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Many analysis and verifications tasks, such as static program analyses and model-checking for temporal logics,

reduce to the solution of systems of equations over suitable lattices. Inspired by recent work on lattice-theoretic

progress measures, we develop a game-theoretical approach to the solution of systems of monotone equations

over lattices, where for each single equation either the least or greatest solution is taken. A simple parity game,

referred to as fixpoint game, is defined that provides a correct and complete characterisation of the solution

of systems of equations over continuous lattices, a quite general class of lattices widely used in semantics.

For powerset lattices the fixpoint game is intimately connected with classical parity games for µ-calculus

model-checking, whose solution can exploit as a key tool Jurdziński’s small progress measures. We show how

the notion of progress measure can be naturally generalised to fixpoint games over continuous lattices and we

prove the existence of small progress measures. Our results lead to a constructive formulation of progress

measures as (least) fixpoints. We refine this characterisation by introducing the notion of selection that allows

one to constrain the plays in the parity game, enabling an effective (and possibly efficient) solution of the

game, and thus of the associated verification problem. We also propose a logic for specifying the moves of

the existential player that can be used to systematically derive simplified equations for efficiently computing

progress measures. We discuss potential applications to the model-checking of latticed µ-calculi.
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1 INTRODUCTION

Systems of fixpoint equations are ubiquitous in formal analysis and verification. For instance, pro-
gram analysis [Nielson et al. 1999] uses the flow graph of a program to generate a set of constraints
specifying how the information of interest at the different program points is interrelated. The set
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of constraints can be viewed as a system of fixpoint equations, whose (least or greatest) solution
provides a sound approximation of the properties of the program. Invariant/safety properties
can be characterised as greatest fixpoints, while liveness/reachability properties as least fixpoints.
Behavioural equivalences (for instance for process calculi) are typically defined as the solution
of a fixpoint equation. The most famous example is bisimilarity that can be characterised as the
greatest fixpoint of a suitable operator over the lattice of binary relations on the set of states (see,
e.g., [Sangiorgi 2011]).
Almost invariably, in the mentioned settings, the involved functions are monotone and the

domains of interest are complete lattices where the key result for deriving the existence of (least or
greatest) fixpoints is Knaster-Tarski’s fixpoint theorem [Tarski 1955].
Least and greatest fixpoint can be profitably mixed, in order to obtain expressive specification

logics, among which the µ-calculus [Kozen 1983] is a classical example. The µ-calculus is very
expressive, but the nesting of fixpoints increases the complexity of model-checking. Common
approaches to the model-checking problem rely on an encoding in terms of parity games (see,
e.g., [Bradfield and Walukiewicz 2018; Emerson and Jutla 1991; Stirling 1995]). The seminal pa-
per [Jurdziński 2000] provides an algorithm for the solution of parity games which is polynomial
in the number of states and exponential in (half of) the alternation depth, recently improved to
quasi-polynomial in [Calude et al. 2017]. A detailed discussion of the complexity of µ-calculus
model-checking can be found in [Bradfield and Walukiewicz 2018].
It has been recently observed in [Hasuo et al. 2016] that progress measures, a key ingredient

in Jurdzisńki’s algorithm for solving parity games, are amenable to a generalisation to systems of
fixpoint equations over general lattices. A constructive characterisation of such progress measures
is given in the case of powerset lattices and used to derive model-checking procedures for (branch-
ing and linear) coalgebraic logic. For general lattices, however, the notion of progress measure
in [Hasuo et al. 2016] does not exactly correspond to Jurdzinski’s notion. In particular, there is no
algorithm for actually computing such progress measures, they rather play the role of invariants
respectively ranking functions that have somehow to be provided. While the possibility of deriving
generic algorithms for solving systems of equations is very appealing, the restriction to powerset
lattices limits the applicability of the technique. Often program analysis relies on lattices which are
not powerset lattices (and neither distributive, hence they cannot be seen as sublattices of pow-
erset lattices). Moreover also settings involving fuzziness, probabilities or in general quantitative
information are not captured by restricting to powerset lattices.
Inspired by the mentioned work, in this paper we devise a game-theoretical approach to the

solution of systems of fixpoint equations over a vast class of lattices, the so-called continuous
lattices. Originally studied by Scott in connection with the semantics of the λ-calculus [Scott 1972],
they have later been recognised as a fundamental structure, with a plethora of applications in the
semantics of programming languages and, more generally, in the theory of computation [Abramsky
and Jung 1994; Gierz et al. 2003]. They include discrete structures, such as most domains used in
program analysis, and continuous structures, such as the real interval [0, 1].

The possibility of characterising the least or the greatest fixpoint of a (single) monotone function
over a powerset lattice in terms of a game between an existential and an universal player is probably
folklore and has been observed in [Venema 2008] where the game is referred to as an unfolding
game. As a first result, here we show how the unfolding game can be extended to work for a system
of fixpoint equations over lattices, resulting in a surprisingly simple game that we refer to as a
fixpoint game. Mixing least and greatest fixpoint equations requires a non-trivial winning condition,
which however arises as a natural adaptation to our setting of the one for parity games.

For the simpler case of powerset lattices the interaction between the players in the fixpoint game
fundamentally relies on the possibility of testing the presence of elements in the image of a set
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and on the fact that a subset is completely determined by the elements that belongs to it. When
moving to a more general class of lattices we need to ensure that this kind of interaction can be
suitably mimicked. We argue in the paper that continuous lattices provide an extremely natural
setting for this extension, providing exactly the necessary machinery for stating results in a way
which is analogous to the powerset case. In fact, they come equipped with a notion of łfinitaryž
approximation based on the way-below relation and each element arises as the join of the elements
which are way-below it, in the same way as a subset is the union of its singletons.

We show how Jurdziński’s approach for solving parity games [Jurdziński 2000] can be generalised
to systems of fixpoint equations over continuous lattices. In particular we introduce a notion of
progress measure for fixpoint games over continuous lattices and we prove the existence of suitably
defined small progress measures. This result enables a constructive characterisation of progress
measures as (least) fixpoints and provides a recipe for computing the progress measure that can be
straightforwardly implemented, at least for finite lattices.
We refine the fixpoint characterisation of progress measures by introducing the notion of

selection, which basically constrains the moves of the existential player in the parity game, still
preserving correctness and completeness, thus enabling a more efficient solution of the game. We
also define a logic for providing a symbolic representation of the moves of the existential player
that can be directly translated into a system of fixpoint equations describing the progress measure.
As an example of application beyond standard µ-calculus model-checking we will discuss the

case of latticed µ-calculi, where the evaluation of a formula for a state gives a lattice element,
generalising the standard truth values 0, 1 (see, e.g., [Eleftheriou et al. 2012; Grumberg et al. 2005;
Kupfermann and Lustig 2007]). This happens naturally also when µ-calculus formulae are evaluated
over weighted transition systems or over probabilistic automata [Huth and Kwiatkowska 1997].
Summing up, our main contributions are the following:

• We propose a game-theoretical characterisation of the solution of systems of fixpoint equa-
tions over lattices and we identify continuous lattices as a general and appropriate setting
for such theory.

• We develop a theory of progress measures à la Jurdziński in this general framework, with a
clear recipe for their computation. This can be seen as a generalisation of the MC progress
measures, proposed in [Hasuo et al. 2016] for coalgebraic logics over powerset lattices.

• We devise strategies for the computation of such progress measures based on selections and
a logic for the symbolic representation of players’ moves, along with a complexity analysis.

• We explicitly discuss an application scenario beyond standard µ-calculus over powerset
lattices, namely the model-checking of latticed µ-calculi via progress measures.

