
Journal of Statistical Physics (2020) 179:690–712
https://doi.org/10.1007/s10955-020-02544-w

Oscillatory Behavior in a Model of Non-Markovian Mean Field
Interacting Spins

Paolo Dai Pra1 ·Marco Formentin2,3 · Guglielmo Pelino4

Received: 2 December 2019 / Accepted: 3 April 2020 / Published online: 24 April 2020
© The Author(s) 2020

Abstract
We analyze a non-Markovian mean field interacting spin system, related to the Curie–Weiss
model.We relax theMarkovianity assumption by replacing thememoryless distribution of the
waiting times of a classical spin-flip dynamics with a distribution with memory. The resulting
stochastic evolution for a single particle is a spin-valued renewal process, an example of a two-
state semi-Markov process.We associate to the individual dynamics an equivalentMarkovian
description, which is the subject of our analysis.We study a corresponding interacting particle
system, where a mean field interaction-depending on the magnetization of the system-is
introduced as a time scaling on the waiting times between two successive particle’s jumps.
Via linearization arguments on the Fokker–Planckmeanfield limit equation,we give evidence
of emerging periodic behavior. Specifically, numerical analysis on the discrete spectrumof the
linearized operator, characterized by the zeros of an explicit holomorphic function, suggests
the presence of a Hopf bifurcation for a critical value of the temperature. The presence of a
Hopf bifurcation in the limit equation matches the emergence of a periodic behavior obtained
by simulating the N -particle system.

Keywords Mean field interacting particle systems · Semi-Markov spin systems ·
Curie–Weiss model · Emergence of periodic behavior

Mathematics Subject Classification 60K15 · 60K35 · 82C22 · 82C26

1 Introduction

Emerging periodic behavior in complex systems with a large number of interacting units
is a commonly observed phenomenon in neuroscience [13], ecology [22], socioeconomics
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Oscillatory Behavior in a Model of Mean Field Interacting Spins 691

[4,23] and life sciences in general. From a mathematical standpoint, when modeling such
a phenomenon it is natural to consider large families of microscopic identical units evolv-
ing through noisy interacting dynamics. Single units have no natural tendency to behave
periodically and oscillations are rather an effect of self-organization as they emerge in the
macroscopic limit when the number of particles tends to infinity.Within this modeling frame-
work mean field models have received much attention due to their analytical tractability. For
mean field models one can obtain in closed form the stochastic dynamics of a single unit in
the limit of infinite many units; the time evolution of the associated distribution is a, possibly
infinite-dimensional, dynamical system. Periodic trajectories of this dynamical system cor-
respond to the emergence of self-organized periodic oscillations in the interacting system;
this will be referred to with the term self-sustained periodic behavior. One of the goals of the
mathematical theory in this field is to understand which types of microscopic interactions and
mechanisms can lead to or enhance the above type self-organization. Among others, we cite
noise [10,19,21], dissipation in the interaction potential [1,6,7,9], delay in the transmission
of information and/or frustration in the interaction network [8,11,20]. In particular, in [11]
the authors consider non-Markovian dynamics, studying systems of interacting nonlinear
Hawkes processes for modeling neurons.

Although not proved in general, a strong belief in the literature is that, at least for Marko-
vian dynamics, self-sustained periodic behavior cannot emerge if one does not introduce
some time-irreversible phenomenon in the dynamics, as it is the case in all the above cited
works (see e.g.[3,6,15]). Themodel treated here, inwhich the limit dynamics is still reversible
with respect to the stationary distribution around which cycles emerge (see Remark 1 below),
suggests that this paradigm could be false for the non-Markovian case.

Specifically, we give numerical and mathematical evidence of the emergence of self-
sustained periodic behavior of the empirical magnetization in amean field spin system related
to the Curie–Weiss model, which happens to belong to the following universality class:
it features the presence of a unique stable zero mean phase for values of the parameters
corresponding to high temperatures, the emergence of periodic oscillations in an intermediate
range of the parameter values, and a subsequent ferromagnetic ordered phase for increasingly
lower temperatures. Our recipe consists in replacing the Poisson distribution of the spin-
flip times with another renewal process, thus making the individual spin dynamics non-
Markovian. In details, we consider the distribution of the interarrival times to have tails
proportional to e−tγ+1

, for γ = 1, 2. Then, we introduce an interaction among the spins
via a time rescaling depending on the magnetization of the system. The specific choice
of interarrival time distribution makes the computations developed in Sect. 4 as easiest as
possible (to our knowledge), allowing for an explicit characterization of the discrete spectrum
of the linearization of the limiting Fokker–Planck equation. A question which can arise
naturally is whether similar results can be found for other classes of waiting times. Although
we do not have a general answer to this, we want to remark that simulations with different
distributions highlighted the same characteristics (e.g.Gamma distribution, tails proportional
to e−tγ+1

with γ ∈ R such that γ ≥ 1). All the working examples we considered feature
exponentially or super-exponentially decaying tails. On the other hand, we have examples
of polynomial tails (e.g. inverse Gamma distribution) where no oscillatory behavior was
experienced.

The paper is organized as follows: in Sect. 2we describe themodel and the results obtained.
In particular, before introducing the model (Sect. 2.2), we start by recalling basic facts about
theCurie–Weissmodel and its phase transition (Sect. 2.1); we then proceedwith the results on
the propagation of chaos (Sect. 2.3), and on the linearization of the Fokker–Planck equation
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around a zero mean equilibrium, for two different choices of renewal dynamics (Sect. 2.4).
Notably, we determine the discrete spectrum of the linearized operator in terms of the zeros
of two holomorphic functions. Numerical investigations of the discrete spectrum, studied as
a function of the interaction parameters, show the presence of a Hopf bifurcation: a pair of
complex conjugate eigenvalues of the linearized Fokker–Planck equation around a stationary
solution crosses the complex plane imaginary axis (see Sects. 2.4.1 and 2.4.2). Such a
bifurcation of the mean field limit is reflected in the behavior of the finite particle system.
Indeed, numerical simulations of the empirical magnetization in Sect. 3 confirm the transition
from an incoherent state to self-organized rhythmic oscillations. Section 4 contains the proofs
of the results of Sect. 2.

2 Model and Results

2.1 Motivation

As we mentioned above, the model we consider can be seen as a proper modification of the
Curie–Weiss dynamics. When we refer to the latter, we mean a spin-flip type Markovian
dynamics for a system of N interacting spins σi ∈ {−1, 1}, i = 1, . . . , N . Such dynamics
is reversible with respect to the equilibrium Gibbs probability measure on the space of
configurations {−1, 1}N ,

PN ,β(σ ) := 1

ZN (β)
exp [−βHN (σ )] , (1)

with σ := (σ1, . . . , σN ) ∈ {−1, 1}N , β > 0 (ferromagnetic case), ZN (β) is a normalizing
constant, and HN is the Hamiltonian

HN (σ ) := − 1

2N

(
N∑
i=1

σi

)2

. (2)

Denote also the empiricalmagnetization asmN := 1
N

∑N
i=1 σi . Note that the distribution (1)

gives higher probability to the configurations with minimal energy, which by (2) are the ones
where the individual spins are aligned in the same state. The equilibrium model undergoes
a phase transition tuned by the interaction parameter β > 0, which can be recognized by
proving a Law of Large Numbers for the equilibrium empirical magnetization

