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Non-coding RNAs represent the largest part of transcribed mammalian genomes and prevalently exert
regulatory functions. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) can modulate the activ-
ity of each other. Skeletal muscle is the most abundant tissue in mammals. It is composed of different cell
types with myofibers that represent the smallest complete contractile system. Considering that lncRNAs
and miRNAs are more cell type-specific than coding RNAs, to understand their function it is imperative to
evaluate their expression and action within single myofibers. In this database, we collected gene expres-
sion data for coding and non-coding genes in single myofibers and used them to produce interaction net-
works based on expression correlations. Since biological pathways are more informative than networks
based on gene expression correlation, to understand how altered genes participate in the studied pheno-
type, we integrated KEGG pathways with miRNAs and lncRNAs. The database also integrates single
nucleus gene expression data on skeletal muscle in different patho-physiological conditions. We demon-
strated that these networks can serve as a framework from which to dissect new miRNA and lncRNA
functions to experimentally validate. Some interactions included in the database have been previously
experimentally validated using high throughput methods. These can be the basis for further functional
studies. Using database information, we demonstrate the involvement of miR-149, -214 and let-7e in
mitochondria shaping; the ability of the lncRNA Pvt1 to mitigate the action of miR-27a via sponging;
and the regulatory activity of miR-214 on Sox6 and Slc16a3. The MyoData is available at https://myo-
data.bio.unipd.it.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Skeletal muscle is one of the most abundant organs in mammals
as it accounts for 40–45% of the total body mass of healthy individ-
uals. It is involved in body movement, metabolism, and protection
of internal organs. Skeletal muscle is composed of different types of
cells (neurons, blood cells, endothelial cells, etc.) [1] mixed with
contractile myofibers, which are the tissue’s parenchymal cells
and exert the previously mentioned functions. Myofibers are large,
multinucleated cells that are enwrapped by connective tissue to
form fasciculi [2]. Skeletal muscles from different parts of the body
have distinct physiological characteristics, such as in their metabo-
lism, contractility, elasticity, and resistance to fatigue. Distinct
physiological tracts of muscles reflect specific biochemical traits
of myofibers that compose each muscle. Myofiber types are plastic
and respond to specific stimuli by changing their traits and thus
altering the physiology of the entire muscle to which they belong.
Myofibers are canonically distinguished according to the expres-
sion of the different isoforms of the myosin heavy chain (MyHC).
In humans, the identified myofibers include type 1 myofibers,
which are mitochondria-rich and rely on oxidative metabolism;
type 2a fibers, with oxidative fast-twitch characteristics; and the
glycolytic type 2x fibers [3]. In addition to the aforementioned
fibers, mice have type 2b myofibers that are glycolytic fast-
twitch myofibers [4]. Due to the plasticity of skeletal muscle,
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myofibers with mixed MyHC isoforms are also present (type 2a2x
or 2x2b myofibers).

Aside from classifying myofibers by MyHC isoform content, a
novel myofiber classification based on single-myofiber transcrip-
tomic profiles was recently proposed that identifies specific tran-
scriptional biomarkers for each myofiber type [5]. This method
classifies myofibers as transcriptional slow (tS) and transcriptional
intermediate (tI) with oxidative metabolism, and transcriptional
fast (tF) with glycolytic metabolism. Transcriptional classification
of myofibers appears to be more suitable to identify fibers in
dynamic transition between different phenotypes.

Several non-coding RNAs, such as microRNAs (miRNAs), are
involved in the specification of numerous muscle functions com-
prising development [6], pathology [7], and myofiber metabolism
[5]. Not only do miRNAs participate in the regulation of muscle
functions, but also long non-coding RNAs (lncRNAs) [8–11]. For
example, we demonstrated that lncRNAs differentially expressed
in slow and fast contracting myofibers regulate myofiber metabo-
lism [12].

Complex cellular composition, fiber diversity, and dynamic
changes of fiber phenotype imply that expression patterns at the
single-cell level should be used to really understand the molecular
bases of skeletal muscle regulation. This level of investigation is
particularly important when dealing with non-coding RNAs
because this class of regulative molecules shows a stronger cell
type-specific expression than coding RNAs [13–17]. Furthermore,
it should be noted that in any differentiated cell, non-coding and
coding RNAs form an intricate cross-talking network of interac-
tions to regulate the actual gene expression patterns. As a result
of these interactions, miRNAs regulate coding RNAs through
post-transcriptional mechanisms [18], and lncRNAs, in turn, regu-
late the expression of coding RNAs [19] but also miRNA function by
sponging them [20].

In this work, to better understand the molecular mechanisms
involved in the functional specification of the different myofiber
types, we integrated gene expression data of coding and non-
coding RNAs to produce comprehensive lncRNAs-miRNAs-
mRNAs interaction networks. Recently, different techniques have
been developed to analyze gene expression at single-cell or
single-nucleus level [21] permitting us to distinguish, at an
unprecedented scale of analysis, not only how many differen-
tially committed cells populate complex tissues but also how
individual cells are affected and respond to different physio-
pathological conditions [22,23]. One limitation of this type of
analysis is that they allow the detection of only polyadenylated
RNAs, excluding from the analysis non-polyadenylated mature
miRNAs. To overcome this problem, we integrated available sin-
gle nucleus RNA-seq (snRNA-seq) analyses on skeletal muscle
tissue with our previously determined networks describing sin-
gle myofibers gene interactions. Gene networks based on expres-
sion correlations are known to produce inferred interactions that
result as false positives after experimental validation. This
approach is also less manageable and intuitive than the building
of networks based on manually curated pathways. On the other
hand, manually curated pathways do not consider the regulative
action of miRNAs and lncRNAs. We introduced gene expression
regulation based on non-coding RNAs in KEGG pathways to
allow for a better description of specific changes in different
myofiber types or in different studies based on snRNA-seq. We
experimentally confirmed some interactions identified in our
database showing the involvement of specific miRNAs in the reg-
ulation of the mitochondrial network. Moreover, we confirmed
the activity of some lncRNAs as miRNA sponges and the role
of some miRNAs in the regulation of genes that are known
markers of myofiber specificity.
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2. Material and Methods

2.1. Gene expression data and processing

Single myofiber gene expression data were collected from Gene
Expression Omnibus (GEO) and Sequence Read Archive (SRA) data-
bases using the following IDs: GSE98328, SRX2768351,
SRX2768352, SRX2768353 [5], and GSE112716 [12]. For snRNA-
seq, we used processed data retrieved from [24–26] as an example
of muscle pathology, fiber typing, and ageing respectively.
Microarray gene expression data were processed as follow. Agilent
microarray mouse platform was re-annotated (Gencode annota-
tion release vM22, evidence-based annotation of the mouse gen-
ome GRCm38, version M22 Ensembl 97) both for coding and
non-coding RNAs. Microarray data were normalized using quantile
normalization separately for protein-coding and long non-coding
genes. The dataset includes 10 biological replicates for each myofi-
ber type considered (1, 2A, 2A/2X, 2X, 2X/2B, and 2B). Myofibers
were sub-grouped in transcriptional slow (type 1), transcriptional
intermediate (type 2A, 2A/2X, and 2X), and transcriptional fast
(type 2X/2B and 2B). RNA sequencing data for miRNA identification
were mapped to the known mouse miRNA precursors from the
miRBase database (Ver. 19) using the mapper module of miRDeep
with default settings. Quantize module was used to normalize read
counts of mature miRNAs.
2.2. Gene expression correlation

We computed the level of expression correlation among differ-
ent RNA categories using the Spearman index as follows: mRNA –
lncRNA; mRNA – miRNA; lncRNA – miRNA.

