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Abstract: Despite the great progress made in insulin preparation and titration, many patients
with diabetes are still experiencing dangerous fluctuations in their blood glucose levels. This is
mainly due to the large between- and within-subject variability, which considerably hampers insulin
therapy, leading to defective dosing and timing of the administration process. In this work, we
present a nonlinear mixed effects model describing the between-subject variability observed in the
subcutaneous absorption of fast-acting insulin. A set of 14 different models was identified on a
large and frequently-sampled database of lispro pharmacokinetic data, collected from 116 subjects
with type 1 diabetes. The tested models were compared, and the best one was selected on the
basis of the ability to fit the data, the precision of the estimated parameters, and parsimony criteria.
The selected model was able to accurately describe the typical trend of plasma insulin kinetics, as
well as the between-subject variability present in the absorption process, which was found to be
related to the subject’s body mass index. The model provided a deeper understanding of the insulin
absorption process and can be incorporated into simulation platforms to test and develop new open-
and closed-loop treatment strategies, allowing a step forward toward personalized insulin therapy.

Keywords: biological variability; population modeling; insulin therapy; diabetes

1. Introduction

The biological variability of insulin absorption and insulin action is the main obstacle
to the optimal management of insulin treatment in type 1 (T1D) and type 2 diabetes (T2D).
In fact, subcutaneous injections of the same exact insulin dose may greatly differ between
different individuals or even in the same individual on different occasions [1]. From the
masterwork of Binder in 1969 [2], several other papers were published aiming to investi-
gate the reasons behind this variability. They overall agreed that the factors shaping the
insulin concentration profile in blood are all those that influence insulin diffusion in the
tissues, including the concentration, volume, and associated state (hexameric, dimeric, or
monomeric) of injected insulin, the site and depth of injection, tissue blood flow, and skin
temperature [3–7], but also, factors like the level of antibody binding seem to play a major
role [8]. The considerable between-subject variability (BSV) and within-subject variability
(WSV) complicate the tuning of the treatment performed by healthcare professionals, lead-
ing to dangerous glucose excursions, which are the main causes of acute and long-term
diabetes complications.

Modeling the BSV and WSV of the subcutaneous kinetics of fast-acting insulin ana-
logues represents an important step in understanding this phenomenon, which may help
in better simulating the complex behavior of the glucose regulatory system and, in turn,
improving both T1D and T2D management. The estimation of the variability present in
a biological process is conventionally performed by the so-called “standard two-stage”
method, which consists, first, of estimating the model parameters in each subject of the
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population and, then, assessing the mean vector and the covariance matrix [9], the latter
being a quantitative measurement of the population variability. However, by doing so,
the variability is usually overestimated. Moreover, the population estimates are not used
to improve the individual ones, thus neglecting that a biological process shows a similar
behavior in all the subjects who underwent the same experiment. Then, in the posterior
analysis, one usually tries to detect some independent subject characteristics, normally
referred to as covariates, that are, to some extent, related to the variability present in the
process. However, this analysis does not employ the precision of the individual parameters
in estimating the overall variability [10] and provides only a hint at the covariates to take
into account, without investigating their actual contribution in the biological process [11].

A better approach to overcome these issues is nonlinear mixed effects (NLME) model-
ing. In this framework, subjects are assumed to be random realizations of a population
whose distribution is shaped around some parameters (the so-called fixed effects). These
population parameters are then employed to support the estimation of individual pa-
rameters, which are described using the deviation of each subject from the population
value (random effects). All the available information is thereby employed in the estimation
process. In addition to that, the estimation process can take advantage of prior information
employing a Bayesian approach, which is known to be advantageous, especially in the case
of a relatively small number of samples. Moreover, the NLME approach allows improving
the model predictive power by introducing possible covariates in order to explain the
portion of variability that is directly related to some macroscopic subject characteristic.
In this way, the effective contribution of covariates to the population variability is estimated
along with all the other model parameters. An final advantage comes from the possibility
to use data coming from different studies even in the case of missing information or slightly
different adopted protocols. By doing so, the features detected in the model are more robust
since the influence of the setup of each study is reduced.

