαβ(x1, x2) = xα+1
1 xβ

2 the function γαβ

defined for t ∈ [0, 1] by

γαβ(t) =
∫

κ|[0,t]
pαβ(x1, x2)dx2 =

∫ t

0
pαβ(κ(s))κ̇2(s)ds.

When pi = pαβ , the function γαβ is the leading term in the i th coordinate of γ in exponential
coordinates. In this case, the problem of estimating γi (t) reduces to the estimate of integrals
of the form

Iαβ
ωη =

∫ tω

tη
κ1(t)

α+1κ2(t)
β κ̇2(t)dt, (4.1)

where ω ≤ η are angles, tω = ψ(ω) and tη = ψ(η). For α, β ∈ N, h ∈ N and η ∈ (0, π/4)
we also let

jαβ
hη = ηβ

∫ 2hπ+η

2hπ

tα+β+2
ϑ dϑ =

∫ th

thη

tα+β+2|ϕ̇(t)|dt, (4.2)

where in the second equality we set ϑ = ϕ(t).

Proposition 4.1 There exist constants 0 < cαβ < Cαβ depending on α, β ∈ N such that for
all h ∈ N and η ∈ (0, π/4) we have

cαβ jαβ
hη ≤ |Iαβ

2hπ,2hπ+η| ≤ Cαβ jαβ
hη . (4.3)

Before proving this proposition, we notice that the integrals I αβ
ωη in (4.1) are related to the

integrals

Jαβ
ωη =

∫ η

ω

tα+β+2
ϑ cosα(ϑ) sinβ(ϑ)dϑ. (4.4)

Lemma 4.2 For any α, β ∈ N and ω ≤ η we have the identity

(α + β + 2)Iαβ
ωη = tα+β+2

ω Dαβ
ω − tα+β+2

η Dαβ
η − (α + 1)Jαβ

ωη , (4.5)

where we set Dαβ
ω = cosα+1(ω) sinβ+1(ω).

Proof Inserting into I αβ
ωη the identities κ1(t) = t cos(ϕ(t)), κ2(t) = t sin(ϕ(t)), and κ̇2(t) =

sin(ϕ(t)) + t cos(ϕ(t))ϕ̇(t) we get

Iαβ
ωη =

∫ tω

tη
tα+β+1Dαβ

ϕ(t)dt +
∫ tω

tη
tα+β+2 cosα+2(ϕ(t)) sinβ(ϕ(t))ϕ̇(t)dt,

and, integrating by parts in the first integral, this identity reads

Iαβ
ωη =

[
tα+β+2Dαβ

ϕ(t)

α + β + 2

]tω

tη

+ α + 1

α + β + 2

∫ tω

tη
tα+β+2 cosα(ϕ(t)) sinβ+2(ϕ(t))ϕ̇(t)dt

− β + 1

α + β + 2

∫ tω

tη
tα+β+2 cosα+2(ϕ(t)) sinβ(ϕ(t))ϕ̇(t)dt

+
∫ tω

tη
tα+β+2 cosα+2(ϕ(t)) sinβ(ϕ(t))ϕ̇(t)dt .

Grouping the trigonometric terms and then performing the change of variable ϕ(t) = ϑ , we
get
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Iαβ
ωη =

[
tα+β+2
ϑ Dαβ

ϑ

α + β + 2

]ω

η

+ α + 1

α + β + 2

∫ ω

η

tα+β+2
ϑ cosα(ϑ) sinβ(ϑ)dϑ.

This is our claim. ��
Proof of Proposition 4.1 From (4.5) with Dαβ

2hπ = 0 we obtain

(α + β + 2)|I αβ
2hπ,2hπ+η| = tα+β+2

2hπ+η Dαβ
η + (α + 1)Jαβ

2hπ,2hπ+η,

where cαβηβ+1 ≤ Dαβ
η ≤ ηβ+1, because η ∈ (0, π/4), and

cαβηβ+1tα+β+2
2hπ+η ≤ cαβηβ

∫ 2hπ+η

2hπ

tα+β+2
ϑ dϑ ≤ Jαβ

2hπ,2hπ+η ≤ ηβ

∫ 2hπ+η

2hπ

tα+β+2
ϑ dϑ.