Correlations were obtained using the ‘cor’ function provided by
the ‘stats’ library of the R language. All correlations were filtered
based on specific thresholds: for the mRNA – lncRNA comparisons
we required a correlation greater or equal to 0.45; for the miRNA –
mRNA and miRNA – lncRNA comparisons, we selected correlations
below �0.35. Furthermore, a permutational test was implemented
to assess statistical significance: we computed an empirical p-
value using 1,000 random permutations of the experimental
measures.
2.3. Interactions between miRNAs and mRNAs and miRNAs and
lncRNAs

We collected validated and predicted interactions from multi-
ple sources. Specifically:

� miRNA – mRNA validated interactions were downloaded from
TarBase v7.0 [27,28] and the Encyclopedia of RNA Interactomes
[29,30] (ENCORI: HITS-CLIP validation, data downloaded
November 27, 2020)

� miRNA – mRNA predicted interactions were extracted from
miRDB (v6.0) [31,32], miRmap (version of 10-Jan-2013)
[33,34], RNA22 [35] (full sets of prediction of Mus musculus
based on Ensembl 96, miRBase 22 and RNA22v2), PITA [36]
(both files with zero flank and with a flank of 3 and 15 bases
upstream and downstream)

� miRNA – lncRNA validated interactions were downloaded from
DIANA-tool (LncBased v.2) [37] and ENCORI [29,30] (HITS-CLIP
validation, data downloaded November 27, 2020).

All interactions were further filtered based on correlation
results, using the same thresholds described in the previous
section.
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2.4. Functional circuits

We used the collected interactions to identify minimal func-
tional circuits, defined as groups of three interacting nodes: one
mRNA, one lncRNA, and one miRNA. We found a total of
9,625,735 circuits, divided as follows: 9,502 including validated
interactions and 9,616,233 containing predicted interactions.

2.5. Node-Centric network

Each web page describing an mRNA, miRNA, or lncRNA displays
a small network representing a selection of the functional circuits
involving searched entry. As the complete network would be too
large to be practically displayed, we designed a heuristic approach
to identify the most relevant interactions to be included.

We collect all edges belonging to functional circuits and for
each, we compute two weights as follows:

� A weight ‘w’ defined as the p-value of the correlation between
the two endpoints of that edge.

� A weight ‘wpg’ (named after the fact that it will be later used to
compute the PageRank importance of each node) defined as
follows:

For edges obtained from circuits including predictions:

wpg ¼ 1�w

For edges obtained from circuits including validated
interactions:

wpg ¼ 1� w
sf

where sf is the ratio between the number of edges coming from
circuits obtained from predicted and from validated interactions

The scale factor sf was devised to balance the relative impor-
tance of circuits including predicted and validated interactions.
Indeed, the former are much more numerous than the latter; if
unchecked, this imbalance would risk obscuring almost completely
the contribution of validated results in the final network.

Overall, this master network derived from function circuits
includes 17,886 nodes and 1,243,206 edges.

The most relevant network centered at each node is then com-
puted using the following procedure:

1) Starting from a node of interest n, we find the subgraph
induced by its neighbors within a distance of two steps in
the master network.

2) We compute the PageRank of each node using the ‘wpg’
weights, and we select the top 30 nodes according to this
metric. We balance types of nodes in such a list: in other
terms, we try to collect 10 mRNAs, 10 miRNAs, and 10
lncRNAs to provide an even representation of the different
RNA species.

3) We collect circuits involving the nodes identified in the pre-
vious step giving priority to validated interactions. This step
is repeated until there are no more isolated nodes

4) Step #3 does not guarantee, by itself, that the resulting net-
work will consist of a single connected component. Since
that is our final objective, we apply the following transfor-
mation until multiple components remain:
a. We pick the smallest and the largest components.
b. We identify the two nodes with the highest PageRank

inside those.
c. We link the nodes together by adding the edges along the

shortest path connecting them to the network obtained in
step #1
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d. We add one extra node for each edge along the shortest
path, in order to capture, if existing, the functional circuits
having such edges as one of their sides. This step is guided
by a global optimization procedure aimed at reducing the
total number of nodes that have to be introduced.

2.6. Custom network from user selection

The Custom Network section gives the user the option to pro-
vide a list of up to 30 nodes (mRNAs, miRNAs, or lncRNAs). Our sys-
tem will then generate a network representing the most relevant
circuits including the nodes in the user selection. The procedure
we use to build this network is similar to the one developed for
the single nodes, but we employed some specific optimizations
to obtain a solution in real time:

1) First of all, we keep in memory the master network, the
PageRank score of all the nodes and the corresponding min-
imum spanning tree (MST).

2) Instead of starting from the collection of circuits, we directly
compute the induced subgraph defined by the user selection.

3) If multiple connected components remain, we link them by
extending the network to include the shortest path identi-
fied on the MST among the highest-scoring PageRanked
nodes.

Because of graphical constraints, we limit the total number of
nodes in the resulting networks to 150.
2.7. Single-nucleus network

We integrated snRNA-seq data into our network, starting from
nucleus-type specific clusters obtained from [24–26]. We collected
all the genes belonging to each cluster identified in single myofi-
bers: myonuclei (type 1, 2A, 2X, 2B, Nr4a3+, Enah+, Ampd3 + ),
nuclei from satellite cells, neuromuscular junction, myotendinous
junction, and myocytes. We built type-specific networks filtering
functional circuits given their overlap with each group of genes
and using the same procedure described in paragraph 2.5 (Node-
Centric Network) to reorganize the network.

Clusters from [24] contain two nucleus categories: wild type
(WT) or delta exon 51 (DEx51) of the gene encoding for dystrophin.
In this case, we extended the filtering procedure to keep the cir-
cuits identified in the two subgroups separated.
2.8. Pathway construction

The topologies of all KEGG pathways were retrieved from the
graphite package [38]. Each network was then extended to include
predicted and validated interactions involving miRNAs or lncRNAs.