Recently, a model of subcutaneous absorption of fast-acting insulin analogues was
developed and validated on a large database using standard modeling techniques [12,13].
Here, we aimed to apply the NLME modeling technique to such a model in order to
describe the BSV present in the pharmacokinetics of subcutaneous absorption of lispro, a
fast-acting insulin analogue. In doing so, we tried also to personalize the model by the use
of subject covariates. Such a model will become an important component of the University
of Virginia (UVa)/Padova T1D Simulator [14], an in silico platform accepted by the Food
and Drug Administration (FDA) as a substitute for preclinical trials for certain insulin
treatments, including closed-loop algorithms for artificial pancreas [15], recently used as
an ideal test bench for the development and evaluation of glucose sensors [16] and novel
insulin analogues [17,18]. Furthermore, the presented model could be incorporated also in
the recently proposed Padova T2D simulator [19], allowing optimizing insulin therapy in
this population. The incorporation into the simulators of a model that explicitly accounts
for BSV would decrease the gap between the simulation environment and the real subject
behavior, improving the in silico optimization of personalized insulin treatment. Finally, a
model like this could also be employed in the development of model-based algorithms for
subcutaneous insulin dosing in patients with T1D, like the model predictive controllers
developed by the University of Cambridge [20] and by the collaboration between the
Universities of Pavia, Padova, and Virginia [21].

2. Materials and Methods
2.1. Database and Protocols

We used data of 116 subjects with T1D from 3 clinical studies (Figure 1). All the subjects
underwent a single subcutaneous injection of a fast-acting insulin analogue (lispro). The
database contained also information about the demographic (age) and anthropometric
(body weight (BW), body height (BH), body mass index (BMI), and body surface area
(BSA)) features of the subjects. All the observed measurements below the quantification
limit (BQL) were discarded from the analysis, together with very unreliable measurements
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due to issues with insulin assays. All studies were performed at the Profil Institute for
Metabolic Research in Neuss, Germany, in accordance with the principles of the Declaration
of Helsinki and the local Ethics Committee. All patients signed an informed consent prior
to study start. The three studies are briefly described below, and more detailed information
about the database and the adopted protocols are available in [12].

2.1.1. Study 1

In the first study [22] (Figure 1, Panel A), forty-two T1D subjects (age = 42± 11 years,
body weight = 74 ± 10 kg, height = 175 ± 8 cm) underwent a euglycemic clamp and
received a subcutaneous injection of 12 U of insulin lispro at around noon (t = 0), after
an overnight fast. During the clamp, glucose infusions were used to keep blood glucose
stable at around 100 mg/dL and avoid the patient entering a hypoglycemic state during
the experiment. The blood samples were collected at t = 0, 3, 7, 10, 15, 20, 25, 30, 45, 60, 90,
120, 150, 180, 210, 240, 300, 360, 420, and 480 min to measure glucose and insulin levels. A
specific radio immunoassay was used for the determination of insulin lispro levels (BQL
equal to 5 µU/mL).

2.1.2. Study 2

In the second study [12] (Figure 1, Panel B), thirty-seven T1D subjects (age = 47 ± 12 years,
body weight = 80± 8 kg, height = 180± 5 cm) underwent a euglycemic clamp and received a
subcutaneous injection of 0.2 U/kg of insulin lispro at around noon (t = 0), after an overnight
fast. During the clamp, glucose infusions were used to keep blood glucose stable at around
100 mg/dL and avoid the patient entering a hypoglycemic state during the experiment.
The blood samples were collected at t = 0, 4, 8, 12, 16, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80,
90, 105, 120, 135, 150, 180, 210, 240, 300, 360, 420, 480, 540, 600, 660, and 720 min to measure
glucose and insulin levels. A radio immunoassay was used for the determination of insulin
lispro levels (BQL equal to 5.5 µU/mL).

2.1.3. Study 3

In the third study [12] (Figure 1, Panel C), thirty-seven T1D subjects (age = 44± 13 years,
body weight = 81± 10 kg, height = 180± 8 cm) consumed a standardized meal and received
a subcutaneous injection of 0.2 U/kg of insulin lispro at around noon (t = 0), after an
overnight fast. The meal was served to maintain high blood glucose level and avoid the
subject entering a hypoglycemic state during the experiment. The blood samples were
collected at t = 0, 4, 8, 12, 16, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 105, 120, 135,
150, 180, 210, 240, 270, 300, 360, 420, and 480 min to measure glucose and insulin levels.
A radio immunoassay was used for the determination of insulin lispro levels (BQL equal to
5.6 µU/mL).