We believe that due to the generality of our results, there is the potential for several more
interesting applications for different lattices. In particular, when the lattice under consideration
is infinite, it is known that, despite the functions involved in the equations of the system being
continuous, due to alternation of least and greatest fixpoints, discontinuous functions may arise
and we possibly have to refer to ordinals beyond ω [Fontaine 2008; Mio and Simpson 2015]. Still
some preliminary investigations, detailed in [Baldan et al. 2018], reveal the possibility of adapting
our framework to properly work with infinite lattices, providing a technique that is always correct,
and complete under certain conditions (for instance, on well-orders without other restrictions, or
on the reals, suitably restricting the functions). In particular, for systems of fixpoint equations over
the reals, as considered in [Mio and Simpson 2015, 2017], the game for solving fixpoint equations
over the reals can be encoded into an SMT formula of fixed size, representing the winning condition
of the existential player.
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The rest of the paper is structured as follows. In ğ 2 we recap the basics of continuous lattices and
introduce some notation that will be used throughout the paper. In ğ 3 we introduce the systems
of fixpoint equations over a lattice, we define their solution and devise a corresponding notion
of approximation. In ğ 4 we present a game-theoretical approach to the solution of a system of
equations over a continuous lattice, together with several case studies. In ğ 5 we introduce the
notion of progress measure for (the game associated with) systems of fixpoint equations over a
continuous lattice. In ğ 6 we discuss an application to the model-checking of latticed µ-calculi.
In ğ 7 we conclude the paper and outline future research. All proofs, further details on the

encoding of µ-calculus formulae into fixpoint equation systems (and vice versa) and a detailed
comparison to [Hasuo et al. 2016] are included in the full version [Baldan et al. 2018].

2 PRELIMINARIES ON ORDERED STRUCTURES

In this section we provide the basic order theoretic notions that will be used throughout the paper.
In particular, we define continuous lattices and we provide some notation about tuples of elements
that will be useful for compactly describing the solution of systems of equation.

2.1 Lattices

A preordered or partially ordered set ⟨P, ⊑⟩ is often denoted simply as P , omitting the (pre)order
relation. It is well-ordered if every non-empty subset X ⊆ P has a minimum. The join and the meet

of a subset X ⊆ P (if they exist) are denoted
⊔

X and
d
X , respectively.

Definition 2.1 (complete lattice, basis, irreducibles). A complete lattice is a partially ordered set
(L, ⊑) such that each subset X ⊆ L admits a join

⊔

X and a meet
d
X . A complete lattice (L, ⊑)

always has a least element ⊥ =
⊔

∅ and a greatest element ⊤ =
d

∅. Given an element l ∈ L we
define its upward-closure ↑l = {l ′ | l ′ ∈ L ∧ l ⊑ l ′}. A basis for a lattice is a subset BL ⊆ L such that
for each l ∈ L it holds that l =

⊔

{b ∈ BL | b ⊑ l}. An element l ∈ L is completely join-irreducible if
whenever l =

⊔

X for some X ⊆ L then l ∈ X .

Since all lattices in this paper will be complete, we will often omit the qualification łcompletež.
Similarly, since we are only interested in completely join-irreducible elements we will often omit
the qualification łcompletelyž. Note that ⊥ is never an irreducible since ⊥ =

⊔

∅ and ⊥ < ∅.

Example 2.2. Three simple examples of lattices, that we will refer to later, are:

• The powerset of any set X , ordered by subset inclusion (2X , ⊑). Join is union, meet is inter-
section, top is X and bottom is ∅. A basis is the set of singletons B2X = {{x} | x ∈ X }. These
are also the the join-irreducible elements. Any set Y ⊆ X with |Y | > 1 is not irreducible,
since Y =

⊔

x ∈Y {x} but clearly Y , {x} for any x ∈ Y .
• The real interval [0, 1] with the usual order ≤. Join and meet are the sup and inf over
real numbers, 0 is bottom and 1 is top. The rationals Q ∩ (0, 1] are a basis. There are no
irreducible elements (in fact, for any x ∈ [0, 1] we have that x =

⊔

{y | y < x} and clearly
x < {y | y < x}).

• Consider the partial orderW = N∪ {ω,a} depicted in Fig. 1. It is easy to see that it is a lattice.
All elements are irreducible apart from the bottom 0 and the top ω. For the latter notice that,
e.g., ω =

⊔

{1,a}.

A function f : L → L ismonotone if for all l, l ′ ∈ L, if l ⊑ l ′ then f (l) ⊑ f (l ′). By Knaster-Tarski’s
theorem [Tarski 1955], any monotone function on a complete lattice has a least and a greatest
fixpoint, denoted respectively µ f and ν f , characterised as the meet of all pre-fixpoints respectively
the join of all post-fixpoints:

µ f =
d
{l | f (l) ⊑ l} ν f =

⊔

{l | l ⊑ f (l)}
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0
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ω

a

Fig. 1. A complete latticeW which is not continuous.

The least and greatest fixpoint can also be obtained by iterating the function on the bottom and
top elements of the lattice. This is often referred to as Kleene’s theorem (at least for continuous
functions) and it is one of the pillars of abstract interpretation [Cousot and Cousot 1979]. Given
a lattice L, define its height λL as the supremum of the length of any strictly ascending, possibly
transfinite, chain. Then we have the following result.

Theorem 2.3 (Kleene’s iteration [Cousot and Cousot 1979]). Let L be a lattice and let f : L →

L be a monotone function. Consider the (transfinite) ascending chain (f β (⊥))β where β ranges over the

ordinals, defined by f 0(⊥) = ⊥, f α+1(⊥) = f (f α (⊥)) for any ordinal α and f α (⊥) =
⊔

β<α f
β (⊥)

for any limit ordinal α . Then µ f = f γ (⊥) for some ordinal γ ≤ λL . The greatest fixpoint ν f can be

characterised dually, via the (transfinite) descending chain (f α (⊤))α .

Note also that f α (⊥) is always a post-fixpoint and f α (⊤) is always a pre-fixpoint.
Wewill focus on special lattices where elements are generated by suitably defined approximations.

Given a lattice L, a subset X ⊆ L is directed if X , ∅ and every pair of elements in X has an upper
bound in X .

Definition 2.4 (way-below relation, continuous lattices). Let L be a lattice. Given two elements
l, l ′ ∈ L we say that l is way-below l ′, written l ≪ l ′ when for every directed set D ⊆ L, if l ′ ⊑

⊔

D

then there exists d ∈ D such that l ⊑ d . We denote by

↠

l the set of elements way-below l , i.e.,
↠

l = {l ′ | l ′ ∈ L ∧ l ′ ≪ l}.
The lattice L is called continuous if l =

⊔ ↠

l for all l ∈ L.

Intuitively, the way-below relation captures a form of finitary approximation: if one imagines
that ⊑ is an order on the information content of the elements, then x ≪ y means that whenever
y can be łcoveredž by joining (possibly small) pieces of information, then x is covered by one of
those pieces. Then a lattice is continuous if any element can be built by joining its approximations.

Concerning the origin of the name łcontinuous latticež, we can quote [Scott 1972] that says that
łOne of the justifications (by euphony at least) of the term continuous lattice is the fact that such
spaces allow for so many continuous functions.ž For instance, one indication is the fact that meet
and join are both continuous in such lattices.
When L is a continuous lattice and BL is a basis, for all l ∈ L, it holds that l =

⊔

(

↠

l ∩BL).
Various lattices that are commonly used in semantics enjoy a property stronger than continuity,

defined below.

Definition 2.5 (compact element, algebraic lattice). Let L be a lattice. An element l ∈ L is called
compact whenever l ≪ l . The lattice L is algebraic if the set of compact elements is a basis.

Example 2.6. Some examples are as follows:
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• All finite lattices are continuous (since every finite directed set has a maximum). More
generally, all algebraic lattices (which include all finite lattices) are continuous. The way-
below relation is x ≪ y if x compact and x ⊑ y.

• Given a set X , the powerset lattice 2
X , ordered by inclusion, is an algebraic lattice. The

compact elements are the finite subsets. In fact, any set Y is the union of its finite subsets,
i.e., Y =

⋃

{F | F ⊆ Y ∧ F finite}. Since {F | F ⊆ Y ∧ F finite} is directed set, compactness
requires that Y ⊆ F for some finite F ⊆ Y , hence Y = F . Therefore Y ≪ Z holds when Y is
finite and Y ⊆ Z .