Starting from a set of nodes provided by the user (the query),
we perform a series of hypergeometric tests to find the list of path-
ways significantly overlapping such query. To this end, we use the
‘hypergeom.sf’ implementation provided by the ‘scipy’ library [39]
and we corrected results using the ‘fdrcorrection’ (Benjamini-
Hochberg method) provided by the ‘statsmodel’ library [40].

Results of pathway enrichment analyses are displayed in a
table. Each entry is linked to a detailed view of the corresponding
pathway showing the following information: the nodes in common
with the user query and the most relevant circuits involving
protein-coding genes, lncRNAs, and miRNAs, that overlap the
pathway.
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2.9. Software implementation

All the information about expressions, correlations, and net-
works (nodes and topologies) is stored in a RocksDB database
and accessed through the python-rocksdb library [41].

Network algorithms to compute shortest paths, minimum span-
ning trees, and PageRanks are implemented by the network library
[42]. The web interface was built in JavaScript on top of React [43]
and fontawesome icons [44]. We relied on React-Apexcharts [45]
for the display of expression plots and on React-Table [46] for
the generation of dynamic tables.

Finally, we extended Cytoscape-JS [47] and the layout engine
cytoscape-cola [48] to render networks.

2.10. Primer design

Primers to amplify the genomic region containing miRNA genes
and primers for qRT-PCR analyses were designed using the Pri-
mer3Plus algorithm (http://www.bioinformatics.nl/cgi-bin/
primer3plus/primer3plus.cgi, Accessed on 18th of July 2021) and
analyzed for dimers and secondary structure formation with
OligoAnalyzer tool (Integrated DNA Technologies). Moreover, pri-
mers were tested using the in-silico PCR tool implemented in the
UCSC Genome Browser. Primer sequences were reported in the
Supplementary Table S1.

2.11. miRNA cloning

DNA regions coding for selected miRNAs were cloned in the
pCMV-MiR vector (OriGene) including 200–300 bases upstream
and downstream the pre-miRNA sequence.

2.11.1. PCR for inserts preparation
Genomic DNA extracted from C2C12 cells was used as template

for the amplification of selected miRNA genes. PCR reaction mix
was prepared as following: H2O, 34.25 ll; PCR Buffer 10X, 5 ll;
MgCl2 [50 mM], 4 ll; dNTPs [10 mM], 3 ll; Primer Forward
[10 lM], 1 ll; Primer Reverse [10 lM], 1 ll; Taq DNA Polymerase
[2 U/ll], 0.75 ll; DNA [50 ng/ll], 1 ll. PCR amplification was done
in an Eppendorf thermocycler using the following program: 5 min
95� C; (30 sec 95� C; 30 sec 58-61� C; 70 sec 72� C for 45 cycles);
10 min 72� C. Amplification was verified in 1.5% agarose gel and
PCR products were purified with the GenEluteTM PCR Clean-Up
Kit (Sigma-Aldrich) following the manufacturer protocol.

2.11.2. Plasmid and insert digestion, ligation and bacteria
transformation

pCMV-MiR vector (Origene) and PCR products were digested
with the same restriction enzymes in order to perform directional
cloning (AscI and XhoI; New England BioLabs). Depending on the
position of restriction enzymes in forward or reverse amplification
primers, we were able to clone the amplicon to allow the expres-
sion of miRNA or miRNA antisense sequences (Supplementary
Table S1). Restriction reactions were performed at 37� C for
90 min in the following reaction mix: H2O to 50 ll; Cut Smart Buf-
fer 10x, 1 ll; AscI [10 U/ll], 1 ll; XhoI [10 U/ll], 1 ll; Plasmid/PCR
Insert, 1 lg. Digestion products were purified using the GenE-
luteTM PCR Clean-Up Kit (Sigma-Aldrich) following the manufac-
turer protocol.

50 ng of plasmid were used to ligate 1:4 M quantities of PCR
product as follow: H2O to 20 ll; T4 Ligation Buffer 10X, 2 ll;
PCR amplicon 4 M with respect to the 50 ng of the vector; digested
pCMV-MiR vector 50 ng; T4 DNA ligase [10 U/ll], 1 ll. The solution
was incubated at 16� C overnight and then precipitated using
sodium acetate and ethanol. Pellet was resuspended in 5 ll of
H2O RNAse free.
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1 ll of ligation product and 40 ll of electro-competent bacteria
(Escherichia coli bacteria DH10B) were mixed and the solution was
subjected to an electrical field of 1.8 kV in a Gene Pulser II electro-
porator (BioRad). Then, 360 ll of SOC medium were added and
after that, the bacterial solution was incubated at 37 �C for 1 h. Bac-
teria were plated on solid LB medium (LB + Agar) with kanamycin
[50 lg/ml] and grown at 37� C overnight. Colony PCRs were per-
formed in order to test the presence of the insert in the plasmid
using 3 ll of a liquid bacterial culture as template. The PCR prod-
ucts were visualized in 2% agarose gel. For each plasmid, 5 ll of
one of the positive colonies were regrown in 5 ml of
LB + kanamycin medium at 37� C overnight to prepare the purified
plasmid. The plasmid was extracted and purified using a PureLink
HiPure Plasmid Miniprep kit (Invitrogen). To test the accuracy of
the pre-miRNA sequences, all plasmids have been sequenced (San-
ger Sequencing, Eurofins) and compared with the mouse reference
genomic sequences derived by the UCSC Genome Browser.
2.12. C2C12 culture and cell transfection

C2C12 myoblasts were cultured on Tissue Culture dishes
(Thermo Fisher Scientific) in proliferation medium (Dulbecco’s
modified Eagle’s medium (DMEM), 10% fetal bovine serum, 1 U/
ml Penicillin, 100 lg/ml Streptomycin) until reaching 80% of con-
fluence. After cell detaching with Trypsin-ethylenediaminetetraace
tic acid (Thermo Fisher Scientific) 40,000 or 60,000 cells were pla-
ted on each well of Multiwell Culture plates (Thermo Fisher Scien-
tific) using medium without antibiotic. A sterile 13 mm round
coverslip was positioned on the bottom of the wells before cell
seeding. Cells were co-transfected with mitoRFP and pCMV-MiR
(with cloned a specific miRNA or miRNA antisense) using the Lipo-
fectamine 2000 (Thermo Fisher Scientific) as the transfecting
agent. Transfection solution was prepared by combining and incu-
bating two solutions at room temperature for 30 min, which con-
tained: (solution 1) 3 ll of Lipofectamine 2000, 122 ll of Opti-
MEM (Thermo Fisher Scientific); (solution 2) 2 ll of mito-RFP plas-
mid [100 ng/ul], 2 ll of pCMV-MiR with cloned miRNA or antisense
[100 ng/ul], 121 ll of Opti-MEM (Thermo Fisher Scientific). Cells
with the transfection solution were grown for 24 h at 37 �C in 5%
CO2 in a humidified incubator. After 24 h the medium was changed
with a new medium containing G418 antibiotic [0.5 mg/ml] for
4 days. G418 antibiotic was used to positively select cells trans-
fected with pCMV-MiR.

