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Arti�cial Intelligence (AI) is a key tool in agriculture for implementing sus-
tainable strategies for weed control. In traditional weed control, the agro-chemical
inputs are uniformly applied to the �eld, while innovative approaches using AI
aim at minimizing the usage of chemical inputs thanks to local applications. In
this paper, we focus on agricultural robotics systems that address the weeding
problem by means of selective spraying or mechanical removal of the detected
weeds. We present a set of deep learning based methods designed to enable
a robot to e�ciently perform an accurate weed/crop classi�cation from RGB
or RGB+NIR (Near Infrared) images. In particular, we use two Convolutional
Neural Networks (CNNs) to simplify and speed up the training process. A �rst
encoder-decoder segmentation network is designed to perform a "plant-type ag-
nostic" segmentation between vegetation and soil. Each plant is hence classi�ed
between crop and weeds by using a second network, depending on the type of
pipeline, for patch-level or pixel-level classi�cation. We introduce also a third
CNN, speci�cally designed for setups with limited resources, like in small UAVs
(Unmanned Aerial Vehicles), that exploits the proposed encoder-decoder seg-
mentation network to e�ciently estimate crop/weeds local statistics. Quantita-
tive experimental results, obtained using multiple publicly available datasets,
demonstrate the e�ectiveness of the proposed approaches.
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1 Introduction

Autonomous robotics applications for precision agriculture represent a concrete
solution towards a sustainable agriculture and chemical treatments reduction
[5]. The term crop de�nes the cultivated plant, while the term weeds de�nes
unwanted plants that grow spontaneously in the �eld. Precision weed control is
a challenging task that aims to reduce the amount of herbicides without com-
promising the quality of crops. Since achieving that manually is time-consuming
and expensive, selective spraying or accurate mechanical removal of weeds are
preferable options.

Autonomous robots equipped with automatic weed detection systems (e.g.,
Fig. 1a) can be used to improve the e�ciency of precision farming techniques on
weed control by modulating herbicide spraying appropriately to the level of weeds
infestation. However, the great variety of crop and weeds shapes, size and colors,

(a)

(b) (c)

Fig. 1: (a) The robot used to acquire some of the datasets used in the experi-
ments. (b) An example of RGB image provided by the camera mounted on the
robot. (c) Label mask with bounding boxes predicted by our approach for image
(b). Crop pixels are colored in green while weed pixels are colored in red.
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Fig. 2: The proposed three-steps crop/weed detection approaches. The two
pipelines (blue and green boxes) share the �rst two steps. The �rst step is a
binary pixel-wise segmentation (i.e., soil/plant) of the RGB input image. The sec-
ond step concerns the extraction of the image patches to be classi�ed. Crop/weed
classi�cation is carried out in the third step, by means of a patch-based clas-
si�cation CNN for the �rst pipeline, and a segmentation CNN applied to the
extracted patches for the second pipeline.

together with the presence of overlaps between plants, makes the automatic
image based crop/weeds classi�cation problem (see Fig. 1b,c) a challenging task
for autonomous farming robots [13]. Moreover, when using supervised methods,
the capability to generalize of the trained models still remains an obstacle to
employ farming robots in di�erent farm conditions caused by environmental
changes, di�erent plants characteristics, and types of soil [16,12].