Figure 1. Plasma insulin concentration (µU/mL) in Study 1 (A), Study 2 (B), and Study 3 (C). Blue lines represent individual
profiles, black lines the mean profile of each dataset, and dashed lines the BQL of each dataset.
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2.2. The Nonlinear Mixed Effects Model

In this work, we used an NLME model to describe the BSV of subcutaneous absorption
of a fast-acting insulin analogue. A fundamental ingredient of this approach is the availabil-
ity of a large database preferably including also subject’s demographic and anthropometric
data, known as covariates, which could be used to assess the influence, if any, of such factors
on individual data (Figure 2, left panels). The NLME model here developed consisted of
two sub-models: a structural model (the so-called intra-individual model, here composed
by a set of differential equations, Equation (3)) describing the physiological process of
interest and a stochastic model (the so-called inter-individual model, Equations (4) and (5))
describing the between-subject variability in the physiological process of interest, eventu-
ally including some covariates (Figure 2, central panel). Finally, the unexplained source of
variance was assumed to be the measurement error noise, which was also described by a
proper error model (Equation (7)). The general form of an NLME model is given by the
following set of equations:

zj = fj(xj, ψj) + vj (1)

ψj = d(cj, θ, ηj) (2)

where: zj is the measurement vector for the jth subject, xj is a vector incorporating variables
such as time and injected dose, fj is a vector function describing the relation among
zj, xj, and ψj, the set of model parameters, while vj is the intra-individual error vector.
In addition, dj is a ψ-dimensional vector function describing the relation between ψj and
cj, the covariates vector, θ, the population parameters (fixed effects), and ηj, the inter-
individual error (random effects). Once having defined its structure, the NLME model
was identified using the insulin concentration data of the three datasets, together with
subject covariates. The identification process provided an estimate of the fixed effects (θ̂)
and of the variability of the random effects in the population (Ω̂), as well as the individual
parameter estimates (ψ̂j). These estimates were finally used to obtain the data fits (Figure 2,
right panels).

INDIVIDUAL MODEL

POPULATION MODELDATABASE

COVARIATES
OF THE SUBJECTS

ID AGE H BW BMI BSA

101 32 182 90 27 2.1

102 45 184 78 23 2.0

103 37 175 75 25 1.9

… … … … … …

PHYSIOLOGICAL MODEL

VARIABILITY MODEL
OF THE PARAMETERS

Figure 2. Schematic representation of the NLME approach. The central panel represents an NLME
model: it consists of a structural model of the system coupled with a model of the parameter variability.
Feeding the NLME model with a large database containing also subject covariates, one can obtain both
the population and the individual models better fitting the data.

2.2.1. Physiological Model of Insulin Kinetics

Here, the physiological model of insulin kinetics (Equation (3)) was the linear three-
compartment model (Figure 3) recently proposed by Schiavon et al. [12] for insulin lispro.
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The first two compartments, Isc1 and Isc2, represent insulin masses in the subcutis, in a
non-monomeric and monomeric state, respectively. From the former, insulin can either be
absorbed in the plasma insulin compartment Ip with a rate constant ka1 (min−1) or decom-
posed into monomers with a rate constant kd (min−1). From the latter, insulin can only be
absorbed in the plasma insulin compartment Ip with a rate constant ka2 (min−1). Finally,
insulin is degraded, usually by liver and kidneys, and this process is represented in the
model by the rate constant ke (min−1). The dose is injected in the Isc1 compartment, while
measurements are collected from the plasma compartment Ip, which has a distribution
volume of VI (L/kg). The model accounts also for a subject-specific delay in the insulin
absorption through the parameter τ (min). The equations of the model are:

İsc1(t) = −(ka1 + kd)Isc1(t) + u(t− τ)

İsc2(t) = −ka2 Isc2(t) + kd Isc1(t)
İp(t) = −ke Ip + ka1(t)Isc1(t) + ka2 Isc2(t)
y(t) = Ip(t)/VI

(3)

𝐼𝑠𝑐2 𝐼𝑝

𝐼𝑠𝑐1

𝑢(𝑡- 𝜏)

𝑘𝑎1

𝑘𝑒

𝑘𝑎2

𝑘𝑑 = 𝑘𝑎2+ α

𝑦 𝑡 = 𝐼𝑝/ 𝑉𝐼

Figure 3. Compartmental representation of the model describing the subcutaneous absorption of
fast-acting insulin [12]. Model compartments are represented with circles, and the fluxes are indicated
with arrows. Signals u and y represent the subcutaneous insulin administration and plasma insulin
concentration, respectively.

2.2.2. Model of the Parameter Variability

The model of the parameter variability (Equation (2)) is represented by a set of equa-
tions describing the BSV of the physiological parameters (Equations (4) and (5)). In this
work, several models of increasing complexity were tested and compared. They all share
the following basic assumptions:

ψj = θ exp(ηj) (4)

ηj ∼ N (0, Ω) (5)

i.e., the distribution of the random effects ηj is assumed to be Gaussian, so that the physio-
logical parameters belong to a log-normal distribution. In addition, the stochastic model
can include some covariates of the subjects to explain the dependency of the parameter on
the subject characteristics:

ψi,j = θi exp(βk,i (ck,j − ck) + ηi,j) (6)

where ck,j is the kth covariate of the jth subject and ck is the reference value for that
covariate (here set to the mean value of our database). For each covariate added to the
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model, a coefficient βk,i has to be estimated. Using the deviation from a reference value
instead of the raw value of the covariate is a common strategy [11], which brings two main
advantages: The first advantage is that if there is any subject with a missing covariate
value, the reference value can be attributed to them, so that this subject does not influence
the estimation of the associated coefficient βk,i, and their data can still be used to estimate
the population parameters; however, this procedure could bias the estimates in the case of
missing values. Anyway, this was not the case here, since all the information was available
from the database. The second advantage is that the parameter βk,i can be interpreted
more easily as the contribution made to the model parameter ψi by a unitary deviation of
ck from the reference value. Finally, it is possible to introduce some correlations between
the model parameters by appropriately defining the covariance matrix Ω of the random
effects η. For each correlation introduced in the covariance matrix, a parameter ρi1,i2 has to
be estimated. The variability models to test were chosen applying a Pearson’s correlation
test to the estimated parameters in order to detect the most correlated covariate-parameter
pairs and random effects. In this work, a set of 14 variability models incorporating different
combinations of correlations between the random effects and covariates was considered.

2.2.3. Measurement Error Model

The model for the measurement error is:

v(t) =
√

a2 + b2 y(t)2 ε(t) (7)

where the variable y(t) is the output of the physiological model, i.e., the plasma insulin
concentration, and ε(t) is a Gaussian random variable, i.e., ε(t) ∼ N (0, 1). For small
values of y(t), v(t) presents an almost constant standard deviation (a), while, for high
values of y(t), v(t) has almost a constant coefficient of variation (b). Of note, since the three
studies adopted different protocols and utilized different insulin assays, the error model
was identified separately for each database. Therefore, a total of 6 error parameters were
estimated: a1 and b1 for the first study, a2 and b2 for the second, and a3 and b3 for the third.

2.3. Parameter Estimation

The physiological model is a priori non-uniquely identifiable, since the rate parameters
kd and ka2 are interchangeable. To overcome this issue, it was assumed kd ≥ ka2, without
loss of generality. To implement this inequality in the model, we defined α = kd − ka2
and assumed that it belongs to a log-normal distribution, so that α > 0. Therefore, the
unknown parameters to be estimated are the 6 fixed effects of the physiological model ( τ,
VI , α, ka1, ka2, and ke), the 6 standard deviations of the random effects, describing the
BSV of the physiological parameters ( ωτ , ωVI , ωα, ωka1 , ωka2 , and ωke ), the 6 parameters
related to the measurement error (a1, b1, a2, b2, a3, and b3), and possibly coefficient βk,i to
account for covariates and ρi1,i2 to account for correlations in the random effects. Hence,
for each model, a minimum of 18 population parameters were identified.

For model identification and validation, we used the software Monolix (Monolix
2020R1 [23], ©Lixoft, Antony, France), which implements the stochastic approximation
of expectation maximization (SAEM) in combination with a Markov chain Monte Carlo
(MCMC) method to estimate the maximum likelihood of the NLME model parameters [24].
The fixed effects were initialized to the median of the parameter estimates found in [12] and
the standard deviation of the random effects w to 0.1, while all the other parameters were
left to their default initial values. As done in [12], a priori information on the volume of
distribution VI [25] was added to improve the a posteriori identifiability of this parameter.
The Fisher information matrix was estimated with the Metropolis–Hastings algorithm (an
MCMC method) and the likelihood through an importance sampling method [23].

2.4. Model Assessment and Comparison

Model performance was assessed in terms of the residual distribution, the physiologi-
cal plausibility of the parameters, the precision of the estimates, and the parsimony criteria.
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In particular, the goodness of the individual fits was checked by the visual inspection of
the data vs. individual predictions. In addition, residual distribution provided by the indi-
vidual weighted residuals (IWRES), defined as the difference between the measurement
z(t) and the model prediction ŷ(t) weighted by the standard deviation of the error v(t):

IWRES =
z(t)− ŷ(t)√
a2 + b2 ŷ(t)2

(8)

was compared to a standard Gaussian distribution. Moreover, Monolix allows checking
the normality of the IWRES with a Shapiro–Wilk (SW) test. However, the performed SW
test is inadequate if the sample size is large (the software documentation itself claims
this point [23]). To avoid this issue, the Shapiro–Wilk test was applied on the residuals of
each subject to assess normality, while the runs test was used to assess randomness. This
analysis was performed in R (R 4.0.3 [26], ©The R Foundation, Vienna, Austria) with a
significance level p = 0.05. The distributions of the kinetic parameters were then checked
to be physiologically plausible. The precision of the estimates was obtained from the
inverse of the Fisher information matrix IF(θ̂) and summarized by reporting the average
relative standard error (RSE) and number of parameters with RSE > 50%. The RSE for the
parameter θi is calculated as:

RSE(θ̂i) =

√
Ci,i(θ̂)

θ̂i
(9)

where Ci,i(θ̂) is the ith diagonal element of the covariance matrix of the parameters:

C(θ̂) = JTIF(θ̂)
−1J (10)

and the transformation using the Jacobian J is necessary since IF(θ̂) is obtained with
the likelihood computed using the normally transformed parameters θ̂. Moreover, the
Bayesian information criterion corrected for the NLME model (BICc) [27] was used to
compare models that produced a satisfactory score in all the previous metrics:

BICc = −2ln(Lz(θ̂)) + ln(N)PR + ln(ntot)PF (11)

where Lz(θ̂) is the likelihood reached by the NLME model on the measurement data z,
N is the number of subjects, PR is the number of estimated parameters of the variability
model (i.e., the standard deviations of the random effects ω, possible correlations ρ, and
eventual covariates β), and PF is the number of fixed effects parameters of the physiological
model (θ) plus the number of error coefficients (a and b), while ntot is the total number
of measurements. Finally, correlation analysis among random effects, as well as random
effects and subjects’ covariates (or a logarithmic transformation thereof) was performed to
test if parameters ρi1,i2 or βk,i, respectively, deserved to be introduced into the model.

3. Results
3.1. Comparison of the Variability Models

As shown in Table 1, all the attempted models provided acceptable residuals, with
at least 89.7% and 87.8% of the subjects that passed the Shapiro–Wilk test and the runs
test, respectively. Moreover, the models provided also physiologically plausible estimates.
Therefore, for the selection of the best model, we used the precision of the estimates and the
parsimony criterion. Models 4, 5, 8, 12, and 14 were discarded since they provided either
a too high mean RSE or at least one parameter with RSE > 50%. Among the remaining
models, Model 11 was the one providing the lowest BICc, and therefore, it was selected as
the most parsimonious one. Compared with the models reported in Table 1, this model
provides the second best BICc, the third best average precision of the estimates, as well as
independent residuals and physiologically plausible estimates of the parameters.
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Table 1. Summary of the tested models of the parameter variability, ordered by ascending number of parameters. From left to right: model number; the additional parameter βk,i used
to introduce the covariate ck in the variability model of ψi; the additional parameter ρi1,i2 used to introduce a correlation between the random effects of the parameters ψi1 and ψi2 ; the
estimate precision expressed as the mean RSE and the number of parameters showing RSE > 50%; percentages of the subjects that passed the Shapiro–Wilk (SW) test and the runs test; the
value of the BICc. The selected model is highlighted in gray.

Model Covariate Correlation Number of Precision of the Estimates % of Subjects that Passed: BICcNumber Coefficients Parameters Parameters Mean RSE RSE >50% SW Test Runs Test

1 - - 18 8.29 0 89.7 89.7 14,535.48
2 - ρVI ,ka2 19 9.57 0 92.2 88.8 14,523.40
3 - ρVI ,ka2 ρVI ,ke ρka2,ke 21 9.35 0 90.5 88.8 14,494.36
4 βln(AGE),τ ρVI ,ka2 ρVI ,ke ρka2,ke 22 11.11 1 90.5 88.8 14,510.54
5 βBMI,VI ρVI ,ka2 ρVI ,ke ρka2,ke 22 32.24 1 91.4 88.8 14,506.42
6 βBMI,ke ρVI ,ka2 ρVI ,ke ρka2,ke 22 10.95 0 90.5 88.8 14,505.33
7 βBSA,ka2 ρVI ,ka2 ρVI ,ke ρka2,ke 22 10.48 0 90.5 89.7 14,495.18
8 βBMI,τ ρVI ,ka2 ρVI ,ke ρka2,ke 22 11.61 1 90.5 88.8 14,487.14
9 βBW,ka2 ρVI ,ka2 ρVI ,ke ρka2,ke 22 9.58 0 91.4 89.7 14,484.42

10 βln(BW),ka2
ρVI ,ka2 ρVI ,ke ρka2,ke 22 8.59 0 91.4 88.8 14,477.76

11 βBMI,ka2 ρVI ,ka2 ρVI ,ke ρka2,ke 22 9.11 0 91.4 88.8 14,476.86
12 βBMI,τ ; βBMI,ka2 ρVI ,ka2 ρVI ,ke ρka2,ke 23 11.01 1 91.4 87.9 14,481.72
13 βBH,ka2 ; βBW,ka2 ρVI ,ka2 ρVI ,ke ρka2,ke 23 10.03 0 91.4 88.8 14,478.24
14 βBMI,ka2 ; βln(AGE),τ ρVI ,ka2 ρVI ,ke ρka2,ke 23 10.67 1 91.4 87.9 14,475.43
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3.2. Selected Model of the Parameter Variability