Pvt1 silencing was performed using antisense LNA GapmeRs
(Exiqon) (Pvt1 1 ACCGTAGTAGAGTTAA; Pvt1 3 AGTCAACGCTTCA-
CAT). Cells transfected with Lipofectamine 2000 and Antisense
LNA GapmeR Negative Controls (Exiqon) were used as negative
controls.
2.13. Mitochondrial network analysis

Survived cells to G418 selection were used to evaluate mito-
chondrial network. In fact, mitoRFP plasmid encodes for a fluores-
cent tag localized in the mitochondria, which is characterized by an
excitation wavelength of 555 nm and an emission wavelength of
584 nm. After G418 selection, the culture medium was removed,
and a first wash was carried out with 500 ll of phosphate-
buffered saline (PBS). Cells were then fixed by adding 500 ll of
4% paraformaldehyde in PBS and incubated at room temperature
for 15 min. Then, three washes with PBS were performed, slides
on the bottom of the wells were recovered, rinsed in distilled
H2O, and mounted on glass slide. Slides have been observed
through a confocal microscope, oil immersion objectives (63x of
magnification), and exciting samples with a wavelength of
555 nm. Z-stack images of samples have been acquired and used
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for subsequent analyses to determine the degree of mitochondrial
fragmentation.

The images were analyzed with the ImageJ software, using the
MitoLoc plug-in [49]. To describe mitochondrial morphology, we
used the fragmentation index (F.I.) calculated as follows: VS =
(Vfragment/Vtotal) ∙100 and F.I. = (

PX
1Vs � 20%Þ=ðPX

1VsÞ.
2.14. Electron microscopy

Transfected C2C12 cells were fixed with 2.5% glutaraldehyde in
0.1 M sodium cacodylate buffer pH 7.4 for 1 h at 4� C, post-fixed
with 1% osmium tetroxide and 1% in 0.1 M sodium cacodylate buf-
fer for 2 h at 4� C. Samples were washed three times with water
and then dehydrated in a graded ethanol series and embedded in
an epoxy resin (Sigma-Aldrich). Ultrathin sections (60–70 nm)
were obtained with an Ultro-tome V (LKB) ultramicrotome, coun-
terstained with uranyl acetate and lead citrate, and viewed with
a Tecnai G2 (FEI) transmission electron microscope operating at
100 kV. Images were captured with a Veleta (Olympus Soft Imag-
ing System) digital camera.
2.15. Overexpression of miR-27a in mouse skeletal muscle

miR-27a was overexpressed in mouse muscles as described in
[5].
2.16. RNA extraction and qRT-PCR analysis

Trizol (Thermo Fisher Scientific) was used to extract total RNA
from C2C12 cells or skeletal muscles according to the manufac-
turer protocol. Briefly, 500 ll of Trizol (Thermo Fisher Scientific)
per well of Multiwell Culture plates or 1 ml per 30 mg of muscle
were used. 1 vol of chloroform to 5 volumes of Trizol were added
and vigorously mixed; then the solution was kept on ice for
15 min and then centrifuged at 4 �C at 12,000 rpm for 20 min.
The upper aqueous phase was transferred in a new Eppendorf tube
and RNA was precipitated using 1:1 vol of isopropanol. RNA was
resuspended in H2O RNAse free and tested for protein and phenol
contaminations at the spectrophotometer. RNA integrity was
tested with the 2100 Agilent Bioanalyzer.

RNA with RIN > 7 was used for the retrotranscription according
to the following protocol. 1–3 lg of total RNA were mixed with 1 ll
of oligod(T) [50 lM], 0.5 ul of random primers [20 lM], 1 ll of
dNTPs and H2O to bring the volume to 13 ll. The solution was
heated to 65� C for 5 min and then killed on ice for 2 min. 4 ll
of first-strand buffer 10X, 2 ll of DTT [0.1 M] and 1 ll of Super-
script II (Thermo Fisher Scientific) were added to the previous solu-
tion and all incubated at 42� C for 2 h. Superscript II was
inactivated incubating the mix at 70� C for 15 min.

EvaGreen molecule (Solis BioDyne) was used to perform qRT-
PCR in the CFX thermocycler (BioRad) using the following PCR
cycle: 15 min 95� C, (15 sec 95� C, 20 sec 60� C, 45 sec 72� C with
the fluorescence reading, and 40 cycles), 3 min 72� C. Reaction mix
was 6.6 ll of H2O, 2 ll of Master Mix 5X, 0.2 ll of primer forward
[10 lM], 0.2 ll of primer reverse [10 lM], 1 ll of cDNA [10 ng/ll].

miRNA analysis was performed using the TaqMan miRNA
assays (Thermo Fisher Scientific). 10 ng of total RNA were used
to retrotranscribe specific miRNAs and the U6 reference gene using
the miRNA reverse transcription kit (Thermo Fisher Scientific).
Real-time PCR was performed on CFX thermocycler (BioRad) using
the TaqMan Universal PCR Master Mix II, no UNG (Thermo Fisher
Scientific) according to the manufacturer’s protocol.
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2.17. Luciferase assay

Myoblasts were transfected with pCMV-MiR vector containing
the sequence for miR-27a or �214 and 100 pg/ml of pmirGLO
Dual-Luciferase miRNA Target Expression Vector (Promega) con-
taining the target sequence or a control sequence (primers for
cloning are listed in Supplementary Table S1. Cloning was per-
formed using SacI and XbaI restriction enzymes). Assays were per-
formed using the Dual-Luciferase Reporter Assay (Promega),
measuring firefly and renilla luciferase activities with Turner
Designs TD-20/20 Luminometer (DLReady). miRNA transfections
were independently replicated at least three times.
3. Theory and calculation

MyoData includes experimental data on gene expression on sin-
gle myofibers and nucleus to calculate networks centered on each
mRNA, miRNA, or lncRNA whose expression was measured. These
networks are computed considering the fact that i) miRNAs induce
the degradation of their targets and ii) lncRNAs may function as
miRNA sponges. Therefore, interactions recorded in different data-
bases among miRNAs and lncRNAs, and miRNAs and mRNAs were
further filtered using the correlation among their expression pro-
files. Specifically, we require that miRNAs and lncRNAs, and miR-
NAs and mRNAs show negatively correlated expression patterns.
On the contrary, the expression correlation between mRNAs and
lncRNAs should be positive.