• The interval [0, 1] with the usual order ≤ is a continuous lattice. For x,y ∈ [0, 1], we have
x ≪ y when x < y or x = 0. In fact, each ∅ , Y ⊆ [0, 1] is directed. Imagine that y ≤

⊔

Y

for such a Y . Then by standard properties of the reals there always exists a y ′ ∈ Y such that
x ≤ y ′ if and only if x < y or x = 0. Note that this lattice is not algebraic since the only
compact element is 0.

• The latticeW in Fig. 1 is not continuous. In fact, a 3 a since a ⊑
⊔

N but a @ i for all i ∈ N.
Therefore

↠

a = {0} and thus a ,
⊔ ↠

a.

2.2 Tuples and Ordinals

We will often consider tuples of elements. Given a set A, an n-tuple in An will be denoted by a
boldface letter a. The components of a tuple a will be denoted by using the same name of the
tuple, not in boldface style and with an index, i.e., a = (a1, . . . ,an). For an index n ∈ N we use the
notation n to denote the integer interval {1, . . . ,n}. Given a ∈ An and i, j ∈ n we write ai , j for the
subtuple (ai ,ai+1, . . . ,aj ).

Definition 2.7 (pointwise order). Given a lattice (L, ⊑) we will denote by (Ln, ⊑) the set of n-tuples
endowed with the pointwise order defined, for l, l ′ ∈ Ln , by l ⊑ l ′ if li ⊑ l ′i for all i ∈ n.

The structure (Ln, ⊑) is a lattice and it is continuous if L is continuous, with the way-below
relation given by l ≪ l ′ iff li ≪ l ′i for all i ∈ n [Gierz et al. 2003, Proposition I-2.1]. More generally,

for any set X , the set of functions LX = { f | f : X → L}, endowed with pointwise order, is a lattice
(continuous when L is).

Definition 2.8 (lexicographic order). Given a partial order (P, ⊑) we will denote by (Pn, ⪯) the set
of n-tuples endowed with the lexicographic order (where the last component is the most relevant),
i.e., inductively, for l, l ′ ∈ Pn , we let l ⪯ l ′ if either ln ⊏ l

′
n or ln = l

′
n and l1,n−1 ⪯ l ′1,n−1.

When (L, ⊑) is a lattice also (Ln, ⪯) is a lattice. Given a set X ⊆ Ln , the meet of X with respect to
⪯ can be obtained by taking the meet of the single components, from the last to the first, i.e., it is
defined inductively as

d
X = l where li =

d
{l ′i | l

′ ∈ X ∧ l ′i+1,n = li+1,n}. The join can be defined
analogously. Similarly, one can show that ⪯ is a well-order whenever ⊑ is.
As in [Hasuo et al. 2016; Jurdziński 2000], we will also need to consider tuples with a preorder

arising from the lexicographic order, when some components are considered irrelevant.

Definition 2.9 (truncated lexicographic order). Let (P, ⊑) be a partial order and let n ∈ N. For i ∈ n
we define a preorder ⪯i on P

n by letting, for x,y ∈ Pn , x ⪯i y if xi ,n ⪯ yi ,n . We write =i for the
equivalence induced by ⪯i and x ≺i y for x ⪯i y and x ,i y. Whenever ⊑ is a well-order, given
X ⊆ Pn with X , ∅ and i ∈ n, we write min⪯i X for the vector x = (⊥, . . . ,⊥, xi , . . . , xn) where
xi ,n = min⪯{li ,n | l ∈ X }.

In words, ⪯i is the lexicographic order restricted to the components i, i + 1, . . . ,n. For instance,
if P = N with the usual order, then (6, 1, 4, 7) ≺2 (5, 2, 4, 7), while (6, 1, 4, 7) =3 (5, 2, 4, 7).
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We denote ordinals by Greek letters α, β,γ , . . . and their order by ≤. The collection of all ordinals
is well-ordered. Given any ordinal α , the collection of ordinals dominated by α is a set [α] = {λ |

λ ≤ α }, which, seen as an ordered structure, is a lattice. Meet and join of a set X of ordinals will
be denoted by inf X (which equals minX if X , ∅) and supX . From the results discussed above,
for a fixed n ∈ N and an ordinal α , the n-tuples of ordinals below α , referred to as ordinal vectors,
endowed with the lexicographic order ([α]n, ⪯), form a lattice.

3 FIXPOINT EQUATIONS: SOLUTIONS AND APPROXIMANTS

In this section we introduce the systems of fixpoint equations we will work with in the paper. We
define the solution of a system and we devise some results concerning its approximations that will
play a major role later.

3.1 Systems of Fixpoint Equations

We focus on systems of (fixpoint) equations over some lattice, where, for each equation one can be
interested either in the least or in the greatest solution.

Definition 3.1 (system of equations). Let L be a lattice. A system of equations E over L is a list of
equations of the following form

x1 =η1 f1(x1, . . . , xm)

. . .

xm =ηm fm(x1, . . . , xm)

where fi : L
m → L are monotone functions and ηi ∈ {µ,ν }. The system will often be denoted as

x =η f (x), where x , η and f are the obvious tuples. We denote by ∅ the system with no equations.

Systems of equations of this kind have been considered by various authors, e.g., [Cleaveland
et al. 1992; Hasuo et al. 2016; Seidl 1996]. In particular, [Hasuo et al. 2016] works on general lattices.
We next define the pre-solutions of a system as tuples of lattice elements that, replacing the

variables, satisfy all the equations of the system. The solution will be a suitably chosen pre-solution,
taking into account also the ηi annotations that specify for each equation whether the least or
greatest solution is required.

Definition 3.2 (pre-solution). Let L be a lattice and let E be a system of equations over L of the
kind x =η f (x). A pre-solution of E is any tuple u ∈ Lm such that u = f (u).

Note that if we view f as a function f : Lm → Lm , then pre-solutions are the fixpoints of f .
In order to define the solution of a system we need some further notation.

Definition 3.3 (substitution). Given a system E ofm equations over a lattice L of the kindx =η f (x),
an index i ∈ m and l ∈ L we write E[xi := l] for the system ofm − 1 equations obtained from
E by removing the i-th equation and replacing xi by l in the other equations, i.e., if x = x ′xix

′′,
η = η′ηiη

′′ and f = f ′ fi f
′′ then E[xi := l] is x

′x ′′
=η′,η′′ f ′ f ′′(x ′

, l,x ′′).

Let f [xi := l] : L
m−1 → L be defined by f [xi := l](x

′
,x ′′) = f (x ′

, l,x ′′). Then, explicitly, the
system E[xi := l] hasm − 1 equations,

x j =ηj fj [xi := l](x
′
,x ′′) j ∈ {1, . . . , i − 1, i + 1, . . . ,n}

We can now recursively define the solution of a system of equations. The notion is the same as
in [Hasuo et al. 2016], although we find it convenient to adopt a more succinct formulation (an
explicit proof of the equivalence of the two notions can be found in the full version).

Definition 3.4 (solution). Let L be a lattice and let E be a system ofm equations on L of the kind
x =η f (x). The solution of E, denoted sol(E) ∈ Lm , is defined inductively as follows:
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sol(∅) = ()

sol(E) = (sol(E[xm := um]), um) where um = ηm(λx . fm(sol(E[xm := x]), x))

The i-th component of the solution will be denoted soli (E).