Law(mN )
N→+∞−−−−−→

{
δ0, if β ≤ 1,
1
2 δ+mβ + 1

2 δ−mβ , if β > 1,
(3)

where mβ > 0 is the so-called spontaneous magnetization [2,12]. When we turn to the
dynamics, different choices can be made in order to satisfy the above-mentioned reversibility
with respect to (1). The prototype is a continuous-time spin-flip dynamics defined in terms
of the infinitesimal generator L , applied to a function f : {−1, 1}N → R,

L f (σ ) =
N∑
i=1

e−βσi mN
[
f (σ i ) − f (σ )

]
, (4)

where σ i ∈ {−1, 1}N is obtained from σ by flipping the i-th spin. Dynamics (4) induces a
continuous-timeMarkovian evolution for the empirical magnetization processmN (t), which
is given in terms of a generator LN applied to a function g : [−1, 1] → R:
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LN g(m) = N
1 + m

2
e−βm

[
g

(
m − 2

N

)
− g(m)

]
+ N

1 − m

2
eβm

[
g

(
m + 2

N

)
− g(m)

]
.(5)

It is easy to obtain the weak limit of the sequence of processes
(
mN (t)

)
t≥0, by studying the

uniform convergence of the generator (5) as N → +∞ (see e.g. [14]). The limit process
(m(t))t≥0 is deterministic and solves the Curie–Weiss ODE{

ṁ(t) = 2 sinh(βm(t)) − 2m(t) cosh(βm(t)),

m(0) = m0 ∈ [−1, 1]. (6)

The presence of the phase transition highlighted in (3) can be recognized as well in the
out-of-equilibrium dynamical model (6). Indeed, studying the long-term behavior of (6), one
finds that:

– for β ≤ 1, (6) possesses a unique stationary solution, globally attractive, constantly equal
to 0;

– for β > 1, 0 is still stationary but it is unstable; two other symmetric stationary locally
attractive solutions, ±mβ , appear: the two non-zero solutions to m = tanh(βm). The
dynamics m(t) gets attracted for t → +∞ to the polarized stationary state which has
the same sign as the initial magnetization m0.

Another concept which we refer to in what follows is that of renewal process, a gen-
eralization of the Poisson process. We identify a renewal process with the sequence of its
interarrival times (also commonly referred to as sojourn times or waiting times in the litera-
ture) {Tn}∞n=1, i.e. the holding times between the occurrences of two consecutive events. The
Poisson process is characterized by having independent and identically distributed interar-
rival times, where each Ti is exponentially distributed. In particular, thememoryless property
P(Ti > s+ t |Ti > t) = P(Ti > s), holds for any s, t ≥ 0. The interarrival times of a renewal
process are still independent and identically distributed, but their distribution is not required
to be exponential. We recall that a continuous-time homogeneous Markov chain can be iden-
tified by a Poisson process, modeling the jump times, and a stochastic transition matrix,
identifying the possible arrival states at each jump time. Due to the lack of the memoryless
property, when one replaces the Poisson process in the definition of the spin-flip dynamics
with a more general renewal process, the resulting evolution is thus non-Markovian. In the
literature, the associated dynamics is referred to as semi-Markov process, first introduced by
Lévy in [18].

2.2 The Dynamics

Glauber dynamics as the Curie–Weiss dynamics in (4) can be constructed in two stages. First
one system of independent spin-flips: at the times of a Poisson process of intensity 1, the spin
in a given site flips; different sites have independent Poisson processes. Then, the interaction
can be introduced as a spin-dependent time scale in the waiting time for updates. In this
section we illustrate this procedure, and generalize it by replacing the Poisson Process with
a more general renewal process.

For the moment we focus on a single spin σ(t) ∈ {−1, 1}. If driven by a Poisson process
of intensity 1, its dynamics has infinitesimal generator

L f (σ ) = f (−σ) − f (σ ), (7)

123



694 P. D. Pra et al.

with f : {−1, 1} → R. If the Poisson process is replaced by a renewal process, the spin
dynamics is not Markovian. In what follows, we refer to the resulting dynamics as a spin-
valued renewal process, that is an example of q two-state semi-Markov process. We can
associate a Markovian description to the latter: define y(t) as the time elapsed since the last
spin-flip occured up to time t . Suppose that the waiting times τ (interchangeably referred to
as interarrival times) of the renewal satisfy

P(τ > t) = ϕ(t), (8)

for some smooth function ϕ : [0,+∞) → R. Then, the pair (σ (t), y(t))t≥0 is Markovian
with generator

L f (σ, y) = ∂ f

∂ y
(σ, y) + F(y)[ f (−σ, 0) − f (σ, y)], (9)

for f : {−1, 1} × R
+ → R, with

F(y) := −ϕ′(y)
ϕ(y)

. (10)

This is equivalent to say that the couple (σ (t), y(t))t≥0 evolves according to{
(σ (t), y(t)) �→ (−σ(t), 0), with rate F(y(t)),

dy(t) = dt, otherwise.
(11)

Note that the dynamics in (11) is well defined whenever F is continuous and nonnegative.
Moreover, expression (10) for the jump rate follows by observing that, for an interarrival
time τ of the jump process σ(t), we have

P(σ (t + h) = −σ |σ(t) = σ) = 1 − P(τ > t + h|τ > t) = 1 − ϕ(t + h)

ϕ(t)
,

for any h > 0. Observe that when the τ ’s are exponentially distributed F(y) ≡ 1, so we
get back to dynamics (7). Dynamics (9) can be perturbed by allowing the distribution of the
waiting time for a spin-flip to depend on the current spin value σ ; the simplest way is to
model this dependence as a time scaling:

P(τ > t |σ) = ϕ(a(σ )t). (12)

Under this distribution for the waiting times the generator of (σ (t), y(t))t≥0 becomes:

L f (σ, y) = ∂ f

∂ y
(σ, y) + a(σ )F(a(σ )y)[ f (−σ, 0) − f (σ, y)].

On the basis of what seen above, it is rather simple to define a system of mean
field interacting spins with non-exponential waiting times. For a collection of N pairs
(σi (t), yi (t))i=1,...,N , we set mN (t) := 1

N

∑N
i=1 σi (t) to be the magnetization of the sys-

tem at time t . The interacting dynamics is{
(σi (t), yi (t)) �→ (−σi (t), 0), with rate F

(
yi (t)e−βσi (t)mN (t)

)
e−βσi (t)mN (t),

dyi (t) = dt, otherwise.
(13)

where β > 0 is a parameter tuning the interaction between the particles.
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Denoting σ := (σ1, . . . , σN ) ∈ {−1, 1}N , y := (y1, . . . , yN ) ∈ (R+)N , mN :=
1
N

∑N
i=1 σi , the associated infinitesimal generator is

LN f (σ , y) =
N∑
i=1

∂ f

∂ yi
(σ , y) +

N∑
i=1

F
(
yi e

−βσi mN
)
e−βσi mN

[
f (σ i , yi ) − f (σ , y)

]
,

(14)

where σ i is obtained from σ by flipping the i-th spin, while yi by setting to zero the i-th
coordinate. The additional factor e−βσi (t)mN (t) in the jump rate in (13) follows from the
observation we made in (12) and the definition of F(y) = −ϕ′(y)

ϕ(y) . Note that, for F ≡ 1, we
retrieve the Curie–Weiss dynamics (4) for the spins.