The claim follows. ��
Remark 4.3 We will use the estimates (4.3) in the proof of the solvability of the end-point
equations. In particular, the computations above are possible thanks to the structure of the
monomials pi : here, their dependence only on the variables x1 and x2, ensured by (1.2),
is crucial. When the coefficients ai depend on all the variables x1, . . . , xn , repeating the
same computations seems difficult. Indeed, in the integrals (4.1) and (4.4) there are also
the coordinates γ3, . . . , γn . Then, the new identity (4.5) becomes more complicated because
other addends appear after the integration by parts, owing to the derivatives of γ3, . . . , γn .
Now, by the presence of these new terms the estimates from below in (4.3) are difficult, while
the estimates from above remain possible.

We denote by κε the rigid translation by ε ∈ R in the x1 direction of the curve κ . Namely,
we let κε,1 = κ1 +ε and κε,2 = κ2. Recall the notation th = ψ(2πh) and thη = ψ(2πh+η),
for h ∈ N and η > 0. In particular, when we take ε j , h j and η j related to the j th correction-
device, we have κε j |Bj = κ̄|Bj .

In the studyof the polynomial part of integrals in (3.15)weneed estimates for the quantities

�
αβ
hηε =

∫
κε |[thη,th ]

pαβ(x1, x2)dx2 −
∫

κ|[thη,th ]
pαβ(x1, x2)dx2.

Lemma 4.4 We have

�
αβ
hηε = (α + 1)ε Iα−1,β

2hπ,2hπ+η + O(ε2), (4.6)

where O(ε2)/ε2 is bounded as ε → 0.

Proof The proof is an elementary computation:

�
αβ
hηε =

∫ th

thη

κ̇2(t)κ2(t)
β
[
(κ1(t) + ε)α+1 − κ1(t)

α+1]dt

=
α∑

i=0

(
α + 1

i

)
εα+1−i

∫ th

thη

κ̇2(t)κ1(t)
iκ2(t)

βdt

=
α∑

i=0

(
α + 1

i

)
εα+1−i I i−1,β

2hπ,2hπ+η

= (α + 1)ε Iα−1,β
2hπ,2hπ+η + O(ε2).

(4.7)

��
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We estimate the terms in (3.13). The quantities �
γ

i are introduced in (4.6).

Lemma 4.5 Let γ be a horizontal spiral with phase ϕ. For all i = 3, . . . , n and for all k ∈ N

large enough we have
∣∣∣
∫
Fk

�
γ

i dt
∣∣∣ ≤

∫
Fk

tαi+βi+2|ϕ̇|dt . (4.8)

Proof By (4.5) with vanishing boundary contributions, we obtain
∣∣∣
∫
Fk

pi (κ)κ̇2dt
∣∣∣ = |Iαiβi

2kπ,2(k+1)π | = αi + 1

αi + βi + 2
|Jαiβi

2kπ,2(k+1)π |

≤ αi + 1

αi + βi + 2

∫
Fk

tαi+βi+2|ϕ̇|dt,

so we are left with the estimate of the integral of ri . Using κ2 = t sin(ϕ(t)) we get∫
Fk
ri (κ)κ̇2dt =

∫
Fk
ri (κ)(sin(ϕ) + t cos(ϕ)ϕ̇)dt

=
∫
Fk

(tri (κ) − Ri ) cos(ϕ)ϕ̇dt,

where we let

Ri (t) =
∫ t

tk+1

ri (κ)ds.

From (1.4), we have |κ(t)| ≤ t for all t ∈ [0, 1]. By part (ii) of Theorem 2.1 we have
|ri (x)| ≤ C‖x‖wi for all x ∈ R

n near 0, with wi = αi + βi + 2. It follows that |ri (κ(t))| ≤
Ctwi for all t ∈ [0, 1], and |Ri (t)| ≤ Ctwi+1. We deduce that

∣∣∣
∫
Fk
ri (κ)κ̇2dt

∣∣∣ ≤ C
∫
Fk

tαi+βi+3|ϕ̇|dt,

and the claim follows. ��
Now we study the integrals in (3.15). Let us introduce the following notation

�
γ
ri = (

ri (κ) − ri (κ̄)
)
κ̇2.