In words, for solving a system ofm equations, the last variable is considered as a fixed parameter
x and the system of m − 1 equations that arises from dropping the last equation is recursively
solved. This produces an (m − 1)-tuple parametric on x , i.e., we get u1,m−1(x) = sol(E[xm := x]).
Inserting this parametric solution into the last equation, we get an equation in a single variable

x =ηm fm(u1,m−1(x), x)

that can be solved by taking for the function λx . fm(u1,m−1(x), x), the least or greatest fixpoint,
depending on whether the last equation is a µ- or ν -equation. This provides them-th component of
the solutionum = ηm(λx . fm(u1,m−1(x), x)). The remaining components of the solution are obtained
inserting um in the parametric solution u1,m−1(x) previously computed, i.e., u1,m−1 = u1,m−1(um).

The next lemma will be helpful in several places. In particular, it shows that the definition above
is well-given, since we are taking (least or greatest) fixpoints of monotone functions.

Lemma 3.5 (solution is monotone). Let E be a system ofm > 0 equations of the kind x =η f (x)

over a lattice L. For i ∈m the function д : L → Lm−1 defined by д(x) = sol(E[xi := x]) is monotone.

It can be easily proved that the solution of a system is, as anticipated, a special pre-solution.

Lemma 3.6 (solution is pre-solution). Let E be a system ofm equations over a lattice L of the

kind x =η f (x) and let u be its solution. Then u is a pre-solution, i.e., u = f (u).

3.2 A Prototypical Example: The µ-Calculus

As a prototypical example, we discuss how µ-calculus formulae can be equivalently seen as systems
of fixpoint equations. We focus on a standard µ-calculus syntax. For fixed disjoint sets PVar of
propositional variables, ranged over by x,y, z, . . . and Prop of propositional symbols, ranged over
by p,q, r , . . ., formulae are defined by

φ ::= t | f | p | x | φ ∧ φ | φ ∨ φ | □φ | ^φ | ηx .φ

where p ∈ Prop, x ∈ PVar and η ∈ {µ,ν }. Formulae of the kind ηx .φ are called fixpoint formulae.
The semantics of a formula is given with respect to an unlabelled transitions system (or Kripke

structure) (S,→) where S is the set of states and → ⊆ S × S is the transition relation. Given a
formula φ and an environment ρ : Prop ∪ PVar → 2

S mapping each proposition or propositional
variable to the set of states where it holds, we denote by ||φ ||ρ the semantics of φ defined as usual
(see, e.g., [Bradfield and Walukiewicz 2018]).

First note that any µ-calculus formula can be expressed in equational form, by inserting an
equation for each propositional variable (see also [Cleaveland et al. 1992; Seidl 1996]). The reverse
translation is also possible, hence these specification languages are equally expressive. Here, we
will only depict the relation via an example, the formal treatment is given in the full version.

x1 =µ p ∨ ^x1
x2 =ν x1 ∧ □x2

(a)

a b

p

(b)

x1 =µ {b} ∪ ^x1
x2 =ν x1 ∩ □x2

(c)

Fig. 2
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Example 3.7. Let φ = νx2.((µx1.(p ∨ ^x1)) ∧ □x2) be a formula requiring that from all reachable
states there exists a path that eventually reaches a state where p holds. The equational form
is quite straightforward and is reported in Fig. 2a. Consider a transition system (S,→) where
S = {a,b} and → is as depicted in Fig. 2b, with p that holds only on state b. The resulting
system of equations on the lattice 2

S is given in Fig. 2c, where ^,□ : 2S → 2
S are defined as

^(S) = {s ∈ S | ∃s ′ ∈ S.(s → s ′ ∧ s ′ ∈ S)}, □(S) = {s ∈ S | ∀s ′ ∈ S.(s → s ′ ⇒ s ′ ∈ S)} for S ⊆ S.
The solution is x1 = x2 = S. In particular, x2 = S corresponds to the fact that the formula φ holds

in every state.

Example 3.8. Consider the formula φ ′
= νx2.(□x2 ∧ µx1.((p ∧ ^x2) ∨ ^x1)) requiring that from

all reachable states there is a path along which p holds infinitely often. The equational form of φ ′ is:

x1 =µ (p ∧ ^x2) ∨ ^x1
x2 =ν □x2 ∧ x1

On the same transition system of the previous example (Fig. 2b), the solution of the corresponding
system is x1 = x2 = S. Notice that this time the order of the equations is relevant, while in the
previous example it was not. Indeed, if we swap the two equations in the system, the solution
becomes x1 = x2 = ∅. In general, the order of the equations is important whenever there is
alternation of fixpoints (mutual dependencies between least and greatest fixpoint equations).

3.3 Data-Flow Analysis

In order to give further intuition, we revisit another area where fixpoints play a major role, namely
data-flow analysis of programs. One can easily state a program analysis question in this setting as
a system of fixpoint equations, based on the flow graph of the program under consideration.

We focus on the well-known constant propagation analysis (see, e.g., [Nielson et al. 1999]). Its aim
is to show that the value of a variable is always constant at a certain program point, allowing us to
optimise the program by replacing the variable by the constant. Consider for instance the while
program in Fig. 3a, where variables contain integer values and blocks are numbered in order to
easily reference them. The condition for the while loop (block 3) is irrelevant and is hence replaced
by *. Note that variable x always has value 7 in block 4 and hence the assignment in this block
could be replaced by y:=7+y.

[y:=6]1;

[x:=y+1]2;

while [*]3 do

[y:=x+y]4

od

(a)

ρ1 =ν ⊥

ρ2 =ν ρ1[y 7→ 6]
ρ3 =ν ρ2[x 7→ ρ2(y) + 1] ⊓ ρ4[y 7→ ρ4(x) + ρ4(y)]

ρ4 =ν ρ3

(b)

Fig. 3. (a) A simple while program and (b) the equation system for the corresponding constant propagation
analysis.

Following [Nielson et al. 1999] we analyse such programs by setting up an instance of a monotone
framework. In particular we will use the following lattice to record the results of the analysis:

L = (Z ∪ {⊥})Var ∪ {⊤}

where Var is the set of variables. That is, a lattice element is either⊤ or a function ρ : Var → Z∪{⊥}

that assigns a variable x to a value in Z (if x is known to have constant value ρ(x) at this program
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point) or to ⊥ (to indicate that x is possibly non-constant). As usual, we are allowed to over-
approximate and ⊥ might be assigned although the value of the variable is actually constant.
The lattice order is defined as follows: two assignments ρ1, ρ2 : Var → Z ∪ {⊥} are ordered, i.e.

ρ1 ⊑ ρ2, if for each x ∈ Var either ρ1(x) = ρ2(x) or ρ1(x) = ⊥. That is, we consider a flat order
where ⊥ is smaller than the integers and the integers themselves are incomparable, and extend
it pointwise to functions. Clearly, ⊤ is the largest lattice element and we use some overloading
and denote by ⊥ the function that maps every variable to ⊥. Note that this order deviates from
the usual convention in program analysis which states that smaller values should be more precise
than larger values. We do this since our game characterises whether a lattice element is below the
solution. Since we want to check that the solution is more precise than a given threshold, we have
to reverse the order.

Let us write ρ ′ = ρ[x 7→ z] for z ∈ Z to denote function update, that is ρ ′(x) = z and ρ ′(y) = ρ(y)
for y , x. When ρ = ⊤ we define ρ[x 7→ z] = ⊤.
Observe that L is algebraic (and hence continuous). The compact elements are ⊤ and those

functions which have finite support, i.e., functions of the kind ⊥[x1 7→ z1, . . . , xn 7→ zn] where
only finitely many variables are not mapped to ⊤. In particular we can use as a basis the functions
⊥[x 7→ z] for some x ∈ Var and z ∈ Z. Note also that L is not distributive. For instance if
ρi = ⊥[x 7→ i] for i ∈ {1, 2, 3} then (ρ1⊓ρ2)⊔ρ3 = ⊥⊔ρ3 = ρ3 while (ρ1⊔ρ3)⊓(ρ2⊔ρ3) = ⊤⊓⊤ = ⊤.
From the program in Fig. 3a we can easily derive the system of fixpoint equations in Fig. 3b,

where we use ρi to record the lattice value for the entry of block i .
At the beginning, no variable is constant. Then the equation system mimics the control flow of

the program. In block 3 we have to take the meet to obtain an analysis result that is less precise than
the results coming from block 2 respectively block 4. Furthermore, since precision increases with
the order, we are interested in the greatest solution, which means that we have only ν-equations.