2.3 Propagation of Chaos

The macroscopic limit and propagation of chaos for the above class of models should be
standard, although some difficultiesmay arise for general choices of F not globally Lipschitz.
For computational reasons which will be made clear below, we focus on the case F(y) = yγ ,
for γ ∈ N, which corresponds to considering, in the single spin model (9), the tails of the

distribution of the interarrival times to be ϕ(t) ∝ e− tγ+1
γ+1 .

When F(y) = yγ , (13) becomes{
(σi (t), yi (t)) �→ (−σi (t), 0), with rate yγ

i (t)e−(γ+1)βσi (t)mN (t),

dyi (t) = dt, otherwise.
(15)

As for the Curie–Weiss model, dynamics (15) is subject to a cooperative-type interaction: the
spin-flip rate is larger for particles which are not aligned with the majority. Assuming prop-
agation of chaos, at the macroscopic limit N → +∞ the representative particle (σ (t), y(t))
has a mean-field dynamics{

(σ (t), y(t)) �→ (−σ(t), 0), with rate yγ (t)e−(γ+1)βσ(t)m(t),

dy(t) = dt, otherwise,
(16)

withm(t) = E[σ(t)]. To this dynamicswe can associate (see [17]) the non-linear infinitesimal
generator L(m(t)) with depends on the value of m(t) and acts on a function f (σ, y) as
follows:

L(m(t)) f (σ, y) = ∂ f

∂ y
(σ, y) + yγ e−(γ+1)βσm(t) [ f (−σ, 0) − f (σ, y)] , (17)

where the non-linearity is due to the dependence of the generator on m(t), a function of the
joint law at time t of the processes (σ (t), y(t)). In Sect. 4 we study rigorously the well-
posedeness of the pre-limit and limit dynamics and the propagation of chaos. The main result
is collected in the following

Theorem 1 (Propagation of chaos) Fix γ ∈ N, and let T > 0 be the final time in (15)
and (16). Assume that (σi (0), yi (0))i=1,...,N areμ0-chaotic for some probability distribution
μ0 on {−1, 1} × R

+. Then, the sequence of empirical measures (μN
t )t∈[0,T ] converges in

distribution on the path space (in the sense of weak convergence of probability measures) to
the deterministic law (μt )t∈[0,T ] of the unique solution to Eq. (16) with initial distribution
μ0.
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2.4 Local Analysis of the Fokker–Planck

In this section we illustrate the results on the local analysis of the Fokker–Planck equation for
the mean field limit dynamics (16) with γ = 1 and γ = 2. We adopt the following approach:
we find a stationary solution of interest, then we linearize formally the dynamics around that
equilibrium. The specific choice of the values of γ allows for an explicit characterization of
the discrete spectrum of the linearization of the Fokker–Planck equation. Indeed, we compute
the discrete spectrum of the associated linearized operator, which we show to be given by the
zeros of an explicit holomorphic function Hβ,γ (λ). We then study numerically the character
of the eigenvalues when β varies: for both γ = 1, 2, we find that for all β < βc(γ ) all eigen-
values have negative real part; at βc(γ ) two eigenvalues are conjugate and purely imaginary,
suggesting the possible presence of a Hopf bifurcation in the limit dynamics. These critical
values of β are then compared to the ones estimated from the simulations of the finite particle
system in Sect. 3.

The Fokker–Planck equation associated to (16) is a PDE describing the time evolution of
the density function f (t, σ, y) of the limit process (σ (t), y(t)). It is given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂
∂t f (t, σ, y) + ∂

∂ y f (t, σ, y) + yγ e−(γ+1)βσm(t) f (t, σ, y) = 0,

f (t, σ, 0) = ∫ +∞
0 yγ e(γ+1)βσm(t) f (t,−σ, y)dy,

m(t) = ∫∞
0 [ f (t, 1, y) − f (t,−1, y)]dy,

1 = ∫∞
0 [ f (t, 1, y) + f (t,−1, y)]dy,

f (0, σ, y) = f0(σ, y), for σ ∈ {−1, 1} , y ∈ R
+.

(18)

We postpone a derivation of the Fokker–Planck equation to Sect. 4.1. Here we just spend a
few words on the boundary integral condition - second line of System (18) - which is specific
to our model and may not be clear at first sight. It is a mass-balance condition: heuristically,
at each time t , the mass of the spins at state (σ, 0) (i.e. f (t, σ, 0)) equals the spins just
jumped from (−σ, y) weighted with their probabilities (i.e. yγ e(γ+1)βσm(t) f (t,−σ, y)dy)
integrated over all the possible jump times. While a general study of (18) is beyond the scope
of this work, here we just observe that (18) can be seen as a system of two quasilinear PDEs
(one for σ = 1 and another for σ = −1), where the non-linearity enters in an integral form
throughm(t) in the exponent of the rate function. Moreover, the boundary integral condition
in the second line poses additional challenges. Nevertheless, it is easy to exhibit a particular
stationary solution to (18):

Proposition 1 The function

f ∗(σ, y) = 1

2Λ
e− yγ+1

γ+1 , (19)

with Λ := ∫ +∞
0 e− yγ+1

γ+1 dy, is a stationary solution to Sys. (18) with m = 0.

Remark 1 Let g∗(σ ) be the marginal of f ∗(σ, y) with respect to the first coordinate. Then,
g∗(σ ) is a stationary reversible distribution for the limit renewal process (σ (t))t≥0. Indeed,
by choosing σ(0) ∼ g∗, g∗(1) = g∗(−1) = 1

2 , we have that m(t) ≡ 0 and (σ (t))t≥0 is a

renewal process with interarrival times τ such that P(τ > t) ∝ e− tγ+1
γ+1 independently of the

value of σ , so its law is invariant by time reversal.
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The linearization of the operator associated to Sys. (18) around the equilibrium (19), yields
the following eigen-system⎧⎪⎪⎨

⎪⎪⎩
∂
∂ y g(σ, y) + yγ g(σ, y) − βσk(γ+1)

2Λ yγ e− yγ+1

γ+1 = −λg(σ, y),

g(σ, 0) = βσk(γ+1)
2Λ + ∫∞

0 g(−σ, y)yγ dy,∫∞
0 [g(σ, y) + g(−σ, y)]dy = 0, (σ, y) ∈ {−1, 1} × R

+,

(20)

where k = 2
∫∞
0 g(1, y)dy, and Λ = ∫∞

0 e− yγ+1

γ+1 dy. For a formal derivation see Sect. 4.3.1.
We work out the computations of the discrete spectrum of the linearized operator for the two
cases γ = 1, γ = 2.

2.4.1 Case � = 1

In this case, Λ =
√

π
2 , and the eigen-system (20) becomes⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂
∂ y g(σ, y) + yg(σ, y) + λg(σ, y) = βσk

(√
π
2

)−1
ye− y2

2

g(σ, 0) = βσk
(√

π
2

)−1 + ∫∞
0 yg(−σ, y)dy,∫∞

0 [g(σ, y) + g(−σ, y)]dy = 0,

(21)

where k = 2
∫∞
0 g(1, y)dy. The eigenvalues of (21) are given by the zeros of an explicit

holomorphic function.