In this paper, we present two novel pipelines (Fig. 2) that combine a ro-
bust pixel-wise segmentation CNN, designed to be trained once to generalize the
vegetation/soil segmentation problem, with a specialized crop/weeds classi�ca-
tion network, designed to be trained for each type of cultivation with a speci�c,
reduced size dataset. The aim of the proposed approaches is to reduce the limi-
tations of CNNs in generalizing when a limited amount of data with pixel-wise
annotations is available: pixel-wise labeling is in fact the bottleneck for most
crop/weeds classi�cation methods. Our methods relies on a robust binary seg-
mentation that aims to be agnostic to plant species, so easily trainable also by
using external, ready to use pixel-wise labeled datasets that possibly do not
includes the target crop. Speci�cally, we use here a deep convolutional encoder-
decoder architecture for robust background (soil) removal and the extraction of
regions of interest (ROIs). The chosen network is based on the UNet architec-
ture [19] with a modi�ed VGG-16 encoder [23] followed by a binary pixel-wise
classi�cation layer. A coarse-to-�ne classi�er based on CNN is used to classify
the extracted ROIs into crop and weeds. The classi�cation between crop and
weeds is obtained feeding a classi�cation or a segmentation CNN (depending
on the pipeline, see Fig. 2) with image patches (i.e., bounding boxes) enclosing
plant instances extracted by using the obtained vegetation/soil segmentation
mask. Both these architectures have the advantage of requiring smaller datasets
comparing to conventional 3-classes soil/crop/weeds classi�cation systems. They
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Fig. 3: Left: a multirotor UAV. Right: the Jetson TX2 embedded board that can
be easily installed on an UAV.

just require a small dataset to specialize on the target crop species. The gener-
ation of the specialized datasets is even more simple for the �rst pipeline (see
the blue box in Fig. 2) since it is not required pixel-wise labeling, but only one
label for each bounding box. We extensively tested the introduced approaches by
using 4 di�erent datasets, showing good classi�cation results and generalization
properties.

To further validate our approach and to provide a more e�cient classi�cation
pipeline, we introduce also a third pipeline designed for setups with limited
resources, like in small UAVs (e.g., Fig. 3 left). The third pipeline is shown in
Fig. 4. It exploits the proposed encoder-decoder segmentation network and it is
used to address the 3-classes segmentation problem with RGB-NIR images as
input. We added a post-processing step that, starting from the segmented image,
divides it into a �xed size grid and then computes for each cell the crop/weeds
statistics (i.e., weed distribution and segmentation con�dence). We implemented
this pipeline on an NVIDIA Jetson TX2 embedded board (Fig. 3 right) and we
evaluated it on real data coming from two datasets acquired by UAVs.

Fig. 4: Crop/weeds detection pipeline for limited resources systems.
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In summary, the main contributions of this work are:

� A context independent background removal method that uses a CNN based
pixel-wise segmentation to distinguish between soil and plants.

� Two accurate three-steps crop/weed detection pipelines based on the intro-
duced segmentation network.

� A computationally e�cient method for estimating the crop and weed dis-
tribution that exploits a modi�ed version of the introduced segmentation
network to be used on embedded GPU boards.

The reminder of the paper is organized as follows. Section 2 contains a discus-
sion of similar approaches found in the literature. Section 3 describes the details
of the proposed method, while Section 4 shows both qualitative and quantita-
tive results obtained on publicly available data. Finally, conclusions are drawn
in Section 5.

2 Related Work

The problem of vision based crop and weeds classi�cation has been addressed in
di�erent ways. Handcrafted features are used, among others, in [3,7]. De Rainville
et al. [3] present an unsupervised classi�cation method based on morphological
features extracted taking into account the spatial localization of vegetation in
the �eld. Haug et al. [7] present a method to classify carrot plants and weeds
from RGB and near-infrared (NIR) images that uses a background removal step
based on the Normalized Di�erence Vegetation Index (NDVI) and a Random
Forest classi�er applied to features extracted at sparse pixel positions. The ap-
proach described in [7] has been extended in [13], where a plant arrangement
prior is added to the features list used for classi�cation, and tailored for UAVs
(Unmanned Aerial Vehicles) applications in [14].