The expected solution is ρ1 = ⊥, ρ2 = ⊥[y 7→ 6], ρ3 = ρ4 = ⊥[x 7→ 7] witnessing that at block 2
variable y has constant value 6 and at blocks 3 and 4 variable x has constant value 7.

3.4 Approximating the Solution

The game theoretical characterisation of the solution of a system of fixpoint equations discussed
later will rely on a notion of approximation of the solution that is reminiscent of the lattice progress
measure in [Hasuo et al. 2016].

Definition 3.9 (approximants). Let E be a system ofm equations over the lattice L of the kind
x =η f (x). Given any tuple l ∈ Lm , let fi ,l : L → L be the function defined by

fi ,l (x) = fi (sol(E[xi+1,m := li+1,m][xi := x]), x, li+1,m).

We say that a tuple l ∈ Lm is a µ-approximant when for all i ∈m, if ηi = ν then li = ν (fi ,l ), else if
ηi = µ then li = f α

i ,l
(⊥) for some ordinal α . Dually, l ∈ Lm is a ν -approximant when for all i ∈m, if

ηi = ν then li = f α
i ,l
(⊤) for some ordinal α , else if ηi = µ then li = µ(fi ,l ).

Whenever l is a µ-approximant we write ord(l) to denote the leastm-tuple of ordinals α such
that for any i ∈m, if ηi = µ then li = f

αi
i ,l

(⊥) else, if ηi = ν , li = f
αi
i ,l

(⊤) = ν (fi ,l ).

Observe that, spelling out the definition of the solution of a system of equations, it can be
easily seen that soli (E[xi+1,m := li+1,m]) = ηi (fi ,l ). Then a µ-approximant is obtained by taking
under-approximations for the least fixpoints and the exact value for greatest fixpoints. In fact, in
the case of µ-approximants, for each i ∈ m, if ηi = ν , the i-th component is set to ν (fi ,l ) which is
i-th component soli (E[xi+1,m := li+1,m]) of the solution. Instead, if ηi = µ the component li is set to
f α
i ,l
(⊥) for some ordinal α , which is an underapproximation of µ(fi ,l ) = soli (E[xi+1,m := li+1,m]),

obtained by iterating fi ,l over ⊥ up to ordinal α . For ν-approximants the situation is dual.
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We remark that the function fi ,l depends only on the subvector li+1,m . In particular fm,l does not
depend on l . In fact, fm,l = λx . fm(sol(E[xm := x]), x). Using l as subscript instead of the subvector
is a slight abuse of notation that makes the notation lighter.
Approximants can be given an inductive characterisation. Besides shedding some light on the

notion of approximant, the following easy result will be useful at a technical level.

Lemma 3.10 (inductive characterisation of approximants). Let E be a system of m > 0
equations over the lattice L, of the kind x =η f (x) and let дm : L → L be the function дm(x) =

fm(sol(E[xm := x]), x). A tuple l ∈ Lm is a µ-approximant iff the following conditions hold

(1) either ηm = µ and lm = д
α
m(⊥) for some ordinal α , or ηm = ν and lm = νдm

(2) l1,m−1 is a µ-approximant of E[xm := lm].

As mentioned above, µ-approximants are closely related to lattice progress measures in the sense
of [Hasuo et al. 2016]. In fact, from Lemma 3.10 we can infer that, given a vectorα of ordinals, the µ-
or ν -approximant l ∈ Lm with ord(l) = α is uniquely determined. More precisely, a µ-approximant
l is determined by the subvector of ord(l) consisting only of them-tuple of components of ord(l)
corresponding to µ-indices. Hence we can define a function that maps each suchm-tuple of ordinals
to the corresponding µ-approximant and this turns out to be a lattice progress measures in the
sense of [Hasuo et al. 2016]. Actually, as proved in the full version, it is the greatest one. It can be
shown to coincide with the measure used in [Hasuo et al. 2016, Theorem 2.13] (completeness part).
We next observe that the name approximant is appropriate, i.e., µ-approximants provide an

approximation of the solution from below, while ν-approximants from above. The solution is thus
the only pre-solution which is both a µ- and a ν-approximant.

Lemma 3.11 (solution and approximants). Let E be a system ofm equations over the lattice L,

of the kind x =η f (x). The solution of E is the greatest µ-approximant and the least ν -approximant.

4 FIXPOINT GAMES

In this section we present a game-theoretical approach to the solution of a system of fixpoint
equations over a continuous lattice. More precisely, given a lattice with a fixed basis, the game
allows us to check whether an element of the basis is smaller (with respect to ⊑) than the solution
of a selected equation. This corresponds to solving the associated verification problem. For instance,
when model-checking the µ-calculus, one is interested in establishing whether a system satisfies a
formula φ, which amounts to check whether {s0} ⊆ uφ where s0 is the initial state and uφ is the
solution of the system of equations associated with φ.

4.1 Definition of the Game

The fixpoint game that we introduce has been inspired by the unfolding game described in [Venema
2008], that works for a single fixpoint equation over the powerset lattice. We adopted the name
fixpoint game, analogously to [Hansen et al. 2017].

Definition 4.1 (fixpoint game). Let L be a continuous lattice and let BL be a basis of L such that
⊥ < BL . Given a system E ofm equations over L of the kind x =η f (x), the corresponding fixpoint
game is a parity game, with an existential player ∃ and a universal player ∀, defined as follows:

• The positions of ∃ are pairs (b, i) where b ∈ BL and i ∈m and those of ∀ are tuples l ∈ Lm .
• From (b, i) the possible moves of ∃ are E(b, i) = {l | l ∈ Lm ∧ b ⊑ fi (l)}.
• From l ∈ Lm the possible moves of ∀ are A(l) = {(b, i) | i ∈m ∧ b ∈ BL ∧ b ≪ li }.

The game is schematised in Table 1. For a finite play, the winner is the player whose opponent is
unable to move. For an infinite play, let h be the highest index that occurs infinitely often in a pair
(b, i). If ηh = ν then ∃ wins, else ∀ wins.
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Table 1. The fixpoint game

Position Player Moves

(b, i) ∃ (l1, . . . , lm) such that b ⊑ fi (l1, . . . , lm)

(l1, . . . , lm) ∀ (b ′, j) such that b ′ ≪ lj

Observe that the fixpoint game is a parity game [Emerson and Jutla 1991; Zielonka 1998] (on
an infinite graph) and the winning condition is the natural formulation of the standard winning
condition in this setting.

Hereafter, whenever we consider a continuous lattice L, we assume that a basis BL is fixed such
that ⊥ < BL . Elements of the basis will be denoted by letters b with super or subscripts.
We will prove correctness and completeness of the game, i.e., we will show that if u is the

solution of the system, given a basis element b ∈ BL and i ∈m, if b ⊑ ui then starting from (b, i) the
existential player has a winning strategy, otherwise the universal player has a winning strategy.

Example 4.2. As an example, consider the equation system of Example 3.7, as depicted in Fig. 2c,
corresponding to the µ-calculus formula φ = νx2.((µx1.(p ∨ ^x1)) ∧ □x2). Recall that the lattice is
(2S, ⊆) and let us fix as a basis the set of singletons B2S = {{a}, {b}}.
A portion of the fixpoint game is graphically represented as a parity game in Fig. 4. Diamond

nodes correspond to positions of player ∃ and the box nodes to positions of player ∀. Only a
subset of the possible positions for ∀ are represented. The positions which are missing, such as
({a,b}, {a,b}), can be shown to be redundant, in a sense formalised later (see ğ 5.3.1), so that the
subgame is equivalent to the full game. Numbers in the diamond nodes correspond to priorities.
Box nodes do not have priorities (or we can assume priority 0). Since index 1 and 2 corresponds to
a µ and a ν equation, respectively, in this specific case the winning condition for player ∃ is exactly
the same as for parity games: either the play is finite and ∃ plays last or the play is infinite and the
highest priority that occurs infinitely often is even (in this case 2).