Lemma 4.6 Let γ be a horizontal spiral with phase ϕ. Then for any j = 3, . . . , n and for
|ε j | < th jη j , we have ∣∣∣

∫
Bj

�
γ
ri (t)dt

∣∣∣ ≤ C |ε j |
∫
Bj

twi |ϕ̇(t)|dt, (4.9)

where C > 0 is constant.

Proof For t ∈ Bj we have κ2(t) = κ̄2(t) and κ̄1(t) = κ1(t) + ε j . By Lagrange Theorem it
follows that

δ
γ
ri := ri (κ) − ri (κ̄) = ε j∂1ri (κ

∗(t)),

where κ∗(t) = (κ∗
1 (t), κ2(t)) and κ∗

1 (t) = κ1(t) + σ j , 0 < σ j < ε j . By Theorem 2.1 we
have |∂1ri (x)| ≤ C‖x‖wi−1 and so, also using σ j < ε j < t ,

|∂1ri (κ∗(t))| ≤ C‖κ∗(t)‖wi−1 = C
(
|κ1(t) + σ j | + |κ2(t)|

)wi−1 ≤ Ctwi−1.
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This implies |δγ
ri (t)| ≤ C |ε j |twi−1.

Now, the integral we have to study is
∫
Bj

�
γ
ri dt =

∫
Bj

δ
γ
ri κ̇2dt =

∫
Bj

δ
γ
ri sin ϕdt +

∫
Bj

δ
γ
ri t ϕ̇ cosϕdt .

We integrate by parts the integral without ϕ̇, getting
∫
Bj

δ
γ
ri sin ϕdt =

[
sin ϕ(t)

∫ t

th j η j

δ
γ
ri ds

]t=th j

t=th j η j
−

∫
Bj

{
ϕ̇ cosϕ

∫ t

th j η j

δ
γ
ri ds

}
dt .

Since the boundary term is 0, we obtain
∫
Bj

δ
γ
ri κ̇2dt =

∫
Bj

{
tδγ

ri −
∫ t

th j η j

δ
γ
ri ds

}
ϕ̇ cosϕdt,

and thus
∣∣∣
∫
Bj

δ
γ
ri κ̇2dt

∣∣∣ ≤
∫
Bj

{
t |δγ

ri | +
∫ t

th j η j

|δγ
ri |ds

}
|ϕ̇|dt ≤ C |ε j |

∫
Bj

twi |ϕ̇|dt .

��
Remark 4.7 We stress again the fact that, when the coefficients ai depend on all the variables
x1, . . . , xn , the computations above become less clear. As a matter of fact, there is a non-
commutative effect of the devices due to the varying coordinates γ3, . . . , γn that modifies
the coefficients of the parameters ε j .

5 Solution to the end-point equations

In this section we solve the system of equations Ek,Ē
i = 0, i = 3, . . . , n. The homogeneous

polynomials p j are of the form p j (x1, x2) = x
α j+1
1 x

β j
2 , as in (3.8).

The quantities (3.13), (3.14) and (3.15) are, respectively,
∫
Fk

�
γ

i dt = Iαiβi
k +

∫
Fk
ri (κ(t))dt,

∫
A j

�
γ

i dt = 0,

∫
Bj

�
γ

i dt = −�
αiβi
h jη j ε j

+
∫
Bj

�
γ
ri dt,

(5.1)

where we used the short-notation I αiβi
k = Iαiβi

2πk,2π(k+1). So the end-point equations E
k,Ē
i = 0

read

fi (ε) = bi , i = 3, . . . , n. (5.2)

with

fi (ε) =
n∑
j=3

(
�

αiβi
h jη j ε j

−
∫
Bj

�
γ
ri dt

)
and bi =

∫
Fk

�
γ

i dt .
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We will regard k, h j , and η j as parameters and we will solve the system of equations (5.2)
in the unknowns ε = (ε3, . . . , εn). The functions fi : Rn−2 → R are analytic and the data
bi are estimated from above by (4.8):

|bi | ≤
∫
Fk

twi |ϕ̇|dt . (5.3)

Theorem 5.1 There exist real parameters η3, . . . , ηn > 0 and integers h3 > · · · > hn
such that for all k ∈ N large enough the system of equations (5.2) has a unique solution
ε = (ε3, . . . , εn) satisfying

|ε| ≤ C
n∑

i=3

|bi |, (5.4)

for a constant C > 0 independent of k.