We have developed a heuristic approach that strikes a balance
between the overall number of nodes included in each network,
and their relevance, defined on the basis of the strength of their
interactions and the topological distance to the user query. More-
over, the procedure results in a balanced selection over the three
categories of nodes (mRNAs, miRNAs, and lncRNAs).
4. Results and discussion

4.1. MyoData resource

MyoData collects expression profiles of mRNAs, miRNAs, and
lncRNAs in different myofibers and gives the user information to
hypothesize their function in relationship with physio- and
patho-logical differences.

The database has three main search functions:

1) The user can focus on a specific mRNA, miRNA, or lncRNA.
2) Given a list of genes, the software can extract the network

containing their interactions. As described in ‘‘Materials
and Methods”, we limited to 30 the number of acceptable
genes in order to compute the network in real-time and to
display it graphically with an acceptable level of resolution.

3) As an alternative, a gene list can be used to perform a path-
way enrichment analysis. Here, we employ KEGG pathways
which we extended to include miRNAs and lncRNAs. These
genes are usually absent in pathways but may nonetheless
influence gene expression.

In all cases, MyoData accepts as an input gene symbols or
ENSEMBL Gene identifiers (for mRNAs or lncRNAs) and miRNAs
name (Fig. 1).
4.1.1. Search for an entry: Retrieve expression on single myofibers,
regulatory network centered on it

This page shows details about a single node: mRNA, miRNA, or
lncRNA. It is subdivided into three sections:



Fig. 1. Search functions in MyoData. (A) Users can search for a single mRNA, miRNA or lncRNA. Alternatively, (B) a list of up to 30 genes can be queried to generate a network
or (C) a pathway enriched with miRNA and lncRNA functions.
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1) A bar plot representing the expression values over all the
available single myofibers which were experimentally
assayed.

2) A network view, collecting the most relevant interactions.
3) Correlation tables.

In the first section, an interactive bar plot is shown, where each
expression measure is colored according to the type of myofiber it
belongs to. The website also offers the possibility to download all
expression tables in three different formats: svg (vector graphics),
png (raster graphics), and csv (textual) (Fig. 2A).

The second section of the page displays a network collecting the
interactions relevant to singlemyofiber typesor single-nucleus clus-
ter, which can be selected through a drop-downmenu (Fig. 2B).

The layout is calculated in real-time, and the user has the option
to limit the total number of seconds dedicated to this task. More-
over, different buttons give the user the possibility to further
improve the layout, to reset the viewport (by centering and rescal-
ing the network to fit the available space), to save a PNG image, or
to export a tsv, or JSON file describing the network that can be later
loaded into the stand-alone Cytoscape software for further analy-
ses [50].

Network visualizations are completely interactive. By clicking
on any node, its details are shown in a separate panel. Information
presented includes node descriptions, Gene Ontology annotations,
and external references. Similarly, edges are annotated with their
correlation index, the name of the database from which they were
derived the type of interactions they represent.

The third section of the page consists of a series of tables col-
lecting the correlations computed between the selected entry
and the other nodes in the database belonging to different RNA
species. The user has the option to further filter the tables by
searching for specific need IDs (miRBase IDs coming from miRBase
v22 GRCm38). Partial matches are automatically handled: for
instance, the substring ‘‘let-7a” would automatically match the full
form ‘‘mmu-let-7a”. Each table row can be dynamically expanded,
by clicking on a button, to display graphically the expression pro-
files of the two correlated nodes (Fig. 2C).

4.1.2. Regulatory network from multiple entries searching
This page gives the user the ability to use a list of gene identi-

fiers as a query. As described in the ‘‘Materials and Methods” sec-
tion, we filter out those entries that are not present in our master
network. The user has the option to display the list of such rejected
IDs (Fig. 3A).
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After filtering, a network is computed and displayed. The graph-
ical format is similar to that described in the previous section, with
the only difference that the layout computation can be performed
for longer periods of time (up to 30 s; Fig. 3B).
4.1.3. Pathway enrichment analysis
MyoData is implemented to perform a pathway enrichment

analysis. This will result in the display of a table including the titles
of significantly enriched pathways, their dimension, the size of the
intersections with user-provided nodes, and finally the adjusted p-
values for the statistical tests.

By clicking on each pathway title, MyoData will switch to the
visualization of the pathway topology, extended with the most
important functional circuits (miRNA-lncRNA-mRNA interactions;
Fig. 4A and B).

As an example, in Fig. 4 we used single nucleus RNA-seq results
from a previous study [25]. We used genes significantly upregu-
lated in the cluster of nuclei specific for the slow contracting myo-
fibers (type 1 or myosin heavy chain 7; Myh7). Most enriched
pathways correctly describe heart functions and the Ppar pathway
(Fig. 4B). It is known that slow myofibers have isoforms of contrac-
tile proteins similar to heart, and peroxisome proliferator-
activated receptor d (PPARd) induces a switch to form increased
numbers of type 1 myofibers [51]. Prevalently, the metabolism of
type 1 myofibers is based on lipid oxidation [5] and the ‘‘Fatty acids
metabolism” is one of the most enriched pathways (Supplemen-
tary Table S2). Interestingly in the pathway corresponding to
‘‘Fatty acid metabolism” among other miRNAs we identified miR-
27b that is considered a hub in the lipid metabolism [52],
miR-674, which is associated with circulating lipids [53], and
miR-143, which is already known to regulate lipid metabolism
[54] (Fig. 4C).
4.2. Data validations

To demonstrate the potentiality and the validity of data
extracted from the MyoData resource, we performed four case
studies focused on important aspects of the skeletal muscle phys-
iology: i) the modulation of mitochondrial shape by miRNAs that
may impact muscle metabolism; ii) the action of lncRNAs as
miRNA sponges; iii) the co-participation of different non-coding
RNAs in the regulation of myofiber functions; iv) the improvement
of snRNA-seq information.