Let (u1,u2) be the solution of the system. We can check if a ∈ u2, i.e., if a satisfies φ, by playing
the game from the position ({a}, 2). In fact, {a} ⊑ u2 amounts to a ∈ u2. Indeed player ∃ has a
winning strategy that we can represent as a function ς from the positions of the game (for any
play) to the corresponding moves of player ∃, i.e., ς : B2S × 2 → 2

S × 2
S. A winning strategy for ∃

is given by ς({a}, 1) = ({b}, ∅), ς({a}, 2) = ({a}, {a,b}), ς({b}, 1) = (∅, ∅) and ς({b}, 2) = ({b}, {b}).
In Fig. 4 we depict by bold arrows the choices prescribed by the strategy.

A possible play of the game could be the following, where
x
{ denotes a move of x ∈ {∃,∀}:

({a}, 2)
∃
{ ({a}, {a,b})

∀
{ ({a}, 1)

∃
{ ({b}, ∅)

∀
{ ({b}, 1)

∃
{ (∅, ∅)

∀

̸{,

hence ∃ wins. Another (infinite) play is the following. It is also won by ∃ since the highest index
that occurs infinitely often is 2, which is a ν-index:

({a}, 2)
∃
{ ({a}, {a,b})

∀
{ ({a}, 2)

∃
{ ({a}, {a,b})

∀
{ . . .

Note that if ∃ always plays as specified by ς , she will always win.

4.2 Correctness and Completeness

Before proving correctness and completeness of the game in the general case, as a warm up, we
give some intuition and outline the proof for the case of a single equation. Let f : L → L be a
monotone function on a continuous lattice L and consider the equation x =η f (x), where η ∈ {ν, µ},
with solution u = ηf . In this case the positions for ∃ are simply basis elements b ∈ BL and ∃ must
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({a}, 2) ({a}, {a,b})

({a}, 1)

({b}, 2)

({a}, ∅) ({b}, ∅)

({b}, {b})

({b}, 1) (∅, ∅)

Fig. 4. Graphical representation of a fixpoint game

choose l ∈ L such that b ⊑ f (l). Positions of ∀ are lattice elements l ∈ L and moves are elements of
the basis b ∈ BL , with b ≪ l . In the case of η = µ, player ∀ wins infinite plays and in the case of
η = ν , player ∃ wins infinite plays.

When η = µ, if b ⊑ u, then b ⊑ f α (⊥) for some ordinal α . The idea is that ∃ can win by
descending the chain f β (⊥). E.g., if β = γ + 1 is a successor ordinal, then ∃ can play f γ (⊥). If
instead, η = ν , then the existential player can win just by identifying some post-fixpoint l such
that b ⊑ l . In fact, if l is a post-fixpoint, i.e., l ⊑ f (l) we know that l ⊑ u. Moreover, if b ⊑ l then
b ⊑ f (l) and thus ∃ can cycle on l and win. More formally:

(Case η = µ). In this case u = f α (⊥) for some ordinal α .

• Completeness: We show that whenever b ⊑ f β (⊥), for some ordinal β (i.e., b is below some
µ-approximant), then ∃ has a winning strategy, by transfinite induction on β . First observe
that β > 0. In fact, otherwise b ⊑ f 0(⊥) = ⊥, hence b = ⊥, while ⊥ < BL by hypothesis.
Hence we have two possibilities:
ś If β is a limit ordinal, player ∃ plays l = f β (⊥), which is a post-fixpoint and hence
b ⊑ f β (⊥) ⊑ f (f β (⊥)). Then ∀ chooses b ′ ≪ f β (⊥) =

⊔

γ <β f
γ (⊥). Since this is a

directed join, by definition of the way-below relation there exists γ < β with b ′ ⊑ f γ (⊥).
ś If β = γ + 1, ∃ plays l = f γ (⊥) and ∀ chooses b ′ ≪ f γ (⊥), hence b ′ ⊑ f γ (⊥).
Note that ∃ always has a move and the answer of ∀ is some b ′ ⊑ f γ (⊥), with γ < β , from
which there exists a winning strategy for ∃ by the inductive hypothesis.

• Correctness: We show that whenever b @ u, player ∀ has a winning strategy.
Observe that a move of ∃ will be some l such that b ⊑ f (l). Note that there must be a b ′ ≪ l

with b ′ @ u. In fact, otherwise, if for all b ′ ≪ l it holds that b ′ ⊑ u, since L is a continuous
lattice, we would have l =

⊔

{b ′ | b ′ ≪ l} ⊑ u and furthermore b ⊑ f (l) ⊑ f (u) = u, which
is a contradiction.
Hence ∀ can choose such a b ′ ≪ l with b ′ @ u and the game can continue. Then either ∃
runs out of moves at some point or we end up in an infinite play. In both cases ∀ wins.

(Case η = ν ). In this case u = f α (⊤) for some ordinal α .

• Completeness: We show that when b ⊑ u, then ∃ has a winning strategy. In fact, in this case
∃ simply plays l = u, which satisfies b ⊑ u = f (u) and ∀ answers with some b ≪ u, hence
b ⊑ u. The game can thus continue forever, leading to an infinite play which is won by ∃.

• Correctness: We show that whenever b @ f β (⊤), for some ordinal β (i.e., b is not below some
ν-approximant), then ∀ has a winning strategy, by transfinite induction on β . First observe
that β > 0. In fact, otherwise b @ f 0(⊤) = ⊤ would be a contradiction. Hence we distinguish
two cases:
ś If β is a limit ordinal b @ f β (⊤) =

d
γ <β f

γ (⊤), which means that there exists γ < β such

that b @ f γ (⊤).
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Now any move of ∃ is some l with b ⊑ f (l). Therefore l @ f γ (⊤), since otherwise
b ⊑ f (l) ⊑ f (f γ (⊤)) = f γ+1(⊤) ⊑ f β (⊤) (since γ + 1 < β). Hence there must be b ′ ≪ l

with b ′ @ f γ (⊤). Otherwise, as above, if for all b ′ ≪ l we had b ′ ⊑ f γ (⊤), then by
continuity of the lattice, we would conclude l =

⊔

{b ′ | b ′ ≪ l} ⊑ f γ (⊤). Such a b ′ can be
chosen by ∀, and the game continues.

ś If β = γ + 1 we know that b @ f β (⊤) = f (f γ (⊤)).
Any move of ∃ is l with b ⊑ f (l), which as above implies that l @ f γ (⊤) and thus the
existence of b ′ ≪ l with b ′ @ f γ (⊤). The basis element b ′ is chosen by ∀ and the game
continues.

Hence ∀ always has a move, ending up in b ′ @ f γ (⊤), from which there exists a winning
strategy for ∀ by the induction hypothesis.

Observe that cases of a µ- and a ν-equation are not completely symmetric. In the completeness
part, for showing that l ⊑ ν f we use the fact that ν f is the greatest post-fixpoint. Instead, for
showing that l ⊑ µ f we use the fact that l ⊑ f α (⊥) for some α and provide a proof that we can
descend to ⊥, similarly to what happens for ranking functions in termination analysis. Note that
in order to guarantee that we truly descend, also below limit ordinals, we require that ∀ plays
b with b ≪ l . Then we can use the fact that whenever b is way-below a directed join, then it is
smaller than one of the elements over which the join is taken. We remark that choosing b with
b ⊑ l instead would not be sufficient (see Proposition 4.10). In the correctness part, despite the
asymmetry, both proofs use the fact that each element is the join of all elements way-below it, for
which it is essential to be in a continuous lattice (see Proposition 4.9). Instead, for completeness,
the continuity hypothesis does not play a role.