The adoption of deep CNNs in overcoming the limitations of handcrafted
features has been explored, among others, in [9,18,12]. Fine-tuned pre-trained
CNN models are used for plant classi�cation of 44 di�erent species in [9]. Potena
et al. [18] proposes an on-line perception system for weed-crop classi�cation that
uses a cascade of two di�erent CNNs. A shallow CNN performs vegetation de-
tection, while a second, deeper CNN discriminates between weeds and crops.
Encoder-decoder architectures such as the SegNet segmentation network [1] are
used in [21,16,4]. In [21], a SegNet network is fed with three channels images
that include the NIR channel, the red channel from the RGB image, and the
NDVI map. A similar approach is exploited in [16], where 14 channels images
that include several vegetation indices are used as input for a modi�ed version
of the SegNet network. Synthetic training datasets are used to train a SegNet
network in [4] by randomizing the key features of the target environment (i.e.,
crop and weed species, type of soil, and light conditions). The fully convolutional
network (FCN) proposed in [22] is employed in [12,11]. In [12], the authors ex-
ploits the crop arrangement as an additional source of information, by analyzing
image sequences that cover a portion of the �eld. Class-wise stem detection and
pixel-wise crop/weeds semantic segmentation is jointly addressed in [11]. Model
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Algorithm 1 The proposed crop/weed classi�cation algorithm

1: Input: RGB image IRGB

2: Result: A set of classi�ed blobs Bc

3: M ← Segmentation of IRGB using VGG-UNet
4: C ← Contour-Extraction(M) . set of contours belonging to connected regions
5: for i in range len(C) do

6: BM [i] ← BoundRect(C[i]) . BM [i] is the bounding box around the contour i
7: BRGB [i] ← (IRGB ∩ BM [i]) . BRGB [i] is the corresponding bounding box

from RGB image
8: Bc[i] ← (classify BRGB [i] using VGG-16 into weed or crop) . for the �rst

pipeline, or:
9: Bc[i] ← (segment BRGB [i] using VGG-UNet deep CNN into soil, weed or crop)

. for the second pipeline
10: end for

compression and mixtures of lightweight CNNs are exploited in [15] to learn from
a very deep, pre-trained model a lighter model which allows real-time weed seg-
mentation also for robots with limited computing power. Multi-spectral features
and 3D surface features are exploited for plant classi�cation in [24].

The approach described in this paper builds upon our previous work pre-
sented in [6]. Here, we introduce two new pipelines (see the blue box in Fig. 2
and Fig. 4) and we extend the experimental evaluation by using new datasets
end by presenting additional results.

3 Methods

Our goal is to process an input RGB or multispectral image of the �eld to extract
semantic information. In particular, we present three pipelines to obtain:

1. A 3-steps pixel-wise image segmentation into 3 classes (i.e., weed, crop, and
soil) for the �rst two pipelines (see Fig. 2 and Sec. 3.1);

2. A 2-steps coarse-grained weed and crop density for the third pipeline (see
Fig. 4 and Sec. 3.3).

The third pipeline is designed to reduce the computational burden while
providing still accurate information with a lower resolution. We describe below
each step involved in the three pipelines.

3.1 Pixel-wise Segmentation

The two pipelines of Fig. 2 take an RGB image as input and share the �rst two
steps, i.e., vegetation segmentation and patches extraction, to achieve the clas-
si�cation goals exploiting two di�erent approaches, i.e., on patch (Sec. 3.2) and
pixel level (Sec. 3.2). All the steps of our full crop/weeds pixel-wise segmentation
method are given in Algorithm 1.

Vegetation Segmentation To remove the background (i.e., the soil), we
�rstly apply a robust pixel-wise soil/plant segmentation of the RGB image in
input. We use a modi�ed version of the UNet semantic segmentation network
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[19], which is composed by a contracting encoder along with a symmetric expand-
ing decoder. In our implementation, the contracting path consists of a VGG-16
structure modi�ed by removing the last fully connected layers and �ne-tuning
the other layers. The indices of spatial information in the pooling operations are
spread through the expansive path, which contains a sequence of up-convolution
operations of features encoded in the contracting path. The expanding decoder
is designed with 4-convolutional layers, where each layer is composed of a batch
normalization, 4-upsampling layers and a soft-max pixel-wise classi�er. Between
the contracting and expanding paths, there is a bottleneck consisting of two con-
volutional layers combined with batch normalization and a dropout activation
function.