Proposition 2 The solutions in λ ∈ C to (21) are the zeros of the holomorphic function

Hβ,1(λ) := H1(λ)

[
−4β − λ3

√
π

2

]
+ √

2πλ2 − 4βλ + 2β
√
2π, (22)

with

H1(λ) :=
∫ ∞

0
e− y2

2 e−λydy. (23)

Moreover, it holds

H1(λ) =
√

π

2

∞∑
m=0

λ2m

(2m)!! − λ

∞∑
m=0

(2λ)2mm!
(2m + 1)!

1

2m
. (24)

Equation Hβ,1(λ) = 0 can be numerically investigated. We used the power series expansion
(24) and a numerical root finding built-in function of the software Mathematica, specifi-
cally FindRoot, starting the search from different initial points of the complex plane and
from different values of β. Here we report the results:

(1.1) we find two conjugate purely imaginary solutions to Hβ,1(λ) = 0, for λ = ± λc(1) :=
±i(1.171) and

β = βc(1) := 0.769; (25)

(1.2) iterating the search around (βc(1), λc(1)), the resulting complex eigenvalue goes from
having a negative real part for β < βc(1) to a positive real part for β > βc(1);

(1.3) no other purely immaginary solution λ = ± i x is found for 0 ≤ x ≤ 500 and
0 ≤ β ≤ 20;
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(1.4) for β < βc(1) all the eigenvalues λ = i x + y are such that y < 0. This was verified
for −100 ≤ x ≤ 100, −100 ≤ y ≤ 100.

2.4.2 Case � = 2

In this case the eigen-system is given by⎧⎪⎪⎨
⎪⎪⎩

∂
∂ y g(σ, y) + y2g(σ, y) + λg(σ, y) = 3

2Λβσky2e− y3

3 ,

g(σ, 0) = 3
2Λβσk + ∫∞

0 y2g(−σ, y)dy,∫∞
0 [g(σ, y) + g(−σ, y)]dy = 0,

(26)

where Λ = ∫∞
0 e− y3

3 dy = Γ
(
1
3

)
32/3

, k = 2
∫∞
0 g(1, y)dy, and Γ (·) is the Gamma function.

Analogously to the case γ = 1, the eigenvalues of (26) can be computed as the zeros of an
explicit holomorphic function.

Proposition 3 The solutions in λ ∈ C to (26) are the zeros of the holomorphic function

Hβ,2(λ) := H2(λ)

[
12β − λ4Λ + 6βλΛ − 6βλ31/3Γ (4/3) + 3βλ232/3Γ (5/3)

− 6βλ2
Γ (2/3)

31/3

]
+
[
2Λλ3 − 12βΛ + 12β

Γ (2/3)

31/3
λ − 6βλ2

]
,

(27)

with

H2(λ) :=
∫ ∞

0
e−λye− y3

3 dy. (28)

Moreover, it holds

H2(λ) =
∞∑
n=0

(−1)n
λn

n! 3
1
3 (n−2)Γ

(
n + 1

3

)
. (29)

We solved numerically Hβ,2(λ) = 0 for different values of the parameters. Apart from
being sensibly slower, it seems the numerical root finding for γ = 2 suffers from numerical
instability issues. This is why we were able to check the results for much smaller intervals
in this case. Our results are the following:

(2.1) we find two conjugate purely imaginary solutions λ = ±λc(2) := ±i(1.978)
for

β = βc(2) := 0.362; (30)

(2.2) analogous to (1.2);
(2.3) analogous to (1.3), verified for 0 ≤ x ≤ 10 and 0 ≤ β ≤ 5;
(2.4) analogous to (1.4), verified for −25 ≤ x ≤ 25, −25 ≤ y ≤ 25.
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3 Finite Particle System Simulations

We ran several simulations of the particle system with N = 1500 spins for γ = 1, 2. Sim-
ulations are in accordance with the above numerical results on the eigenvalues. In particular,
above the critical values of β (see (25) and (30)) periodic behavior of the finite interacting
particle system appears. Description of the evidences is the following:

– For β small the magnetization goes to zero regardless of the initial datum (Fig. 1).
– There is a critical β (around 0.75 for γ = 1, around 0.35 for γ = 2) above which the

magnetization starts oscillating. Close to the critical point oscillations do not look very
regular (corrupted by noise?), but they soon become very regular if β is not too close
to the critical value (see Fig. 2). We also made joint plots of the magnetization with the
empirical mean of the yi ’s (Fig. 3). Periodic oscillations seems to emerge.

– As β increases, the amplitude of the oscillation of the magnetization increases, while the
period looks nearly constant (see Fig. 4). As β crosses another critical value (around 1.3
for γ = 1, around 1.65 for γ = 2) oscillations disappear, and the system magnetizes,
i.e. the magnetization stabilizes to a non-zero value, actually close to ±1 (Fig. 5).

(a) (b)

Fig. 1 Simulation of the finite particle system dynamics (15) for γ = 1 (left) and γ = 2 (right). The plot
shows the time evolution of the empirical magnetization of N = 1500 spins. In the picture is depicted the
evolution of magnetization, with initial data σi (0) = 1 for every i = 1, . . . , N . Simulations suggest that the
zero mean trajectory is attractive and the magnetization goes to zero regardless of the initial datum

(a) (b)

Fig. 2 Simulation of the finite particle system dynamics (15) for γ = 1 (left) and γ = 2 (right), with number
of spins N = 1500. Increasing the value of β oscillations of the empirical magnetization appear. Initially not
very regular, the rhythmic behavior becomes evident for larger β as shown in Fig. 3 and 4
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(a) (b)

Fig. 3 Above a critical value of β the dynamics defined in (15) is periodic. In the figure the time evolution of
the pair (mN (t), yN (t)) is plotted for N = 1500 particles. Here mN (t) is the empirical magnetization of the
spins, whereas yN (t) indicates the empirical mean of the yi ’s

(a) (b)

Fig. 4 Simulation of the finite particle system dynamics (15) for γ = 1 (left) and γ = 2 (right), with number
of spins N = 1500. For β above a critical value the empirical magnetization has a clear periodic behavior

(a) (b)

Fig. 5 Increasing β further above the first critical value, the system (15) crosses a second critical value above
which oscillations disappear, and the system magnetizes, i.e. the magnetization stabilizes to a non-zero value.
The simulation in the figure shows the evolution of the empirical magnetization for a system comprised of
N = 1500 spins

– The oscillations are lasting for a wider interval of β’s for γ = 2 (from β ≈ 0.35 until
β ≈ 1.65) than γ = 1 (from β ≈ 0.75 until β ≈ 1.3). The period is instead smaller for
γ = 2 than for γ = 1.
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Oscillatory Behavior in a Model of Mean Field Interacting Spins 701

– For both γ = 1, 2, the appearance of oscillations in the particle system dynamics does
not seem to depend on the initial data. This behavior of the finite volume system may
reflect the presence of a global Hopf bifurcation in the mean field limit dynamics.