For the general case, correctness and completeness of the game are proved by relying on the
notions of µ- and ν -approximant. We prove the two properties separately. Completeness exploits a
result that shows how ∃ can play descending along a chain of µ-approximants and, as in the case of
a single equation, it can be proved for general lattices, without assuming the continuity hypothesis.

Lemma 4.3 (descending on µ-approximants). Let E be a system ofm equations over a lattice L

of the kind x =η f (x). For each µ-approximant l ∈ Lm and (b, i) ∈ A(l) there exists a µ-approximant

l ′ ∈ E(b, i) such that ord(l) ⪰i ord(l
′). Moreover, if ηi = µ, the i-th component strictly decreases and

thus the inequality is strict.

The previous result allows us to prove that player ∃ can always win starting from a µ-approximant.
Roughly, relying on Lemma 4.3, we can prove that player ∃ can play on µ-approximants in a way that
each time the i-th equation is chosen, the ordinal vector associated to the approximant decreases
with respect to ⪯i , and it strictly decreases when the i-th equation is a µ-equation. This, together
with the fact that the order on ordinals is well-founded, allows one to conclude that either the play
is finite and ∃ plays last or the highest index on which one can cycle is necessarily the index of a
ν-equation. In both cases player ∃ wins.

Lemma 4.4 (∃ wins on µ-approximants). Let E be a system ofm equations over a lattice L of

the kind x =η f (x) and let l ∈ Lm be a µ-approximant. Then in a game starting from l (which is a

position of ∀) player ∃ has a winning strategy.

Since the solution of a system of equation is a µ-approximant (the greatest one), completeness is
an easy corollary of Lemma 4.4.

Corollary 4.5 (completeness). Let E be a system ofm equations over a lattice L of the kind

x =η f (x). Given any µ-approximant l ∈ Lm , b ∈ BL and i ∈ m, if b ⊑ li then ∃ has a winning

strategy from position (b, i).
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For correctness we rely on a result, dual to Lemma 4.3, that allows to ascend along ν -approximants.
However, in this case, the fact of working in a continuous lattice is crucial (see Proposition 4.9).

Lemma 4.6 (ascending on ν -approximants). Let E be a system ofm equations over a continuous

lattice L of the kind x =η f (x). Given a ν-approximant l ∈ Lm , an element b ∈ BL and an index

i ∈m with b @ li , for all tuples l
′ ∈ E(b, i) there are a ν -approximant l ′′ and (b ′′, j) ∈ A(l ′) such that

(1) b ′′ @ l ′′j and (2) ord(l) ⪰i ord(l
′′). Moreover, if ηi = ν , the i-th component strictly decreases and

thus the inequality in item 2 above is strict.

As in the dual case, correctness is an easy corollary of the above lemma, recalling that the solution
is the least ν-approximant.

Lemma 4.7 (correctness). Let E be a system ofm equations over a continuous lattice L of the kind

x =η f (x). For a ν-approximant l ∈ Lm , b ∈ BL and i ∈ m, if b @ li then ∀ has a winning strategy

from position (b, i).

Combining Corollary 4.5 and Lemma 4.7 we reach the desired result.

Theorem 4.8 (correctness and completeness). Given a system ofm equations E over a contin-

uous lattice L of the kind x =η f (x) with solution u, then for all b ∈ BL and i ∈m,

b ⊑ ui iff ∃ has a winning strategy from position (b, i).

Note that even when the fixpoint is reached in more than ω steps, thanks to the fact that the
order on the ordinals is well-founded and players łdescendž over the order, ordinals do not play an
explicit role in the game. In particular plays are not transfinite and whenever ∀ or ∃ win due to the
fact that the other player cannot make a move, this happens after a finite number of steps. This
can be a bit surprising at first since the game works for general continuous lattices, including, for
instance, intervals over the reals.

We close this subsection by proving two results that, in a sense, show that the choice of continuous
lattices and the design of the game based on the way-below relation are łthe right onesž. We first
observe that the restriction to continuous lattices is not only sufficient but also necessary for the
correctness of the game.

Proposition 4.9 (correctness holds exactly in continuous lattices). Let L be a lattice and

let BL be a fixed basis with ⊥ < BL . The game is correct for every system of equations over L if and

only if L is continuous.

As a counterexample, consider the latticeW in Fig. 1, which is not continuous and let BW be
any basis such that 0 < BW . First note that necessarily a ∈ BW , otherwise a ,

⊔

{x ∈ BW | x ⊑

a} =
⊔

∅ = 0. Secondly,

↠

a = {0} since a 3 a. Then, consider the equation x =µ f (x), where the
function f :W →W is defined by f (0) = 0, and f (x) = ω for x , 0. Clearly f is monotone and
its least fixpoint is µ f = 0. However, the player ∃ can win any play of the game from position a,
despite the fact that a @ µ f = 0. In fact, the first move of ∃ can be a, since a ⊑ f (a) = ω. But then
player ∀ has no moves since

↠

a ∩BW = ∅. And so player ∃ always wins while she should not.

The second observation is that using the lattice order instead of the way-below relation may
break completeness. More precisely, consider the natural variant of the game where the way-
below relation is replaced by the lattice order. Let us call it weak game. Since the set of possible
moves of player ∀ is enlarged, correctness clearly continues to hold. Instead, as we hinted before,
completeness could fail. We show that it is exactly on algebraic lattices that completeness still holds
for the weak game.
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Proposition 4.10 (way-below is needed in non-algebraic lattices). Let L be a lattice. The

weak game is complete on every system of equations over L if and only if BL consists of compact

elements (which in turn means that L is algebraic).

Note that when the elements of the basis are compact, the way-below relation with respect to
elements of the basis is the lattice order. Hence the result above essentially states that the weak
game is complete exactly when it coincides with the original game, thus further supporting the
appropriateness of our formulation of the game.
As a counterexample, consider the continuous lattice [0, 1] with the usual order and basis

B[0,1] = Q ∩ (0, 1]. Recall that [0, 1] is not algebraic (the only compact element is 0) and way-below

relation is the strict order <. Let д : [0, 1] → [0, 1] be the function defined by д(x) = x+1
2 . The

fixpoint equation x =µ д(x) has solution µд = 1.
In the weak game, from position l ∈ [0, 1], player ∀ can play any b ≤ l (instead, of b < l ). Then

player ∃ loses any play starting from position 1, despite the fact that 1 ≤ µд = 1. In fact, the only
possible move of player ∃ is 1, and ∀ can play any x ≤ 1. In particular, playing 1 the game will
continue forever and will thus be won by ∀.

Notice that, instead, in the original game, from position 1, player ∀ has to play an element 1−ϵ for
some ϵ > 0. Then, it is easy to see that at each step i player ∃ will be able to play some zi ≤ 1 − 2iϵ .
This means that after finitely many steps ∃ will be allowed to play 0, thus leaving no possible
answer to ∀ and winning the game.

4.3 Relation to µ-Calculus Model-Checking

We discuss how our fixpoint game over systems arising from µ-calculus formulae relates to classical
techniques for model-checking the µ-calculus, which can be presented interchangeably in terms
of parity games, tableaux, and automata (see, e.g., [Emerson 1985]). Specifically, we compare our
game with classical tableau systems for the µ-calculus (e.g., as in [Cleaveland 1990; Stirling and
Walker 1991]) where the similarities can be presented more directly.

Recall that a tableau is a (finite) proof tree whose nodes are labelled by sequents. Usually sequents
are of the kind s |= φ, where s is a state of the model and φ formula. The fact that a state s satisfies a
formula φ amounts to the existence of a tableau, rooted in s |= φ and that it is successful, according
to a suitable definition.
Given a closed µ-calculus formula φ and a state s in a transition system (S,→), let E be the

corresponding system ofm equations. The model-checking problem using tableaux is solved by
searching for a successful tableau for the sequent s |= φ. Instead, using the fixpoint game, it is
reduced to the existence of a winning strategy for player ∃ starting from position ({s},m), where
m is the highest equation index.