Proof We will use the inverse function theorem. Let A = (
ai j

)
i, j=3,...,n ∈ Mn−2(R) be the

Jacobian matrix of f = ( f3, . . . , fn) in the variables ε = (ε3, . . . , εn) computed at ε = 0.
By (4.6) and Lemma 4.6 we have

ai j = ∂ fi (0)

∂ε j
= (αi + 1)Iαi−1,βi

h jη j
+ o(Iαi−1,βi

h jη j
). (5.5)

Here, we are using the fact that for h j → ∞ we have∫
Bj

twi |ϕ̇|dt = o
( ∫

Bj

twi−1|ϕ̇|dt
)
.

The proof of Theorem 5.1 will be complete if we show that the matrix A is invertible.
We claim that there exist real parameters η3, . . . , ηn > 0 and positive integers h3 > · · · >

hn such that

det(A) �= 0. (5.6)

The proof is by induction on n. When n = 3, the matrix A boils down to the real number
a33. From (5.5) and (4.3) we deduce that for any η3 ∈ (0, π/4) we have

|a33| ≥ 1

2
(α3 + 1)|Iα3−1,β3

h3η3
| ≥ cαβ jα3−1,β3

h3η3
> 0. (5.7)

We can choose h3 ∈ N as large as we wish.
Nowwe prove the inductive step.We assume that (5.6) holds when A is a (n−3)×(n−3)

matrix, n ≥ 4. We develop det(A) with respect to the first column using Laplace formula:

det(A) =
n∑

i=3

(−1)i+1ai3Pi , (5.8)

where

Pi = Pi (a43, . . . , a4n, . . . , âi3, . . . , âin, . . . , an3, . . . , ann)

are the determinants of the minors. By the inductive assumption, there exist η4, . . . , ηn ∈
(0, π/4) and integers h4 > · · · > hn such that |Pi | > 0. By (4.3), for any η3 ∈ (0, π/4) we
have the estimates

c0 j
αi−1,βi
h3η3

≤ |ai3| ≤ C0 j
αi−1,βi
h3η3

, (5.9)
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for absolute constants 0 < c0 < C0. The leading (larger) |ai3| can be found in the following
way. On the set A = {(αi , βi ) ∈ N × N : i = 3, . . . , n} we introduce the order (α, β) <

(α′, β ′) defined by the conditions α + β < α′ + β ′, or α + β = α′ + β ′ and β < β ′. We
denote by (αι, βι) ∈ A, for some ι = 3, . . . , n, the minimal element with respect to this order
relation.

We claim that, given ε0 > 0, for all h3 > h4 large enough and for some 0 < η3 < π/4
the following inequalities hold:

|ai3||Pi | ≤ ε0|aι3Pι|, for i �= ι. (5.10)

In the case when i = 3, . . . , n is such that αi +βi = αι +βι, then we have βi > βι. By (5.9)
and (4.2), inequality (5.10) is implied by η

βi−βι

3 |Pi | ≤ ε0|Pι|, possibly for a smaller ε0. So
we fix η3 ∈ (0, π/4) independently from h3 such that

0 < η3 ≤ min
{(ε0|Pι|

|Pi |
)1/(βi−βι) : i �= ι

}
.

In the case when i = 3, . . . , n is such that αi + βi > αι + βι, inequality (5.10) is implied
by

∫
B3

tαi+βi |ϕ̇(t)|dt ≤ ε0η
βι−βi
3

|Pι|
|Pi |

∫
B3

tαι+βι |ϕ̇(t)|dt .