4 Proofs

4.1 Formal Derivation of the Fokker–Planck Equation

We give a sketch of the derivation of the Fokker–Planck equation (18). Let the pro-
cess (σ (t), y(t))t≥0 be distributed at time t according to some distribution dm(t, σ, y) ∈
P ({−1, 1} × [0,+∞)), which we assume to be regular in y, i.e. absolutely continuous
with respect to the Lebesgue measure on [0,+∞), with a smooth density f (t, σ, y)dy.
Let h : {−1, 1} × [0,+∞) → R be a smooth function, and compute

d

dt
E [h(σ (t), y(t))] = E [L(m(t))h(σ (t), y(t))] ,

with m(t) := ∫
[0,+∞)

[ f (t, 1, y) − f (t,−1, y)]dy. Under our regularity assumptions, the
above expression is equivalent to

∫
[0,+∞)

h(1, y)
∂

∂t
f (t, 1, y)dy +

∫
[0,+∞)

h(−1, y)
∂

∂t
f (t,−1, y)dy

=
∫

[0,+∞)

∂

∂ y
h(1, y) f (t, 1, y)dy +

∫
[0,+∞)

∂

∂ y
h(−1, y) f (t,−1, y)dy

+
∫

[0,+∞)

yγ e−(γ+1)βm(t) [h(−1, 0) − h1, y)] f (t, 1, y)dy

+
∫

[0,+∞)

yγ e(γ+1)βm(t) [h(1, 0) − h(−1, y)] f (t,−1, y)dy.

Integrating by parts in the first two integrals on the right hand side of the equality, and
regrouping the terms, one finds

∫
[0,+∞)

h(1, y)

[
∂

∂t
f (t, 1, y) + ∂

∂ y
f (t, 1, y) + yγ e−(γ+1)βm(t) f (t, 1, y)

]
dy

+
∫

[0,+∞)

h(−1, y)

[
∂

∂t
f (t,−1, y) + ∂

∂ y
f (t,−1, y) + yγ e(γ+1)βm(t) f (t,−1, y)

]
dy

+ h(1, 0)

[
f (t, 1, 0) −

∫
[0,+∞)

yγ e(γ+1)βm(t) f (t,−1, y)dy

]

+ h(−1, 0)

[
f (t,−1, 0) −

∫
[0,+∞)

yγ e−(γ+1)βm(t) f (t, 1, y)dy

]
= 0,

which, by the arbitrariness of h implies the first two equations in (18); the definition of m(t)
and the requirement for f to be a density function over {−1, 1} × [0,+∞) complete the
equations in (18).
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4.2 Proof of Theorem 1

Here we prove rigorously a propagation of chaos property for the N -particle dynamics to its
mean-field limit, for any γ ∈ N. Actually, we establish the proofs for γ = 1, where the rates
enjoy globally Lipschitz properties, and then we generalize them to any γ ∈ N in Remark
2. The generalization to non-Lipschitz rates is possible because of the a-priori bound on the
variables yi ’s which, by definition, are such that 0 ≤ yi ≤ T , where T < ∞ is the final time
horizon of the dynamics. For the convenience of the reader, we write again the dynamics{

(σi (t), yi (t)) �→ (−σi (t), 0), with rate yγ

i (t)e−(γ+1)βσi (t)mN (t),

dyi (t) = dt, otherwise,
(31)

and the mean-field version{
(σ (t), y(t)) �→ (−σ(t), 0), with rate yγ (t)e−(γ+1)βσ(t)m(t),

dy(t) = dt, otherwise,
(32)

with m(t) = E[σ(t)]. We represent both the microscopic and the macroscopic model as
solutions of certain stochastic differential equations driven by Poisson random measures, in
order to apply the results in [16]. As anticipated, in the proof we restrict to a finite interval
of time [0, T ].

To begin with, let us fix a filtered probability space
(
(,F,P), (Ft )t∈[0,T ]

)
satisfying the

usual hypotheses, rich enough to carry an independent and identically distributed collection
N , (Ni )i∈N of stationary Poisson random measures on [0, T ] × Ξ , with intensity measure ν

on Ξ := [0,+∞) equal to the restriction of the Lebesgue measure on [0,+∞). For any N ,
consider the system of Itô-Skorohod equations{

σi (t) = σi (0) + ∫ t
0

∫
Ξ

f1(σi (s−), ξ,mN (s−), yi (s−))Ni (ds, dξ),

yi (t) = yi (0) + t + ∫ t
0

∫
Ξ

f2(σi (s−), ξ,mN (s−), yi (s−))Ni (ds, dξ),
(33)

and the corresponding limit non-linear reference particle’s dynamics{
σ(t) = σ(0) + ∫ t

0

∫
Ξ

f1(σ (s−), ξ,m(s−), y(s−))N (ds, dξ),

y(t) = y(0) + t + ∫ t
0

∫
Ξ

f2(σ (s−), ξ,m(s−), y(s−))N (ds, dξ).
(34)

The functions f1, f2 : {−1, 1} × R
+ × [−1, 1] × R

+ → R, modeling the jumps of the
process, are given by

f1(σ, ξ,m, y) := −2σ1]0,λ[(ξ), f2(σ, ξ,m, y) := −y1]0,λ[(ξ), (35)

with λ := λ(σ,m, y) being the rate function λ(σ,m, y) = yγ e−(γ+1)βσm .

Proposition 4 For γ = 1, Eqs. (33) and (34) possess a unique strong solution for t ∈ [0, T ].

Proof With the choices in (35), thewell-posedeness ofEqs.(33) and (34) followsbyTheorems
1.2 and 2.1 in [16]. Indeed, even though the function f2 is not globally Lipschitz continuous
in y, the L1 Lipschitz assumption of the theorem still holds, by noting that
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∫
Ξ

∣∣∣ f2(σ, ξ,m, y) − f2(σ̃ , ξ, m̃, ỹ)
∣∣∣dξ =

∫
Ξ

∣∣∣y1]0,λ(σ,m,y)[(ξ) − ỹ1]0,λ(σ̃ ,m̃,ỹ)[(ξ)

∣∣∣dξ

≤ |y|∣∣λ(σ,m, y) − λ(σ̃ , m̃, ỹ)
∣∣+ ∣∣λ(σ̃ , m̃, ỹ)

∣∣∣∣y − ỹ
∣∣

≤ |y|[∣∣λ(σ,m, y) − λ(σ̃ , m̃, ỹ)
∣∣+ ∣∣λ(σ̃ , m̃, ỹ)

∣∣|y − ỹ|]
≤ CT

[|m − m̃| + |y − ỹ| + |σ − σ̃ |],
where in the last step we have used that, by construction, the processes yi (t) ≤ T for every
t ∈ [0, T ], so that the rates are a priori bounded and the Lipschitz properties of ye−2βσm for
(y, σ,m) ∈ R

+ × {−1, 1} × [−1, 1]. ��

Now, define the empirical measures μN := 1
N

∑N
i=1 δ(σi ,yi ), and their evaluation along

the paths of (33),

μN
t := 1

N

N∑
i=1

δ(σi (t),yi (t)). (36)

The measures (μN
t )t∈[0,T ] can be viewed as random variables with values in P(D), the

space of probability measures on D, where D := D([0, T ]; {−1, 1} × R
+) is the space of

{−1, 1} × R
+-valued càdlàg functions equipped with the Skorohod topology.