Fig. 2. Search for a single entry. (A) Bar plot showing expression values for each biological replicate using Myh4 as an example of entry. Different gradations of blue indicate
different myofiber types (I). By moving the mouse over each bar, the precise expression value appears (II). Expression tables can be downloaded (III). (B) Network
visualization using Myh4 as an example of entry. Query is colored in black. Red rectangle indicates buttons to manage the network. The network can be filtered according to
single nucleus RNA-seq data (IV) and can be downloaded as a table (V). (C) Correlation description using Myh4 as an example of entry. The red rectangle indicates boxes used
for filtering. By clicking on the arrow next each source name, a histogram appears describing the expression of correlated genes for each sample (VI). The image can be
downloaded (VII). It is possible to move to different pages by clicking the indicated button (VIII). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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4.2.1. Case study 1: Identification of miRNAs impacting on the
mitochondrial shape

MyoData outputs the expression of miRNAs in different myofi-
ber types permitting users to hypothesize their function based on
physiological differences of myofibers. For example, by searching
for miR-214, �142, �208b, �382, and let-7e in the MyoData, users
will see that these miRNAs are not expressed in intermediate myo-
fibers, the most oxidative ones [5]. The modulation of these miR-
NAs likely impacts the expression of proteins controlling
metabolism in this type of muscle cells. As proof of principle, we
tested this hypothesis by evaluating mitochondrial shape, which
is a readily measurable phenotype and is important for skeletal
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muscle metabolism and functions [55–58]. In addition to the afore-
mentioned miRNAs, we also included miR-301a, �29a, �143,
�27a, �149, �378a, and let-7a because they target several genes
coding for mitochondrial proteins (Supplementary Table S3). We
tested the inhibition of miR-378a using antisense sequences since
miR-378a knock-down was previously shown to induce the accu-
mulation of abnormal mitochondria and apoptosis [59]. We con-
firmed that its inhibition indeed induced mitochondrial
fragmentation, which is known to be a marker of apoptosis [60]
(Fig. 5A). We obtained comparable results after the inhibition of
miR-29a and let-7a confirming previous observations obtained in
the heart [61] and HT29 cells [62]. However, the upregulation of



Fig. 3. Interaction network from a list of genes. (A) Page structure for a multiple query. A list of up to 30 genes can be pasted in the box (I). After clicking on the ‘‘Compute
Network” button the network will be calculated. Rejected genes can be visualized by clicking on the ‘‘Toggle rejected nodes” button (II). (B) Resulted network. The red
rectangle indicates buttons to manage the network. It is possible to move to different pages by clicking the indicated button (III). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Pathways enrichment analysis. (A) Query page. In the box (I) the user can paste gene symbols and by clicking on the ‘‘Compute Network” button pathways the
enrichment will be calculated. Rejected genes can be visualized by clicking on the ‘‘Toggle Rejected Nodes” button (II). (B) Results appear in a table that can be filtered
according to the name of the pathway (Pathway title), number of genes identified in the pathway (genes in common), the dimension of the pathway (dim. Pathway), and
statistics (pvalue and adjusted pvalue) (red rectangle). It is possible to move to different pages by clicking the indicated button (III). (C) Fatty acids metabolism pathway
extended with non-coding RNAs involved in the regulation of the considered genes. Red circle indicates miRNAs discussed in the text. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. miRNAs regulate mitochondrial shape. (A) Quantification of the fragmentation index, f index, of mitochondrial networks after miRNA transfections; n = at least 20
mitochondria for each condition (three independent transfections per each miRNA). Dark grey bars represent f index associated with miRNAs not affecting mitochondrial
shape; white bars represent f index associated with miRNAs that induce mitochondrial fragmentation; light grey bars represent f index associated with miRNAs that induce
mitochondria fusion. Among miRNAs inducing mitochondrial fragmentation those that were inhibited are indicated. Significance was calculated using t-test between control
and each treated sample considering unequal variance between samples. * P � 0.05, ** P � 0.005, *** P � 0.0005. Indicated statistical significance is referred to the control
(Ctrl). Error bars represent SEM. (B) Electron microscopy of C2C12 cells transfected with pCMV-MiR vectors to upregulate specific miRNAs. Black arrows indicate elongated
mitochondria in cells overexpressing miR-149 and �214; white arrows indicate fragmented mitochondria in cells overexpressing let-7e.
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miR-143, �382, �301a, and �208b did not change the conforma-
tion of the mitochondrial network (Fig. 5A). miR-208b is a miRNA
highly expressed in slow myofibers and is involved in the specifi-
cation of those types of myofibers via its blocking of Sox6 [63].
Slow oxidative myofibers are very rich in mitochondria, which cor-
relates well with our experiments that show that the upregulation
of miR-208b did not affect the mitochondrial network. miR-143 is
particularly expressed in skeletal muscle and is associated with the
maintenance of the satellite cell population and with aging [64,65],
similar to miR-382 [66]. Both miR-301a and �143 are upregulated
in mice fed with high-fat diet [67] which impacts mitochondrial
function but, according to our validation experiments, their upreg-
ulation did not affect mitochondrial conformation. The upregula-
tion of the other tested miRNAs caused mitochondrial fission
(miR-27a, �142, and let-7e) or fusion (miR-149, �214) (Fig. 5A).
In summary, we confirmed that 8 out of 12 tested miRNAs altered
mitochondrial shape, thereby potentially impacting the regulation
of muscle metabolism. These results can be important starting
points for researchers interested in studying the metabolic impact
of tested miRNAs.

To confirm our previously described results, we also checked
mitochondrial ultrastructure by electron microscopy. We previ-
ously showed the change in mitochondrial ultrastructure after
the upregulation of miR-27a and �142 [5], therefore we tested
let-7e, which according to the analysis of the f-index causes mito-
chondrial fission, and miR-149 and �214, which cause mitochon-
drial fusion, confirming in all cases previously described results
(Fig. 5B).
4.2.2. Case study 2: lncRNA Pvt1 as a miRNA sponge
In the MyoData database, we integrated information on

miRNA–mRNA and miRNA–lncRNA interactions. This allows for
the identification of miRNA–mRNA–lncRNA network triangles that
describe the miRNA sponge activity of lncRNAs. We used this infor-
mation to experimentally validate the activity of the lncRNA plas-
macytoma variant 1 (Pvt1) as a sponge for miR-27a. We previously
demonstrated that Pvt1 is involved in muscle atrophy by regulat-
ing cMYC [12]. This is possible thanks to the cytoplasmic localiza-
tion of Pvt1 [12] where it acts as a sponge for miR-200 family,
miR-199a, �152, and �30a in different cancers [68–71].
4150
Thenetwork associatedwithPvt1outputted fromMyoData iden-
tifiesPvt1as a centralnode regulatingmiR-101a, -22, -24, -26a, -27a,
-322, and -532 (Fig. 6A). Network triangles Pvt1–miR-322–Rtcb,
Pvt1–miR-532–Atl2, andPvt1–miR-101–Ajm1havebeenpreviously
experimentally validated using the HITS-CLIP technique in C2C12
cells (see edges in MyoData). To demonstrate if Pvt1 is able to act as
a sponge formiR-22,�27a, -322, and -532,we evaluated the expres-
sionof themiRNAtargetsafterPvt1silencing inC2C12myotubes.We
expected that the reduction of Pvt1 allows the release of miRNAs
fromthe lncRNA, therebypermittingthemtodownregulatetheir tar-
gets. We showed that all considered targets were downregulated
with the exception of RAR Related Orphan Receptor B (Rorb) that
was upregulated (Fig. 6B). These data support the sponge activity of
Pvt1 and its interactionwithmiR-532 and –322, whose relationship
wasderived fromRNA-CLIPexperiments (Fig.6A),butdonotdemon-
strate the direct interaction between Pvt1 and miR-27 or –22. We
excluded miR-22 from experiments to validate Pvt1 interactions
withmiRNAs, since themiRNA target transcript Rorbwas not down-
regulated in Pvt1-silenced cells. In the validation experiments car-
ried out with luciferase assays, we were able to demonstrate the
direct interaction of Pvt1 with miR-27a (Fig. 6C). To strengthen this
result,we overexpressedmiR-27a in C2C12 cells showing the down-
regulation of both Nnmt and Cdh8 genes. Nnmt and Cdh8 downreg-
ulation was instead attenuated in cells overexpressing the region of
Pvt1 containing binding sites for miR-27a (Fig. 6D).
4.2.3. Case study 3: The identification of miRNAs involved in myofiber
type specification