The lack of pixel-wise annotated datasets for each possible crop type and for
di�erent �eld conditions can lead to strong challenges in generalizing an end-to-
end crop/weeds segmentation network. The goal of the �rst step is to obtain a
robust binary segmentation mask that enables to generate blobs corresponding
to vegetation pixels in the RGB image, so to simplify the following classi�cation
step. This is obtained by exploiting the similarities of various plants properties
instead of di�erentiate between them. The idea is to train the �rst segmentation
network by exploiting external, ready to use datasets coming from di�erent con-
texts, containing di�erent plants categories, types of �elds, and captured under
varying environmental conditions. This context-independent training possibly
enables to avoid to pixel-wise annotate large amount of data acquired in the
target �led, an operation that usually requires a lot of manual work.

3.2 Patches Extraction

The second step concerns the extraction of the image ROIs to be classi�ed. This
is obtained by extracting the vegetation blobs contained in the binary mask
generated during the segmentation process. In this stage, the input consists in
the original RGB image plus the binary mask generated during the segmentation
process. A dilation operator is applied to the binary mask to gradually increase
the boundaries of the foreground regions (i.e., the areas containing vegetation
pixels) to reduce the holes between those regions. Then, the connected blobs from
the dilated mask are extracted, and a bounding box for each blob is determined.
Finally, a set of patches from the original RGB image corresponding to the
bounding boxes is generated.

Patch-Wise Classi�cation A deep CNN for crop/weed classi�cation is em-
ployed for patch-wise classi�cation. The image patches identi�ed in the previous
step are fed to the CNN classi�er, which is based on a �ne-tuned model of
VGG-16 exploiting the ability of deep CNN in object classi�cation. The VGG-
16 network architecture for object classi�cation is used as encoder. The network
consists of 13-convolutional layers with a kernel of 3×3. A max-pooling operation
with a kernel of 2×2 with a stride of 2 for down-sampling. Batch normalization
and a ReLU activation function are used too. This step just requires a training
dataset that includes labeled patches with positive and negative examples of the
target crop. The annotation of such training dataset just requires to specify a
label for each image that is a much faster operation than a pixel-wise annotation.
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Fig. 5: Details of the architecture of the �rst pipeline.

Fig. 5 shows the details of the �rst pipeline. To create the �gure, we have
used a �ne-tuned VGG-16 encoder model at early step of the training, showing
randomly picked up �lters to illustrate the ability of the network to learn weights
based on neurons responses to image pixels (e.g., soil/plant pixel).

Pixel-Wise Classi�cation In this step, we classify each pixel in the image
patches identi�ed in the previous step into one of three classes (soil, weed, and
crop). To perform the segmentation, we used the same deep CNN architecture
that is used for vegetation segmentation with 128×128 input size and three
classes output.

3.3 Weeds Distribution Estimation

The goal of the pipeline shown in Fig. 4 is to process images, e.g., acquired
by a limited resources system like a small UAV, to quickly extract high-level
information about the �eld, like weed and crop density, instead of �nding the
exact location for weed inside the images. This high-level information can be
sent to a ground robot equipped with more powerful computational resources to
perform a �ne-grained pixel-wise segmentation (e.g., Sec. 3.1) and to perform
selective spraying. We �rst train a CNN to build a model able to detect crop
and weed in the images, then we compute the distribution of the weed and the
crop with a con�dence based on the output of the trained model.

Crop/Weed Segmentation To perform pixel-wise segmentation of the in-
put image into 3 classes (i.e., weed, crop, and soil), we use a modi�ed version
of the UNet semantic segmentation network [19], very similar to the one intro-
duced in Sec. 3.1, �lled with one or three channels e.g., NIR, red, and/or the
Normalized Di�erence Vegetation Index (NDVI) [20].
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Crop/Weed Distribution Estimation To compute the distribution of
weed and crop inside the image, the mask generated during the segmentation
process is divided using a �xed size grid (28 cells) based on the segmentation
output size. Then, we compute for each cell the crop/weeds statistics (e.g., weed
distribution and segmentation con�dence). The distribution for a speci�c class
in each cell is obtained by computing the number of pixels of that class inside
the cell (Kc) divided by the total number of pixel inside the cell (see Eq. 1).