Proof of Theorem 1 Consider the i.i.d. processes (σ̃i (t), ỹi (t))i=1,...,N , coupled with the N -
particle dynamics (σi (t), yi (t))i=1,...,N ,{

σ̃i (t) = σ̃i (0) + ∫ t
0

∫
Ξ

f1(σ̃i (s−), ξ,m(s−), ỹi (s−))Ni (ds, dξ),

ỹi (t) = ỹi (0) + t + ∫ t
0

∫
Ξ

f2(σ̃i (s−), ξ,m(s−), ỹi (s−))Ni (ds, dξ),
(37)

with m(t) = E[σ̃i (t)]. Let (μ̃N
t )t∈[0,T ] be the empirical measure associated to (37). Clearly,

one has (μ̃N
t )t∈[0,T ] → (μt )t∈[0,T ] in the weak convergence sense (by a functional LLN, see

[16] for e.g.) where (μt )t∈[0,T ] is the deterministic law of the unique solution to Eq.(16) with
initial distribution μ0. We are thus left to show

d1
(
Law

(
(μN

t )t∈[0,T ]
)
,Law

(
(μ̃N

t )t∈[0,T ]
)) N→+∞−−−−−→ 0,

with d1 being the 1-Wasserstein distance (whichmetrizes theweak convergence of probability
measures) on P(P(D)). Since (for instance see [9])

d1
(
Law

(
(μN

t )t∈[0,T ]
)
,Law

(
(μ̃N

t )t∈[0,T ]
)) ≤ 1

N

N∑
i=1

E
[
dSko

(
(σi , yi ), (σ̃i , ỹi )

)]
,

with dSko the Skorohod metric on D, it is enough to show that

1

N

N∑
i=1

E

[
sup

t∈[0,T ]

(
|σi (t) − σ̃i (t)| + |yi (t) − ỹi (t)|

)]
N→+∞−−−−−→ 0. (38)

The proof of (38) starts with the following inequalities which make use of the bounds for
f2 in Proposition 4. In the subsequent inequalities the value of the constant C may change
from line to line. We have:
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E

[
sup

s∈[0,t]
|yi (s) − ỹi (s)|

]
≤ E

[
|yi (0) − ỹi (0)|

]

+ C
∫ t

0
E

[
|mN (s) − m(s)| + |yi (s) − ỹi (s)| + |σi (s) − σ̃i (s)|

]
ds ≤ C

∫ t

0
E

[
sup

r∈[0,s]
|mN (r) − m(r)| + sup

r∈[0,s]
|yi (r) − ỹi (r)| + sup

r∈[0,s]
|σi (r) − σ̃i (r)|

]
ds + C(N ),

withC(N )
N→+∞−−−−−→ 0 because of the chaoticity assumption on the initial datum.We proceed

similarly for the σi ’s, using the the Lipschitz continuity of f1, we obtain

E

[
sup

s∈[0,t]
|σi (s) − σ̃i (s)|

]
≤ E

[
|σi (0) − σ̃i (0)|

]

+ C
∫ t

0
E

[
|mN (s) − m(s)| + |yi (s) − ỹi (s)| + |σi (s) − σ̃i (s)|

]
ds ≤ C

∫ t

0
E

[
sup

r∈[0,s]
|mN (r) − m(r)| + sup

r∈[0,s]
|yi (r) − ỹi (r)| + sup

r∈[0,s]
|σi (r) − σ̃i (r)|

]
ds + C(N ).

Denoting m̃N (t) := 1
N

∑N
i=1 σ̃i (t), we find

E

[
sup

s∈[0,t]
|mN (s) − m(s)|

]
≤ E

[
sup

s∈[0,t]
|mN (s) − m̃N (s)|

]
+ E

[
sup

s∈[0,t]
|m̃N (s) − m(s)|

]

≤ 1

N

N∑
j=1

E

[
sup

s∈[0,t]
|σ j (s) − σ̃ j (s)|

]
+ E

[
sup

s∈[0,t]
|m̃N (s) − m(s)|

]

= E

[
sup

s∈[0,t]
|σi (s) − σ̃i (s)|

]
+ C(N ),

with C(N )
N→+∞−−−−−→ 0 because of the chaoticity of the i.i.d. processes (σ̃i (t), ỹi (t))i=1,...,N ,

and where in the equality we have used the exchangeability of the processes (σi , σ̃i )i=1,...,N .
Collecting the estimates, we have shown, for any t ∈ [0, T ],

1

N

N∑
i=1

{
E

[
sup

s∈[0,t]
|σi (s) − σ̃i (s)|

]
+ E

[
sup

s∈[0,t]
|yi (s) − ỹi (s)|

]}

≤ C(N ) + C
∫ t

0

1

N

N∑
i=1

E

[
sup

r∈[0,s]
|σi (r) − σ̃i (r)| + sup

r∈[0,s]
|yi (r) − ỹi (r)|

]
ds,

which by the Gronwall’s lemma applied to

φ(t) := 1

N

N∑
i=1

{
E

[
sup

s∈[0,t]
|σi (s) − σ̃i (s)|

]
+ E

[
sup

s∈[0,t]
|yi (s) − ỹi (s)|

]}
,

implies (38), because φ(T ) is an upper bound for the left hand side of (38). ��
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Remark 2 Proposition 4 and the proof of Theorem 1 can be generalized to any γ ∈ N. Indeed,
analogous Lipschitz L1 estimates on the rates of Proposition 4 (used also in Theorem 1) hold
by estimating∣∣λ(σ,m, y) − λ(σ̃ , m̃, ỹ)

∣∣ = ∣∣yγ e−(γ+1)βmσ − ỹγ e−(γ+1)βm̃σ̃
∣∣

≤ ∣∣yγ e−(γ+1)βmσ − ỹγ e−(γ+1)βmσ
∣∣+ ∣∣ỹγ e−(γ+1)βmσ − ỹγ e−(γ+1)βm̃σ̃

∣∣
≤ ∣∣e−(γ+1)βmσ

∣∣∣∣yγ − ỹγ
∣∣+ ỹγ

∣∣e−(γ+1)βmσ − e−(γ+1)βm̃σ̃
∣∣

≤ C
∣∣y − ỹ

∣∣∣∣p(y, ỹ)∣∣+ ỹγ
[
C |m − m̃| + C |σ − σ̃ |

]
≤ C

[
|y − ỹ| + |m − m̃| + |σ − σ̃ |

]
,

with p(y, ỹ) a polynomial of degree γ − 1. In the last step we have used the a priori bounds
on y ≤ T to get |p(y, ỹ)| ≤ C(T ) and the Lipschitz properties of e−(γ+1)βmσ for (σ,m) ∈
{−1, 1} × [−1, 1].

4.3 Proofs of the Local Analysis of Sect. 2.4

In this section we address the proofs of the results illustrated in Sect. 2.4.

Proof of Proposition 1 Setting m = 0 in Sys. (18), the stationary version of the first equation
becomes

∂

∂ y
f (σ, y) + yγ f (σ, y) = 0, (39)

whose solution is of the form f ∗(σ, y) = c(σ ) f (σ, 0)e− yγ+1

γ+1 .DenotingΛ := ∫ +∞
0 e− yγ+1

γ+1 dy,
it is easy to see that the integral conditions imply c(σ ) = c(−σ) = 1

Λ
and f (σ, 0) =

f (−σ, 0) = 1
2 . ��

4.3.1 Formal Derivation of Sys.(20)

We now compute formally the linearization of the operator associated to Sys.(18) around the
solution (19) with m = 0. Namely, if we write the first equation in (18) in operator form

∂

∂t
f (t, σ, y) − Lnl

γ f (t, σ, y) = 0,

with Lnl
γ f (t, σ, y) := − ∂

∂ y f (t, σ, y) − yγ e−(γ+1)βσm(t) f (t, σ, y), we want to find the lin-

earized version of the operator Lnl
γ .