MyoData allows for parallel searching for multiple entries. This
may be useful, for example, to search if specific miRNAs influence
the activity of genes coding for proteins that participate in the
same cellular process or if they modulate the activity of co-
regulated genes. We decided to use the database to evaluate if
miR-206, �208b, and miR-214 can regulate genes involved in myo-
fiber type specification. It was previously shown that loss of miR-
214 expression in Zebrafish leads to a reduction of slow myofibers
through the regulation of Su(fu) gene that participates in Hedgehog
signaling. Su(fu) inhibition induces an increase in the number of
slow myofibers [72]. miR-206 is predicted to regulate the expres-
sion of transcriptional repressors of the slow myosin heavy chain,
such as Sox6, Purb, and Sp3 [73].



Fig. 6. Pvt1 network. (A) Network associated to Pvt1 (black triangle) and single myofiber expression. Green arrows indicate mRNAs tested for their expression after the
downregulation of Pvt1. (B) Histograms represent expression values relative to the average expression of the gene among samples. Tbp was used as control gene. At least four
independent experiments were performed. Error bars indicate SEM. (C) Luciferase assays were performed to demonstrate the direct interaction between Pvt1 and miR-27a.
Part of Pvt1 sequence containing the miRNA putative interaction site (or not containing; Pvt1 Ctrl) was cloned into pmirGLO vector. Firefly luciferase (reporter gene) and
Renilla luciferase (control reporter for normalization) activities were measured after the transfection in C2C12 cells together with pCMV-MiR coding for miR-27a or empty
pCMV-MiR (Ctrl). Data are expressed as the mean of at least five independent transfections. Error bars indicate SEM. (D) Histograms represent expression values relative to
the average expression of the gene among samples. Tbp was used as control gene. Co-transfecting cells with pCMV-MiR vector coding for miR-27a and pmirGLO coding for the
sequence part of Pvt1 with binding sites for miR-27a, Cdh8 and Nnmt expression were not affected. At least four biological replicates were performed. Error bars indicate SEM.
For this entire figure, significance was calculated using t-test between control and each treated sample considering unequal variance between samples. * P � 0.05, ** P � 0.01,
*** P � 0.0005. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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By querying MyoData for miR-206, �208b, �214, Sox6, and
Slc16a3 we retrieved the network described in Fig. 7A. The three
miRNAs were selected because they are exclusively expressed in
slow contracting myofibers [5] and probably impact specific func-
tions in these myofibers. Sox6 was previously reported as an
important transcription factor involved in the regulation of slow
myosin heavy chain gene [74], while Slc16a3 (MCT3-M/MCT4),
which codifies for a lactate transporter, may be involved in the
metabolism of specific myofibers. In fact, it is much more abun-
dantly expressed in fast-twitch oxidative and fast-twitch glycolytic
muscles than in slow-twitch oxidative muscles [75]. To validate
this network and the suggested interactions between miRNAs
and targets, we upregulated the expression of miR-208b or �214
in the C2C12 muscle cell line. In cells overexpressing miR-208b
we found a clear downregulation of Sox6 (Fig. 7B and C), confirm-
ing previous evidence of this specific interaction [76]. Moreover, in
C2C12 cells overexpressing miR-214, both Sox6 and Slc16a3 genes
were downregulated (Fig. 7D and E). We confirmed the interaction
between miR-214 and Sox6 and miR-214 and Slc16a3 via the luci-
ferase assay (Fig. 7F) supporting the ability of miR-214 to regulate
both Sox6 and Slc16a3 and its involvement in the modulation of
slow myofiber functions.
4.2.4. Case study 4: Integration of single nucleus and single myofiber
data: New perspectives to understand Spinal and bulbar muscular
atrophy

Spinal and bulbar muscular atrophy (SBMA) is characterized by
loss of motor neurons and sensory neurons, accompanied by atro-
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phy of muscle fibers. This causes a glycolytic-to-oxidative fiber-
type switch in fast-contracting skeletal muscles without a
reduction of muscle mass in slow-contracting muscles (oxidative
myofibers). Fast contracting muscles are also associated with a
reduction of tetanic force while slow contracting muscles are not
affected [77]. These observations suggest that oxidative myofibers
are protected from the atrophy induced in SBMA patients. To better
understand if non-coding RNAs participate in this protective mech-
anism we interrogated the MyoData database using the list of gene
markers for slow nuclei described in [25]. The computed network
is represented in Fig. 8A. Interestingly, a putative interaction of
miR-27a with E2-ubiquitin ligase Ube2q1 is described. The miR-
27a and Ube2q1 couple is an interesting target because we previ-
ously showed that the upregulation of miR-27a induces the
increase of oxidative myofibers [5] that may have a protective role
in SBMA. miR-27a is expressed only in oxidative myofibers and
silent in glycolytic myofibers [5], which are the most affected in
muscles of SBMA patients. First, we asked if miR-27a can modulate
marker genes for fast myofibers identified by snRNA-seq [25]. To
respond to this question, we evaluated the network generated by
gene markers of fast myofibers. Interestingly, miR-27a was pre-
dicted to regulate 55% (11 out of 20) of fast myonuclei markers
(Fig. 8 B and Supplemental Table S4). In muscles overexpressing
miR-27a we confirmed by qRT-PCR that ~ 82% (9 of 11 tested
genes) of genes targeted by miR-27a were downregulated
(Fig. 8C). This confirms the ability of miR-27a to inhibit the fast
myofiber phenotype. We then experimentally validated the sug-
gested interaction of miR-27a with Ube2q1 using the luciferase