Here, the formulas of the variability Model 11 are reported:

ψ :



τ = τpopexp(ητ)

VI = Vpop
I exp(ηVI )

α = αpopexp(ηα)

ka1 = kpop
a1 exp(ηka1)

ka2 = kpop
a2 exp(βBMI,ka2(BMI − BMI) + ηka2)

ke = kpop
e exp(ηke)

(12)

with the following covariance matrix of the random effects η:

Ω =



ω2
τ 0 0 0 0 0

0 ω2
VI

0 0 ωVI ωka2 ρVI ,ka2 ωVI ωke ρVI ,ke

0 0 ω2
α 0 0 0

0 0 0 ω2
ka1

0 0
0 ωVI ωka2 ρVI ,ka2 0 0 ω2

ka2
ωka2 ωke ρka2,ke

0 ωVI ωke ρVI ,ke 0 0 ωka2 ωke ρka2,ke ω2
ke


(13)

It is worth noting that all the physiological parameters were assumed non-negative
and modeled as log-normal random variables. In addition, the model includes the BMI
as a covariate in the equation of the parameter ka2 through the parameter βBMI,ka2 and
the correlation between the random effects of the parameters VI , ka2, and ke through the
parameters ρVI ,ka2 , ρka2,ke , and ρka2,ke , respectively.

3.3. Validation of the Selected Model

Model prediction of the plasma insulin concentration was satisfactory, as can be seen
in the left-hand panels of Figure 4, where data vs. model prediction of one representative
subject for each of the three studies is reported. Moreover, the distributions of the IWRES
obtained for each study compared well against a standard Gaussian distribution (Figure 4,
right panels). With the selected model, 91.4% of the subjects passed the Shapiro–Wilk test
for normality, and 88.5% percent passed the runs test for randomness.

In Table 2, the estimates of the population parameters are reported together with
their precision expressed as the RSE. The parameters were estimated with a mean RSE
of 9.11%, and no parameter reported an RSE > 50%. The quantiles of the distributions of
the estimated individual parameters are reported in Table 3. All the individual parameter
estimates were within physiological plausible ranges and compared well against the fixed
effects of the population parameters. This is also shown in Figure 5 where the distributions
of the estimated individual parameters are reported: in the left panels, the estimates of
the individual parameters of the physiological model are compared with their theoretical
distribution (i.e., the log-normal distribution derived from Equation (12) by knowing the
estimated fixed effects reported in Table 2), while in the right panels, the estimates of the
random effects η are compared with a standard Gaussian distribution. A final overview
of the model performance can be done using a visual predictive check (VPC, Figure 6).
In this graph, the percentiles of data obtained from multiple MCMC simulations of the
final model (displayed as 90% prediction intervals, blue and red bands) are compared with
the percentiles of the observed data (black lines). The VPC shows that the model was able
to reproduce both the average trend (50th percentile, red band), as well as the variability
(10th and 90th percentiles, blue bands) of the observed data well. The presence of outliers
(red circles) in the bottom part of the graph is most likely due to having discarded BQL
data from the original dataset, having thus introduced a bias in the computation of the
empirical percentiles, which were, therefore, slightly overestimated.
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Figure 4. Evaluation of the goodness of the predictions of Model 11. Left panels: the fit of the model
for three representative subjects, one for each study. Blue dots indicate plasma insulin measurements,
and black dashed lines represent the model predictions. Right panels: the distributions of the IWRES
in each study, compared with a standard Gaussian distribution (black line).
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PARAMETERS OF THE 

PHYSIOLOGICAL MODEL
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VARIABILITY MODEL
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Figure 5. Parameter distributions of Model 11. Left panels: individual parameter distributions
compared with the corresponding theoretical distributions (black line). Right panels: random effect
distributions compared with a standard Gaussian (black line).
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10th, 50th and 90th

empirical percentiles

90% prediction 

interval of the 10th, 50th

and 90th percentiles

Outliers

VPC

Figure 6. Visual predictive check obtained with the selected variability model (Model 11). The 90%
prediction intervals of the 10th (blue lower area), 50th (red central area), and 90th (blue upper
area) percentiles are compared with the 10th, 50th, and 90th empirical percentiles (black solid lines).
Outliers are marked with red circles.