For the purpose, we express a generic stationary solution to (18) as

f (σ, y) = f ∗(σ, y) + εg(σ, y),

where f ∗ is the stationary solution corresponding to m = 0 and g satisfies the condition∫ ∞

0
[g(1, y) + g(−1, y)]dy = 0, (40)

so that
∫∞
0 [ f (1, y) + f (−1, y)]dy = 1 holds. We also denote m f := ∫∞

0 [ f (1, y) −
f (−1, y)]dy, which by the above consideration satisfies

m f = 2ε
∫ ∞

0
g(1, y)dy =: εk. (41)
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The stationary version of the first equation in (18) becomes

∂

∂ y
f ∗(σ, y) + ε

∂

∂ y
g(σ, y) + yγ e−βσεk(γ+1)[ f ∗(σ, y) + εg(σ, y)] = 0.

By expanding at the first order in ε the term e−βσεk(γ+1) ≈ 1 − (γ + 1)βσεk, and by
considering only the resulting linear terms in ε, we get

∂

∂ y
f ∗(σ, y) + ε

∂

∂ y
g(σ, y) + yγ f ∗(σ, y) + yγ εg(σ, y) − yγ (γ + 1)βσεk f ∗(σ, y) = 0.

Finally, using that f ∗ solves (39) and substituting its expression (19), we get

∂

∂ y
g(σ, y) + yγ g(σ, y) − βσk(γ + 1)

2Λ
yγ e− yγ+1

γ+1 = 0.

We can define the linearized operator as

Llin
γ g(σ, y) := − ∂

∂ y
g(σ, y) − yγ g(σ, y) + βσk(γ + 1)

2Λ
yγ e− yγ+1

γ+1 . (42)

We proceed with the linearization of the integral condition in the second line of Sys.(18):

f ∗(σ, 0) + εg(σ, 0) =
∫ ∞

0
[ f ∗(−σ, y) + εg(−σ, y)]yγ eβσεk(γ+1)dy

≈
∫ ∞

0
f ∗(−σ, y)yγ (1 + βσεk(γ + 1))dy + ε

∫ ∞

0
g(−σ, y)yγ (1 + βσεk(γ + 1))dy

≈
∫ ∞

0
f ∗(−σ, y)yγ dy + βσεk(γ + 1)

∫ ∞

0
f ∗(−σ, y)yγ dy + ε

∫ ∞

0
g(−σ, y)yγ dy.

Using again that f ∗ solves (39) and its expression in (19), we get

g(σ, 0) = βσk(γ + 1)

2Λ
+
∫ ∞

0
g(−σ, y)yγ dy. (43)

In order to gain indications on the stability properties of the stationary solution to (18)
with m = 0, we study the discrete spectrum of Llin

γ defined in (42), i.e., we search for the
eigenfunctions g and the eigenvalues λ ∈ C, satisfying the linearized integral conditions (40)
and (43) found above, and such that

Llin
γ g(σ, y) = λg(σ, y), (44)

which is equivalent to

∂

∂ y
g(σ, y) + yγ g(σ, y) − βσk(γ + 1)

2Λ
yγ e− yγ+1

γ+1 = −λg(σ, y). (45)

The eigen-system around m = 0 is thus given by (20), where, recall by (41), k =
2
∫∞
0 g(1, y)dy, and Λ = ∫∞

0 e− yγ+1

γ+1 dy.

Remark 3 The derivation of the linearized operator (44) was formal. One could think to
define it more rigorously, by indicating an Hilbert space where Llin

γ acts on. The natural

choice appears to be (a subspace of)
(
L2

μγ

(
R

+))2 satisfying conditions (40) and (43), where
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the outer square comes from the explicitation of the spin variable σ = ±1, and the measure
μγ is defined as

μγ (dy) := f ∗(σ, y)dy = 1

2Λ
e− yγ+1

γ+1 dy. (46)

As in the computations we do not use the particular choice of domain of the operator or its
properties, we do not investigate further on this.

Proof of Proposition 2 Recall that in this case we have γ = 1. In order to solve the first

equation in (21), we set h(σ, y) := g(σ, y)e
y2

2 . It holds

∂

∂ y
h(σ, y) = −λh(σ, y) + yβσk√

π
2

,

whose solution is

h(σ, y) = e−λy

⎡
⎣h(σ, 0) + βσk√

π
2

∫ y

0
ueλudu

⎤
⎦ .

Noting that
∫ y
0 ueλudu = 1

λ2
− eλy

λ2
+ eλy

λ
y, we obtain

g(σ, y) = e− y2

2 e−λy

⎡
⎣g(σ, 0) + βσk√

π
2

(
1

λ2
− eλy

λ2
+ eλy

λ
y

)⎤⎦ . (47)

We now impose the integral conditions. First, we note that
∫∞
0 [g(σ, y) + g(−σ, y)]dy = 0

is equivalent to g(σ, y) + g(−σ, y) = 0 for every y ∈ R
+ because of expression (47). For

the computation of k, recalling notation (23), we find

k = 2
∫ ∞

0
g(1, y)dy = 2g(1, 0)H1(λ) + 2

βk√
π
2

1

λ2
H1(λ) − 2

βk

λ2

1√
π
2

√
π

2
+ 2

βk√
π
2

1

λ
,

so that

k = 2g(1, 0)H1(λ)

1 − 2 β

λ
√

π
2

− 2 βH1(λ)

λ2
√

π
2

+ 2 β

λ2

. (48)

The integral condition in the second line of (21) gives

g(σ, 0) = βσk√
π
2

+
∫ ∞

0
y

⎡
⎣e− y2

2 e−λy

⎛
⎝g(−σ, 0) − βσk√

π
2

(
1

λ2
− eλy

λ2
+ eλy

λ
y

)⎞⎠
⎤
⎦ dy

= βσk√
π
2

− g(σ, 0)(1 − λH1(λ)) − βσk√
π
2

(1 − λH1(λ))

λ2

+ 1

λ2

βσk√
π
2

− 1

λ

βσk√
π
2

∫ ∞

0
y2e− y2

2 dy

= βσk√
π
2

− g(σ, 0)(1 − λH1(λ)) − (1 − λH1(λ))

λ2

βσk√
π
2

+ 1

λ2

βσk√
π
2

− 1

λ
βσk.
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In the second equality we have used that
∫∞
0 ye− y2

2 e−λydy = 1 − λH1(λ) which can be
obtained by an integration by parts using the property g(σ, 0) = −g(−σ, 0). Solving for
g(1, 0) in the above

g(1, 0)[2 − λH1(λ)] = βk

⎡
⎣ 1√

π
2

− (1 − λH1(λ))

λ2

1√
π
2

+ 1

λ2

1√
π
2

− 1

λ

⎤
⎦ .

Substituting the value of k we found in (48), we get

g(1, 0)[2 − λH1(λ)] = 2βg(1, 0)H1(λ)

1 − 2 β

λ
√

π
2

− 2 βH1(λ)

λ2
√

π
2

+ 2 β

λ2

⎡
⎣ 1√

π
2

− (1 − λH1(λ))

λ2
1√
π
2

+ 1

λ2
1√
π
2

− 1

λ

⎤
⎦ ,

which is equivalent to

2 − λH1(λ) =
2βH1(λ)

[
λ2 + λH1(λ) − λ

√
π
2

]
λ2
√

π
2 − 2βλ − 2βH1(λ) + 2β

√
π
2

. (49)

As a polynomial in λ, (49) can be written as

−λ3H1(λ)

√
π

2
+ λ2

√
2π − 4βλ − 4βH1(λ) + 2

√
2πβ = 0,

or, grouping for H1(λ),

H1(λ)

[
−4β − λ3

√
π

2

]
+ √

2πλ2 − 4βλ + 2β
√
2π = 0,

i.e. the zeros of Hβ,1(λ). In fact, as defined in (23), H1(λ) is a holomorphic function on C,
whose expression in series is

H1(λ) =
∫ ∞

0
e− y2

2 e−λydy =
∞∑
n=0

(−1)n
λn

n!
∫ ∞

0
yne− y2

2 dy.