Dc =
Kc∑n
i=1 Ki

(1)

where Dc represent the distribution of class c, n is the number of classes, and
Kc is the total number of pixels belonging to class c inside the cell. For each
cell, we also compute a per-class con�dence MConc as the average of the class
probabilities P (·) provided by the network of Fig. 4 for all the cell pixels Xi that
are classi�ed with class c, i.e.:

MConc =

∑Kc

i=1 P (Xi = c)

Kc
(2)

4 Experimental Results

Experiments are organized into four case studies:

1. The �rst one (see Sec. 4.3) aims to demonstrate the performance of di�erent
deep CNN architecture on pixel-wise segmentation in order to classify pixels
in image into two (soil and vegetation) or three classes (soil, crop, and weed).

2. In the second experiment (see Sec. 4.4), we study the e�ect of supporting
the input of our deep CNN (described in Sec. 3.1) by increasing the number
of input channels by a set of vegetation indices.

3. The third experiment (see Sec. 4.5) evaluates the performance of the two full
pipelines described in Sec. 3.1, where the �rst one performs patch classi�-
cation after background removal and blob extraction, where the second one
performs pixel-wise segmentation on the extracted patches.

4. The last experiment (see Sec. 4.6) aims at measuring the accuracy of the
pipeline shown in Fig. 4.

4.1 Datasets

In our experiments, we have used six datasets, some of them publicly available.

� Sun�owers: 500 images acquired in a sun�owers �eld by a custom-built agri-
cultural �eld robot;

� SugarBeets: 10000 sugar beets images coming from the "Sugar Beets 2016"
datasets [2];

� Carrots: 60 images acquired on a commercial organic carrots farm [8];
� Stuttgart : 200 sugar beets coming from the so-called Stuttgart dataset;
� UAV1 : 155 multispectral images (NIR, Red) plus the NDVI index acquired
from an UAV in a sugar beets �eld;
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� UAV2 : 75 multispectral images (NIR, Red) plus the NDVI index acquired
from an UAV in a corn �eld.

All datasets are labeled with three classes (i.e., soil, crop and weed). Ground
truth annotations consist in binary masks generated via manual segmentation.
An intensity value of 1 in the binary masks corresponds to the segmented crop, 2
to segmented weeds, and pixels with 0 value correspond to the background soil.

4.2 Evaluation Metrics

For quantitatively evaluate the results, we used the following three metrics com-
monly used in the literature [17].

Mean Intersection-Over-Union (mIOU):

mIOU =
1

C

C∑
j=1

TPj

TPj + FPj + FNj
(3)

Recall:

Recallj =
TPj

TPj + FNj
(4)

Precision:

Precisionj =
TPj

TPj + FPj
(5)

where TP stands for True Positive, FP for False Positive, FN for False
Negative, and C is the total number of classes.

4.3 Architecture Evaluation

The �rst experiment aims to demonstrate the performance of di�erent deep CNN
architectures on pixel-wise segmentation in order to classify pixels in image into
three classes, namely soil, crop, and weed. Then, we measure the performance of
the same networks on the background removal problem, i.e., pixel classi�cation
into only two classes: soil and plants. For this experiment, we use only RGB
images as input to:

1. SegNet [1] based on VGG-16 encoder;
2. UNet [19];
3. UNet based on VGG-16 decoder (VGG-UNet);
4. BonNet [17];
5. Fully connected network FCN8 [10].

The training dataset is made of a set of 500 sun�owers images. Data aug-
mentation was performed using rotations, horizontal and vertical �ipping, and
zooming. The �nal dataset was composed by 2000 images (see Fig. 6).