Fig. 7. Regulation of genes that present a myofiber type dependent expression. (A) Network resulted from multiple searching of mmu-miR-206-3p, �208b-3p, �214-3p,
Sox6, and Slc16a3. Black nodes indicate user nodes. (B) Histograms represent expression values relative to the average expression of the gene among samples. U6 was used as
control gene. Four biological replicates were performed. Error bars indicate SEM. (C) Histograms represent expression values relative to the average expression of the gene
among samples. Txn1 was used as control gene. Four biological replicates were performed. Error bars indicate SEM. (D) Histograms represent expression values relative to the
average expression of the gene among samples. U6 was used as control gene. Four biological replicates were performed. Error bars indicate SEM. (E) Histograms represent
expression values relative to the average expression of the gene among samples. Txn1 was used as control gene. Four biological replicates were performed. Error bars indicate
SEM. (F) Luciferase assays were performed to demonstrate the direct interaction between miR-214 and Sox6 and miR-214 and Slc16a3. Part of Sox6 and Slc16a3 sequences
containing the miRNA putative interaction sites (or not containing; Sox6 Ctrl and Slc16a3 Ctrl) were cloned in pmirGLO vector. Firefly luciferase (reporter gene) and Renilla
luciferase (control reporter for normalization) activities were measured after the transfection in C2C12 cells together with pCMV-MiR coding for miR-214 or empty pCMV-
MiR (Ctrl). Data are expressed as the mean of at least four independent transfections. Error bars indicate SEM. For this entire figure, significance was calculated using t-test
between control and treated samples considering unequal variance between samples. * P � 0.05, ** P � 0.01, *** P � 0.0005.
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assay (Fig. 8D). Furthermore, we showed that following the upreg-
ulation of miR-27a in muscle cells, the expression of Ube2q1 signif-
icantly decreased (Fig. 8E). In summary, our experimental data
support the ability of miR-27a to modulate genes specifically
expressed in fast myofibers and to buffer the expression of Ube2q1
in oxidative myofibers but not in glycolytic myofibers. This evi-
dence may be particularly important to modulate atrophic pro-
cesses in SBMA muscle. Alternatively, the upregulation of Ube2q1
in SBMA muscles [78] may be associated with the inability of myo-
blasts to produce new myotubes in degenerating SBMA muscles. In
fact, the upregulation of Ube2q1 is associated with enhanced cell
proliferation in hepatocellular carcinoma [79]. To produce myo-
tubes, myoblasts have to withdraw from the cell cycle to fuse with
each other. If withdrawal is prevented, myotubes cannot form.
Finally, it is interesting to notice that Rocchi et al [77] described
that a high-fat diet (HFD) ameliorates the phenotype of SBMA
model mice. We showed that HFD induces the expression of
miR-27a more in glycolytic than in oxidative muscles [5]. These
two lines of evidence support the importance of miR-27a in SBMA
and show how the database can be used to evaluate the impact of
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non-coding RNAs in the regulation of marker genes for specific
myofibers identified by snRNA-seq experiments.

5. Conclusions

Gene regulation is a complex process where regulatory ele-
ments and their targets participate to form highly complex interac-
tions thus affecting biological processes. Transcription factors (TFs)
are the most well-known molecules involved in this process and
several tools and databases have been published to evaluate TFs
involved in the regulation of commonly altered genes [80–85].
Some databases have been already developed to explore the gene
expression of skeletal muscle [86–89] and skeletal muscle after
exercise [90,91] without considering the importance of non-
coding RNAs in the post-transcriptional regulation of gene expres-
sion. Different databases integrate TFs and miRNAs to describe
feed-forward regulatory circuits [92–94]. Improvements in RNA
sequencing technologies have allowed for the identification of sin-
gle cell and single nucleus gene expression and the consequent
development of several web interfaces to query mRNA and lncRNA



Fig. 8. Integration of single nucleus and single myofiber data. (A) Network resulted from the interrogation of MyoData with markers from a previous study [25] for slow
myofibers. Green arrow indicates Ube2q1 gene. (B) Network resulted from the interrogation of MyoData with markers from a previous study [25] for fast myofibers. Pink
arrows indicate predicted targets for miR-27a. The legend is for both part A and B of the figure. Black nodes in the networks indicate searched entries from the user. (C) Gene
expression of predicted targets of miR-27a shown in part B of this figure. Histograms represent expression values relative to the average expression of the gene among
samples. Txn1 was used as control gene. Four biological replicates were performed. Error bars indicate SEM. (D) Luciferase assays were performed to demonstrate the direct
interaction between miR-27a and Ube2q1. Part of Ube2q1 sequence containing the miRNA putative interaction sites (or not containing; Ube2q1 Ctrl) were cloned in pmirGLO
vector. Firefly luciferase (reporter gene) and Renilla luciferase (control reporter for normalization) activities were measured after the transfection in C2C12 cells together with
pCMV-MiR coding for miR-27a or empty pCMV-MiR (Ctrl). Data are expressed as the mean of four independent transfections. Error bars indicate SEM. (E) Relative expression
of Ube2q1. Histograms represent expression values relative to the average expression of the gene among samples. Txn1 was used as control gene. Four biological replicates
were performed. Error bars indicate SEM. For this entire figure, significance was calculated using t-test between control and treated samples considering unequal variance
between samples. * P � 0.05, ** P � 0.01, *** P � 0.0005. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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gene expression [95–100]. However, the integration of miRNA–
lncRNA–mRNA networks at the single cell level has not been
demonstrated. Such integration represents an important improve-
ment in the comprehension of gene regulation by allowing for the
identification of cell type-specific expression (higher than coding
genes) and the ability of lncRNAs to sponge miRNAs.

We took advantage of our genome-wide experiments on single
myofibers to implement a database to describe hypothetical and
experimentally-validated interactions among miRNAs, lncRNAs,
and coding RNAs to dissect gene regulation in different myofiber
types. The database can be used to evaluate the impact of a single
gene or group of genes (both coding and non-coding genes) on the
regulation of related genes (co-expressed or coding for proteins
involved in a specific pathway). MyoData integrates miRNAs and
lncRNAs in KEGG pathways thereby incorporating the information
of the regulation of biological processes. Mature myofibers are
derived from the fusion of multiple satellite cells and are therefore
a syncytium containing hundreds of nuclei that can participate dif-
ferently to the cumulative gene expression [25]. We therefore
included the possibility of visualizing how the networks calculated
in the database change considering clusters of nuclei based on their
expression retrieved from snRNA-seq experiments. We integrated
these clusters with our information on miRNA expression in single
myofibers because it is not feasible with current techniques to
recover mature miRNA expression from snRNA-seq. We showed
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that this approach may be useful to identify miRNAs that regulate
coding genes involved in muscle atrophy. By evaluating specific
miRNAs and lncRNAs, we experimentally demonstrated that the
database can guide the discovery of novel functions of non-
coding RNAs in skeletal muscle. Moreover, we showed that Myo-
Data is a valuable resource to integrate single myofiber and single
nucleus gene expression information to investigate at a deeper
level the molecular bases and regulations of physiology and
pathology of such an abundant and complex organ as skeletal
muscle.
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