This holds for all h3 ∈ N large enough.
Now we can estimate from below the determinant of A using (5.10). We have

| det(A)| ≥ |aι3Pι| −
∑
i �=ι

|ai3||Pi | ≥ 1

2
|aι3Pι|

and the last inequality holds for all h3 ∈ N large enough, after fixing η3 > 0. This ends the
proof of the theorem. ��

6 Nonminimality of the spiral

In this section we prove Theorem 1.2. Let γ ∈ AC([0, 1]; M) be a horizontal spiral of the
form (1.4). We work in exponential coordinates of the second type centered at γ (0).

We fix on D the metric g making orthonormal the vector fields X1 and X2 spanning D.
This is without loss of generality, because any other metric is equivalent to this one in a
neighborhood of the center of the spiral. With this choice, the length of γ is the standard
length of its horizontal coordinates and for a spiral as in (1.4) we have

L(γ ) =
∫ 1

0
|κ̇(t)|dt =

∫ 1

0

√
1 + t2ϕ̇(t)2dt . (6.1)

In particular, γ is rectifiable precisely when t ϕ̇ ∈ L1(0, 1), and κ is a Lipschitz curve in the
plane precisely when t ϕ̇ ∈ L∞(0, 1).

For k ∈ N and Ē = (E3, . . . , En), we denote by D(γ ; k, Ē ) the curve constructed in Sect.
3. The devices E j = (h j , η j , ε j ) are chosen in such a way that the parameters h j , η j are
fixed as in Theorem 5.1 and ε3, . . . , εn are the unique solutions to the system (5.2), for k
large enough. In this way the curves γ and D(γ ; k, Ē ) have the same initial and end-point.

123



Non-minimality of spirals in sub-Riemannian manifolds Page 19 of 20   218 

We claim that for k ∈ N large enough the length of D(γ ; k, Ē ) is less than the length of
γ . We denote by �L(k) = L(γ ) − L(D(γ ; k, Ē )) the difference of length and, namely,

�L(k) =
∫
Fk

√
1 + t2ϕ̇(t)2dt −

(
tk − tk+1 + 2

n∑
j=3

|ε j |
)

=
∫
Fk

t2ϕ̇(t)2√
1 + t2ϕ̇(t)2 + 1

dt − 2
n∑
j=3

|ε j |.
(6.2)

By (5.4), there exists a constant C1 > 0 independent of k such that the solution ε =
(ε3, . . . , εn) to the end-point equations (5.2) satisfies

|ε| ≤ C1

n∑
i=3

|Iαiβi
k | ≤ C2

n∑
i=3

∫
Fk

twi |ϕ̇(t)|dt ≤ C3

∫
Fk

t2|ϕ̇(t)|dt . (6.3)

We used (4.3) and the fact that wi ≥ 2. The new constants C2,C3 do not depend on k.
By (6.2) and (6.3), the inequality �L(k) > 0 is implied by

∫
Fk

t2ϕ̇(t)2√
1 + t2ϕ̇(t)2 + 1

dt > C4

∫
Fk

t2|ϕ̇(t)|dt, (6.4)

where C4 is a large constant independent of k. For any k ∈ N, we split the interval Fk =
F+
k ∪ F−

k where

F+
k = {t ∈ Fk : |t ϕ̇(t)| ≥ 1} and F−

k = {t ∈ Fk : |t ϕ̇(t)| < 1}.
On the set F+

k we have
∫
F+
k

t2ϕ̇(t)2√
1 + t2ϕ̇(t)2 + 1

dt ≥ 1

3

∫
F+
k

t |ϕ̇(t)|dt ≥ C4

∫
F+
k

t2|ϕ̇(t)|dt, (6.5)

where the last inequality holds for all k ∈ N large enough, and namely as soon as 3C4tk < 1.
On the set F−

k we have
∫
F−
k

t2ϕ̇(t)2√
1 + t2ϕ̇(t)2 + 1

dt ≥ 1

3

∫
F−
k

t2|ϕ̇(t)|2dt ≥ C4

∫
F−
k

t2|ϕ̇(t)|dt, (6.6)

where the last inequality holds for all k ∈ N large enough, by our assumption on the spiral

lim
t→0+ |ϕ̇(t)| = ∞.

Now (6.5) and (6.6) imply (6.4) and thus �L(k) > 0. This ends the proof of Theorem
1.2.
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