VGG-UNet has been trained by initializing the encoder (VGG-16) with the
weights taken from training the VGG-16 on the ImageNet dataset, then we
trained the whole network using Stochastic Gradient Descent (SGD) with a
�xed learning rate of 1 · e−4 and a momentum of 0.90. The parameters of the
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Table 1: Quantitative results showing mIOU obtained by di�erent networks
architectures on the Sun�owers dataset

Architecture 3-classes 2-classes

VGG-SegNet 0.68 0.90

UNet 0.62 0.90

Bonnet 0.80 0.90

FCN8 0.31 0.45

VGG-UNet 0.64 0.91

network are updated in a way that cross entropy loss is reduced. Mini-batches
composed by one image were used for training. It is worth noticing that, the
dataset used for the training procedure does not present all the challenges in-
troduced when dealing with a real-world �eld, because it does not contain data
captured with di�erent �eld conditions and at di�erent stages of plant level. For
this reason, in order to properly evaluate our approach, we used for testing 1000
images coming from the SugarBeets dataset [2] and other 60 images from the
Carrots dataset. It is important to note that Carrots and SugarBeets datasets
were not included in �ne tuning VGG-16 encoder and were used only to evaluate
the capability of VGG-UNet to generalize. Table 1 shows the results obtained by
using di�erent network architectures on the Sun�owers dataset. When consider-
ing only two classes, namely soil/plants, the VGG-UNet approach outperforms
the other tested approaches. Fig. 7 shows qualitative results.

4.4 Multi-Channel Architecture Evaluation

To improve the segmentation performance of the VGG-UNet architecture, we
increase the number of input channels by a set of vegetation indices: Excess
Green (ExG), Excess Red (ExR), Color Index of Vegetation Extraction (CIVE),
and Normalized Di�erence Index (NDI). In addition, we use the HSV (hue,
saturation, value) representation of the input image, concatenating all those

Fig. 6: Samples from the dataset used for training and testing. The �rst row
contains the RGB images in input, while the second row shows the ground truth
masks. In the �rst, second, and third columns sun�owers images taken under
di�erent lighting condition and di�erent age of growth are shown. The fourth
column refers to the organic Carrots dataset and the �fth column refers to the
SugarBeets dataset.
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Fig. 7: Qualitative results achieved by di�erent CNN structures. First column
RGB images, second column ground truth mask, third, forth, �fth, and sixth
prediction from Bonnet, VGG-UNet,VGG-Segnet, and UNet.

representations along with the input RGB image to form a multi-channel input
volume.

For training our deep CNN, we have used a dataset consisting of the 80% of
the images in the SugarBeets dataset. For testing, we used a dataset consisting
of the remaining 20% of images from the SugarBeets dataset, plus all the images
in the Sun�owers, Carrots, and Stuttgart datasets. Results for the 2 classes
segmentation problem are reported in Table 2 (RGB input) and Table 3 (multi-
channel input), while results for the 3 classes segmentation problem are reported
in Table 4 (RGB input) and Table 5, respectively. Some qualitative results are
reported in Fig. 8. It is noteworthy to underline that, this simple enrichment
of the input has produced a substantial improvement in the results in almost
all tests. Those indicators proved their ability to naturally segment vegetation
and they do not present high sensitivity to soil types or weather condition, as
reported in [16]

Table 2: Quantitative results obtained by VGG-UNet architecture for 2 classes
segmentation on di�erent datasets with RGB input.

Dataset mIOU soil recall plant recall soil pre plant pre

SugarBeets 0,93 0.99 0.96 0.99 0.90

Stuttgart 0,66 0.98 0.59 0.99 0.37

Carrots 0,64 0.96 0.43 0.94 0.55

Sun�owers 0,63 0.95 0.39 0.96 0.53
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Table 3: Quantitative results obtained by VGG-UNet architecture for 2 classes
segmentation on di�erent datasets with multi-channel input.

Dataset mIOU soil recall plant recall plant pre plant pre

SugarBeets 0,92 0.99 0.98 0.99 0.86

Stuttgart 0,85 0.99 0.89 0.99 0.77

Carrots 0,67 0.94 0.75 0.99 0.60

Sun�owers 0,70 0.99 0.78 0.94 0.67

Table 4: Quantitative results obtained by VGG-UNet architecture for 3 classes
segmentation on di�erent datasets with RGB input.