Table 2. Estimated population parameters of the model and their corresponding RSE.

Estimates of the population parameters

Parameter Estimated Value Unit of Measurement RSE

Fixed effects

τpop 5.62 min 7.5
Vpop

I 0.135 L/kg 3.58
αpop 0.0155 min−1 10.5
kpop

a1 0.000134 min−1 36.9

kpop
a2 0.0128 min−1 3.43

kpop
e 0.113 min−1 3.33

βBMI,ka2 −0.0865 m2/kg 13.6

Standard deviations
of the

random effects

ωτ 0.731 dimensionless 8.81
ωVI 0.319 dimensionless 7.17
ωα 1.02 dimensionless 7.98

ωka1 1.86 dimensionless 11.8
ωka2 0.322 dimensionless 7.23
ωke 0.303 dimensionless 6.51

Correlations
between

random effects

ρVI ,ka2 0.681 dimensionless 8.19
ρVI ,ke −0.579 dimensionless 11.1
ρka2,ke −0.506 dimensionless 14

Error model
parameters

a1 1.96 µU/mL 8.85
b1 0.0773 dimensionless 7.66
a2 2.33 µU/mL 5.47
b2 0.0516 dimensionless 5.79
a3 2.77 µU/mL 5.17
b3 0.0559 dimensionless 5.76
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Table 3. Summary of the individual parameter distributions obtained from model identification.
From left to right: the minimum, the first quartile (25%), the median, the third quartile (75%), and the
maximum value.

Estimates of the individual parameters

Parameter Min Q1 Median Q2 Max Unit of Measurement

τ 0.748 4.03 5.98 10.5 21.9 min
VI 0.0741 0.121 0.146 0.17 0.29 L/kg
α 0.00364 0.00968 0.0192 0.0334 0.116 min−1

ka1 0.000079 0.000118 0.000132 0.000166 0.00824 min−1

ka2 0.00418 0.0107 0.0136 0.0169 0.0313 min−1

ke 0.046 0.0974 0.112 0.13 0.195 min−1

4. Discussion

Despite the progress made in insulin preparation, the timing and dosing of insulin
therapy are still inadequate to achieve optimal glucose control in T1D, mainly due to the
high variability in the absorption process. The dosing regimens are currently tuned by the
physician by a trail-and-error approach, which could lead to dangerous fluctuations in the
blood glucose levels of the patient. Hence, a model able to describe that variability would
be a powerful tool to optimize and personalize insulin initiation and titration.

In this work, a reliable NLME model describing absorption of fast-acting insulin
analogues from a subcutaneous injection was presented. This model was given by the
combination of the compartmental kinetic model developed in [12] with a new model
describing the parameter variability, which represents an important step forward toward
the description of BSV of subcutaneous insulin absorption. The model was identified
on a large database of 116 T1D subjects using the Monolix built-in SAEM and MCMC
algorithms. The model was able to reproduce the measurement data well, with an IWRES
distribution that followed a standard Gaussian distribution in all three studies. In support
of this, ninety-one-point-four percent of subjects passed the Shapiro–Wilk test to assess
the normality of the residuals, while 88.8% passed the runs test to assess the randomness.
The 22 model parameters were estimated with good precision: the mean RSE was equal to
9.11%, and no RSE was greater than 50%. Furthermore, the distributions of the individual
parameters were within the physiological ranges and close to the values reported in [12].
The final validation step using the VPC (Figure 6) showed how well the model was able to
capture both the typical trend and the variability of the absorption process.

The final covariance matrix of the random effects Ω (Equation 13) was suggested and
then confirmed by the posterior correlation analysis performed on the estimated random
effects. From the results of Model 1, the ρVI ,ka2 correlation was detected (correlation = 0.40,
p-value < 10−5), then from Model 2, the ρVI ,ke and ρka2,ke correlations were detected (correlation
= −0.30 and −0.27, respectively, both p-values < 0.01), and finally, from Model 3 and on, no
significant correlation between the random effects was detected (all p-values > 0.05).