The latter integral is known∫ ∞

0
yne− y2

2 dy = 2
1
2 (n−1)Γ

(
n + 1

2

)
, (50)

where n ∈ N and Γ (·) is the Gamma function. When n = 2m + 1 with m ∈ N , for the
properties of the Gamma function on N, (50) reduces to∫ ∞

0
yne− y2

2 dy = 2
1
2 (n−1)Γ

(
n + 1

2

)
= 2mm!.

For n = 2m with m ∈ N instead we have, by the property Γ
(
l + 1

2

) = (2l−1)!!
2l

√
π for any

l ∈ N, ∫ ∞

0
yne− y2

2 dy = 2
1
2 (n−1)Γ

(
n + 1

2

)
=
√

π

2
(2m − 1)!!.
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We use these equalities, and reorder the terms of the absolutely convergent series of H1(λ)

to finally get

H1(λ) =
√

π

2

∞∑
m=0

λ2m

(2m)!! − λ

∞∑
m=0

(2λ)2mm!
(2m + 1)!

1

2m
.

��
Proof of Proposition 3 Now we set γ = 2 and proceed as for γ = 1, by setting h(σ, y) :=
g(σ, y)e

y3

3 , so that

∂

∂ y
h(σ, y) = −λh(σ, y) + 3

2Λ
βσky2.

Thus,

h(σ, y) = e−λy
[
h(σ, 0) + 3βσk

2Λ

∫ y

0
u2eλudu

]
.

Since
∫ y
0 u2eλudu = 1

λ3
[−2 + eλy(2 + λy(−2 + λy))], we can write

g(σ, y) = e− y3

3 e−λy
[
g(σ, 0) + 3βσk

2Λ

1

λ3

(−2 + 2eλy − 2λyeλy + λ2y2eλy)] . (51)

Recalling notation (28), we compute

k = 2
∫ ∞

0
g(1, y)dy = 2H2(λ)g(1, 0) − 2H2(λ)

3βk

Λλ3
+ 2

3βk

Λλ3

∫ ∞

0
e− y3

3 dy

− 2
3βk

Λλ2

∫ ∞

0
ye− y3

3 dy + 3βk

Λλ

∫ ∞

0
y2e− y3

3 dy

= 2H2(λ)g(1, 0) − 2H2(λ)
3βk

Λλ3
+ 2

3βk

λ3
− 2

3βk

Λλ2

Γ (2/3)

31/3
+ 3βk

Λλ
,

which gives

k = 2g(1, 0)H2(λ)

1 + 2H2(λ)
3β

Λλ3
− 23β

λ3
+ 2 3β

Λλ2
Γ (2/3)
31/3

− 3β
Λλ

. (52)

As before, the condition
∫∞
0 [g(σ, y) + g(−σ, y)]dy = 0 in (26) is equivalent to g(σ, y) +

g(−σ, y) = 0 for every y ∈ R
+ because of (51). Using this observation for y = 0 in the

other integral condition - see second line of system (26) - we compute

g(σ, 0) = 3βσk

2Λ
+
∫ ∞

0
y2
[
e− y3

3 e−λy
(

− g(σ, 0)

− 3βσk

2Λ

1

λ3
(−2 + 2eλy − 2λyeλy + λ2y2eλy)

)]
dy.

Observing that, by integration by parts,
∫∞
0 y2e− y3

3 e−λydy = 1 − λH2(λ), we find

g(σ, 0) = 3βσk

2Λ
− (1 − λH2(λ))g(σ, 0) + 3βσk

Λλ3
(1 − λH2(λ)) − 3βσk

Λλ3

+ 3βσk

Λλ2
31/3Γ (4/3) − 3βσk

2Λλ
32/3Γ (5/3).
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Computing in σ = 1 and grouping for g(1, 0),

g(1, 0)[2 − λH2(λ)] = k

[
3β

2Λ
+ 3β

Λλ3
(1 − λH2(λ)) − 3β

Λλ3
+ 3β

Λλ2
31/3Γ (4/3) − 3β

2Λλ
32/3Γ (5/3)

]

= k

[
3β

2Λ
− 3β

Λλ2
H2(λ) + 3β

Λλ2
31/3Γ (4/3) − 3β

2Λλ
32/3Γ (5/3)

]
.

Plugging expression (52) for k,

2 − λH2(λ) = 2H2(λ)

1 + 2H2(λ)
3β

Λλ3
− 23β

λ3
+ 2 3β

Λλ2
Γ (2/3)
31/3

− 3β
Λλ

[
3

2Λ
β − 3β

Λλ2
H2(λ)

+ 3β

Λλ2
31/3Γ (4/3) − 3β

2Λλ
32/3Γ (5/3)

]
.

This gives

2 − λH2(λ) = 2λH2(λ)
[ 3
2βλ2 − 3βH2(λ) + 3β31/3Γ (4/3) − 3

2βλ32/3Γ (5/3)
]

Λλ3 + 6βH2(λ) − 6βΛ + 6βλ
Γ (2/3)
31/3

− 3βλ2
,

which is equivalent to

2Λλ3 + 12βH2(λ) − 12βΛ + 12βλ
Γ (2/3)

31/3

− 6βλ2 − λ4ΛH2(λ) + 6βλH2(λ)Λ − 6βλ2
Γ (2/3)

31/3
H2(λ)

= 6βλH2(λ)31/3Γ (4/3) − 3βλ2H2(λ)32/3Γ (5/3).

As a polynomial in λ, this is

− ΛH2(λ)λ4 + 2Λλ3

+ λ2
[
−6β − 6β

Γ (2/3)

31/3
H2(λ) + 3βH2(λ)32/3Γ (5/3)

]

+ λ

[
6βΛH2(λ) − 6βH2(λ)31/3Γ (4/3) + 12β

Γ (2/3)

31/3

]
+ 12βH2(λ) − 12βΛ = 0.

Equivalently, in terms of H2(λ) we have

H2(λ)[12β − λ4Λ + 6βλΛ − 6βλ31/3Γ (4/3)

+ 3βλ232/3Γ (5/3) − 6βλ2
Γ (2/3)

31/3
]

+
[
2Λλ3 − 12βΛ + 12β

Γ (2/3)

31/3
λ − 6βλ2

]
= 0,

i.e. the zeros of Hβ,2(λ) in (27). As defined in (28), H2(λ) is a holomorphic function on C,
which can be expressed in series as

H2(λ) =
∫ ∞

0
e−λye− y3

3 dy =
∞∑
n=0

(−1)n
λn

n!
∫ ∞

0
yne− y3

3 dy

=
∞∑
n=0

(−1)n
λn

n! 3
1
3 (n−2)Γ

(
n + 1

3

)
,
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which is expression (29), where we have used the formula for
∫∞
0 yne− y3

3 dy =
3

1
3 (n−2)Γ

( n+1
3

)
. ��
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