Dataset mIOU soil crop weed soil crop weed

recall recall recall pre pre pre

SugarBeets 0,71 0.99 0.94 0.80 0.95 0.90 0.68

Stuttgart 0,45 0.98 0.66 0.68 0.97 0.36 0.34

Carrots 0,35 0.923 0.36 0.29 0.94 0.43 0.32

Sun�owers 0,39 0.92 0.33 0.37 0.96 0.32 0.29

Table 5: Quantitative results obtained by VGG-UNet architecture for 3 classes
segmentation on di�erent datasets with multi-channel input .

Dataset mIOU soil crop weed soil crop weed

recall recall recall pre pre pre

SugarBeets 0,75 0.998 0.94 0.80 0.99 0.92 0.70

Stuttgart 0,60 0.984 0.75 0.71 0.90 0.63 0.59

Carrots 0,40 0.93 0.43 0.38 0.98 0.32 0.37

Sun�owers 0.41 0.95 0.39 0.37 0.97 0.49 0.40

4.5 Pixel-wise Segmentation Evaluation

The third experiment aims to evaluate the performance of the two pipelines, the
�rst one depending on blobs classi�cation after background removal, the second
one being based on patch segmentation after background removal.

The evaluation of the two approaches based on object-wise classi�cation ac-
curacy are given in the form of two confusion matrices. The confusion matrix for
the �rst approach is shown in Fig. 9, while the confusion matrix for the second
approach is shown in Fig. 10.

For the �rst approach (i.e., background removal plus classi�cation), the re-
sult for correctly detected crops was 87%, while the 13% of crop was detected as
weed and 22% of weed was detected as crop. This is mainly due to the overlap-
ping problem between weed and crop. The 32% of soil detected as weed is due to
inaccuracies in the binary masks coming from the segmentation process. The di-
lation operation carried out to increase the boundaries of the foreground regions
during the blob detection process increases the number of soil pixels included in
weeds blobs.

In the second approach (i.e., background removal plus segmentation), we
overcome the problem of overlapping between weeds and crop inside the blob,
as can be noted looking at the confusion matrix in Fig. 10. Just 2% of crop
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Fig. 8: Qualitative results obtained by VGG-UNet and multi-channel VGG-
UNet.

Fig. 9: Confusion matrix obtained by evaluating the �rst full pipeline (i.e., back-
ground removal plus classi�cation).

was detected as weed and 3% of weed was detected as crop. This is due to the
fact that, in the �rst approach, we classify the whole blob into one of two class
types (i.e., crop or weed), while in the second approach each pixel in the blob is
classi�ed into one of the two class types (i.e., crop or weed). Qualitative results
are shown in Fig. 11.

4.6 Weeds Distribution Evaluation

In the last experiment, we have used the two datasets UAV1 and UAV2 (see
Sec. 4.1 and Fig. 12). For the �rst dataset, we took 100 images and we applied
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Fig. 10: Confusion matrix obtained by evaluating the second full pipeline (i.e.,
background removal plus segmentation).

Fig. 11: Qualitative results achieved using segmentation plus classi�cation. White
boxes denote true positive samples (weed), green boxes true negative samples
(crop), blue boxes false positive samples, and red false negative samples.

to them a data augmentation process. In particular, we exploited rotations and
horizontal and vertical �ipping to create an augmented training dataset com-
posed by 420 images. The remaining 55 images from the original dataset were
used for testing purposes. The second dataset (UAV2 ) was used for testing only.
We evaluated the generalization capability of the net for classifying the pixels in
two classes, namely soil and plant.

Network Training.We trained the proposed VGG-UNet by initializing the
encoder (VGG-16) with the weights taken from training the VGG-16 on the
ImageNet dataset, then we trained the whole network using Stochastic Gradient
Descent (SGD) with a �xed learning rate of 1 · e−4 and a momentum of 0.90.
The parameters of the network are updated in a way that cross entropy loss is
reduced. Mini-batches composed by one image was used for training.