Conversely, the detection of covariates to be introduced into the model was not that
straightforward. For instance, although Pearson’s correlation test strongly suggested the
introduction of the covariate BMI in the variability model of VI (Model 5), this did not
bring any additional information since VI is already expressed in liters per kilograms of
BW, and the BMI directly derives from the BW, leading to poor precision in the estimation
of βBMI,VI . The final model (Model 11) included the covariate BMI that directly explained
a portion of the variance of the parameter ka2, which is the fractional rate of absorption
from the subcutaneous space to the circulation, in agreement with the posterior statistical
analysis performed in [12]. In the NLME framework, it was then possible to estimate the
contribution of a deviation from the BMI reference value to the parameter ka2 through
the parameter βBMI,ka2 : for each unit of BMI, the logarithm of ka2 decreased by a factor of
−0.087. This negative relation between the BMI and ka2 seems physiologically reasonable
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since the higher the BMI of the subjects, the thicker is their skin and adipose layer and there-
fore the higher will be the time taken for insulin to be absorbed through the subcutaneous
tissue into plasma. All the attempts to further improve the final model failed, even if Model
14 was close to succeeding. This model was identical to Model 11 with the addition of the
log-transformed age in the variability model of τ. However, the parameter βln(AGE),τ was
estimated with an RSE of 59.7%, and therefore, this model was discarded. Nevertheless,
this could still indicate a hidden contribution of age in the delay of insulin absorption,
which was not detected by our analysis. Actually, the parameter τ summarizes a complex
kinetic, which is sometimes described with one or more compartments in the physiological
model [12] and that may hide a parameter highly correlated with age. Moreover, the delay
could also be influenced by the experimental setup, which differed among the three studies,
and the relation could even be nonlinear, such as the skin thickness, which presents an
inversion of the trend with age increasing [28].

In the literature, different error models for insulin assays have been proposed, for
example: the standard deviation of the measurement error was assumed constant in [12],
proportional to the observed insulin in [29], and a combination of a constant and a pro-
portional factor in [30]. The combined error model that we selected (Equation (7)) was
confirmed by the fact that the error coefficients a and b were not fixed, but estimated along-
side all the other model parameters with good precision and by the IWRES distributions
that followed a standard Gaussian curve (Figure 4), suggesting this error model for each of
the three studies forming the database.

Possible limitations of this study were that the model was identified only on insulin
lispro as representative of commercially available insulin compounds and that, in all the
experiments, each subject underwent a single subcutaneous injection of lispro, while multi-
ple daily injection therapy requires the injection of different types of insulin administered
more times in a day. Moreover, the analysis of the WSV was not allowed since each subject
was examined only once, as per the protocols. In addition, a relatively small number of
covariates was analyzed: only three of them were independent (age, BW, and height), and
only a log-transformation was tested along with the raw value. Furthermore, one can
argue that the estimated variability could be an underestimation of the variability present
in day-to-day life since, during inpatient studies, factors like physical activity, which can
also influence insulin absorption [5], were absent. The above limitations may be overcome
in future studies designed to further validate and improve the model, e.g., testing the
model on other databases where different types of insulin analogues are utilized or where
different protocols are adopted that may allow modeling the WSV of the process, thus
providing a more robust tool for the optimization of insulin treatment. Finally, the same
methodologies can be applied to describe the BSV present in the absorption of long-acting
insulin analogues and insulin action in order to estimate the whole variability present in
the glucose-insulin system, from insulin absorption to glucose response. All the analysis
was performed using Monolix (proprietary software, free for academic users [23]) and a
minor part using R (open-source software [26]); nevertheless, the analysis could be per-
formed entirely with R or using other software, e.g., NONMEM (proprietary software,
NONMEM [31], ©ICON, Dublin, Ireland).

5. Conclusions

In this work, an NLME model aiming to describe the BSV that affects subcutaneous
absorption of fast-acting insulin analogues was proposed. The model was built by adding,
to an already existing physiological model, a stochastic model describing the BSV of model
parameters and their relationship with subject covariates. The model, selected among a
collection of 14 models, was able to accurately predict insulin appearance in plasma from
subcutaneous injection, as well as to provide an estimate of the BSV. This will help in better
understanding the factors that influence the subcutaneous absorption of insulin analogues.
Together with the mathematical modeling of the BSV, another step forward made by this
work is the identification of a correlation between the BMI and the rate of insulin absorption
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from subcutaneous tissue into plasma. Actually, being able to account for subject variability
and to detect useful covariates will pave the way for precision medicine in the field of
diabetes, providing a customized approach to the disease for each patient. Furthermore,
this model will be useful in the development of algorithms for subcutaneous insulin
delivery implemented in insulin pump devices [20,21] and will be an important component
of in silico platforms, like the UVa/Padova T1D Simulator [14–19]. The incorporation into
the simulator of models that account for subject variability would allow for more realistic
simulations, providing great benefits on the way to the development and approval of new
insulin compounds. In this way, the dosing regimens could be optimized, improving the
insulin therapy of millions of diabetic patients, in a cost-effective way.
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BICc Bayesian information criterion corrected for NLME models
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BSV Between subject variability
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FDA Food and Drug Administration
IWRES Individual weighted residuals
MCMC Markov chain Monte Carlo
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VPC Visual predictive check
WSV Within-subject variability
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