Qualitative results of using di�erent input types for pixel-wise segmentation
into soil, weed, and crop on sugar beet dataset are shown in the �rst row of Fig.
13. The segmentation performance of VGG-UNet decreased when we used Red
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Fig. 12: Image samples from the datasets UAV1 and UAV2. (a), (b), (c), and (d)
represent NIR, NDVI, RED, and ground truth from sugar beet dataset. (e), (f),
(g), and (h) represent NIR, RGB, RED, and ground truth from corn dataset.

Fig. 13: Qualitative results achieved by CNN with di�erent input type. First
and second rows represent the output for 3 classes segmentation on sugar beet
dataset, the third row 2 classes segmentation output on corn dataset.

channel alone as input. The best results was achieved using the three channels
together as input, while for pixel-wise segmentation into soil, and plant sugar
beet dataset the best result for NDVI channel. Table 6 shows the quantitative
results obtained by the used VGG-UNet architecture. We have performed also
a quantitative comparison between the used VGG-UNet architecture and the
SegNet network. Table 7 contains the results for the comparison. VGG-UNet
performs slightly better on the sugar beet dataset.

The �nal output of our approach is shown in Fig. 14, where the �rst row
shows the segmentation output, the second and third rows show the crop and
weed distribution. The number in each cell describes the crop distribution (in
the second row) and the weed distribution (in the third row). The green circles
show the high density of crop, while the red ones show the high density of weed.
The performance of VGG-UNet architecture has been tested on an embedded
GPU board, namely Jetson TX2, and the processing time per image was 0.6
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Table 6: Quantitative results illustrating mean accuracy obtained by VGG-UNet
using di�erent input on the sugar beets and corn datasets.

3-classes 2-classes

Input sugar beet sugar beet corn

Red 0.84 0.91 0.73
NIR 0.90 0.96 0.85
NDVI 0.93 0.99 0.92

RED+NIR+NDVI 0.95 0.98 0.88

Table 7: Quantitative results illustrating mean accuracy obtained by SegNet and
VGG-UNet architecture on the sugar beet dataset.

Architecture 3-classes 2-classes

RED+NIR+NDVI input NDVI input

SegNet 0.93 0.98

VGG-UNet 0.95 0.99

Fig. 14: Results from computing weed and crop distribution with di�erent
input types. The �rst column represent the ground truth. The second and
third columns shows the prediction output from VGG-UNet when using
NIR+NDVI+RED and NDVI as input. The second and third rows represents
crop and weed distribution.

seconds when we use three channels together as input, and around 0.2 seconds
when we used each channel alone as input.
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5 Conclusions

In this paper, we have described two novel pipelines that combine a robust
pixel-wise segmentation CNN, designed to be trained once to generalize the veg-
etation/soil segmentation problem, with a specialized crop/weeds classi�cation
network, designed to be trained for each type of cultivation with a speci�c, re-
duced size dataset. Our goal is to reduce the limitations of CNNs in generalizing
when a limited amount of data with pixel-wise annotations is available.

Starting from the consideration that pixel-wise labeling is the bottleneck for
most crop/weeds classi�cation methods, we adopt an approach based on a robust
binary segmentation to be agnostic with respect to plant species. Our network
is trainable also by using external, ready to use pixel-wise labeled datasets that
possibly do not includes the target crop. Speci�cally, we use a deep convolu-
tional encoder-decoder architecture for robust background (soil) removal and
the extraction of regions of interest (ROIs).

A coarse-to-�ne classi�er based on CNN is used to classify the extracted
ROIs into crop and weeds. We describe two di�erent methods for obtaining
the classi�cation between crop and weeds, i.e., by feeding a classi�cation or a
segmentation CNN with image patches (i.e., bounding boxes) enclosing plant
instances extracted by using the obtained vegetation/soil segmentation mask.
Both the presented architectures have the advantage of requiring smaller datasets
comparing to conventional 3-classes soil/crop/weeds classi�cation systems. They
just require a small dataset to specialize on the target crop species.

We extensively tested the introduced approaches by using four di�erent
datasets, showing good classi�cation results and generalization properties.

As future directions, we aim to insert between the segmentation and clas-
si�cation steps an automatic alignment process to improve the classi�cation
accuracy of our pipeline.
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