We discuss the two approaches using Example 3.7. Recall that the formula of interest is φ =
νx2.((µx1.(p ∨ ^x1)) ∧ □x2). Letψ denote the subformula µx1.(p ∨ ^x1). Using the tableau rules in
the style of [Cleaveland 1990] (omitting assumptions for the sake of the presentation), we can build
a successful tableau for the sequent a |= φ as in Fig. 5a. It is not difficult to see that this tableau
corresponds to the winning strategy ς for ∃ discussed in Example 4.2. In fact, consider the reduced
tree in Fig. 5b, which is obtained from the tableau by keeping only the sequents corresponding to
fixpoint formulae (i.e., either φ orψ ) and replacing such formulae with the corresponding variable
(φ with x2 andψ with x1).

Each sequent s |= xi can be seen as a position ({s}, i) ∈ B2S × 2 of ∃ in the fixpoint game. The
successor sequents correspond to the move prescribed on ({s}, i) by the strategy ς . More precisely,
the move should be (y1,y2)whereyj = {s ′ | s ′ |= x j is a successor of s |= xi } for j ∈ 2. For instance,
the sequent a |= x2 corresponds to the position ({a}, 2). The three successors a |= x1, a |= x2 and
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a |= φ

a |= ψ ∧ □φ

a |= ψ

a |= P ∨ ^ψ

a |= ^ψ

b |= ψ

b |= P ∨ ^ψ

b |= P

a |= □φ

a |= φ b |= φ

b |= ψ ∧ □φ

b |= ψ

b |= P ∨ ^ψ

b |= P

b |= □φ

b |= φ 2○

(a)

a |= x2

a |= x1

b |= x1

a |= x2 b |= x2
3○

b |= x1 b |= x2
1○

(b)

Fig. 5. µ-calculus tableaux vs strategies in the fixpoint game

b |= x2 determine the move prescribed by the strategy ς({a}, 2) = ({a}, {a,b}). Instead, the sequent
a |= x1 has only one successor b |= x1 and, correspondingly, we have ς({a}, 1) = ({b}, ∅), since
there are no successors containing variable x2. When a sequent appears on a leaf of the reduced
tree which was already a leaf in the original tableau, by definition of the tableau rules it must have
an ancestor labelled by the same sequent and in this case the strategy is defined by the ancestor.
For instance, in Fig. 5, the sequent b |= x2 labels the leaf 1○ which was already a leaf in the original
tableau, marked by 2○. The strategy is thus defined by the ancestor 3○, labelled by the same sequent
b |= x2, as ς({b}, 2) = ({b}, {b}).

Additionally, it can be seen that plays of the fixpoint game correspond to paths in the reduced
tree. For example, the first play discussed in Example 4.2 corresponds to the leftmost path in the
tree. In fact, while successors of sequents define the strategy for player ∃, the moves of player ∀
determine the path to follow.
For general, possibly non-successful tableaux, if we consider the reduced tree, then for each

subtree the sequents at the leaves can be read as a set of assumptions that player ∃ has taken to
show that the root sequent holds. Player ∀ chooses among such assumptions which one player ∃
should develop next. If there is no winning strategy for player ∃, the winning strategy for player ∀
is such that he always chooses a path in the tableau that cannot be successfully concluded at a leaf.

4.4 Fixpoint Games in Data-Flow Analysis

We get back to constant propagation example in ğ 3.3. Recall that the system of fixpoint equations
expressing the analysis in Fig. 3b had solution ρ1 = ⊥, ρ2 = ⊥[y 7→ 6], ρ3 = ρ4 = ⊥[x 7→ 7]. We
next describe a game that shows that indeed ⊥[x 7→ 7] ⊑ ρ4 and hence x has constant value 7 at
block 4. The game starts as follows:

(⊥[x 7→ 7], 4)
∃
{ (⊥,⊥,⊥[x 7→ 7],⊥)

∀
{ (⊥[x 7→ 7], 3)

∃
{ (⊥,⊥[y 7→ 6],⊥,⊥[x 7→ 7])

∀
{

Now the universal player has two options: either choose (⊥[x 7→ 7], 4), which brings him back to
an earlier game situation and might potentially lead to an infinite game. Since we are considering
greatest fixpoints, this means that ∃ wins. If he chooses the other option, the game continues as
follows, where eventually ∀ has no move left and ∃ wins as well:

(⊥[y 7→ 6], 2)
∃
{ ⊥

∀

̸{
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5 STRATEGIES AS PROGRESS MEASURES

Along the lines of [Jurdziński 2000], influenced by [Hasuo et al. 2016], in this section we introduce a
general notion of progress measure for fixpoint games over continuous lattices. We will show how
a complete progress measure characterises the winning positions for the two players. The existence
of a so-called small progress measure will allow us to express a complete progress measure as a
least fixpoint, thus providing a technique for computing the progress measure and solving the
corresponding system of equations.

5.1 General Definition

Given an ordinal α we denote by [α]m
⋆
= {β | β ≤ α }m ∪ {⋆}, the set of ordinal vectors with entries

smaller or equal than α , with an added bound ⋆.

Definition 5.1 (progress measure). Let L be a continuous lattice and let E be a system of m
equations over L of the kind x =η f (x). Given an ordinal λ, a λ-progress measure for E is a function
R : BL → m → [λ]m

⋆
such that for all b ∈ BL , i ∈ m, either R(b)(i) = ⋆ or there exists l ∈ E(b, i)

such that for all (b ′, j) ∈ A(l) it holds

• if ηi = µ then R(b)(i) ≻i R(b
′)(j);

• if ηi = ν then R(b)(i) ⪰i R(b
′)(j)

Aprogressmeasuremaps any basis element of the lattice and index i ∈m to anm-tuple of ordinals,
with one component for each equation. Components relative to µ-equations roughly measure how
many unfolding steps for the equation would be needed to reach an under-approximation li above
b, and thus, for ∃, to win the game. Components relative to ν-equations, as in the original work
of [Jurdziński 2000], are less relevant, as we will see.

Intuitively, whenever R(b)(i) , ⋆, the progress measure R provides an evidence of the existence
of a winning strategy for ∃ in a play starting from (b, i). The tuple l , whose existence is required by
the definition, is a move of player ∃ such that for any possible answer of ∀, the progress measure
will not increase with respect to ⪯i , and it will strictly decrease in the case of µ-equations. Since ≺i
is well-founded, this ensures that we cannot cycle on a µ-equation. Also note that whenever the
current index is i , all indices lower than i are irrelevant (expressed by the orders ⪰i resp. ≻i ), which
is related to the fact that the highest index which is visited infinitely often is the only relevant
index for determining the winner of the game. This idea is formalised in the following lemma.

Lemma 5.2 (progress measures are strategies). Let L be a continuous lattice and let E be a

system ofm equations over L of the kind x =η f (x) with solution u. For any b ∈ BL and i ∈ m, if

there exists some ordinal λ and a λ-progress measure R such that R(b)(i) ⪯i (λ, . . . , λ), then b ⊑ ui .

The above lemma, in a sense, says that progress measures provide sound characterisations of the
solution. However, in general, they are not complete, since whenever R(b)(i) = ⋆we cannot derive
any information on (b, i), i.e., if u is the solution of the system, we cannot conclude that b @ ui .
This motivates the following definition.

Definition 5.3 (complete progress measures). Let L be a continuous lattice and let E be a system of
equations over L of the kind x =η f (x) with solution u. A λ-progress measure R : BL →m → [λ]m

⋆

is called complete if for all b ∈ BL and i ∈m, if b ⊑ ui then R(b)(i) ⪯i (λ, . . . , λ).

Observe that in search of a complete progress measure, in principle, we would have to try all
ordinals as a bound. We next show that we can take as bound the height λL of the lattice L. This
provides a generalisation of the small progress measure in [Jurdziński 2000].
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Definition 5.4 (small progress measure). Let L be a continuous lattice and let E be a system ofm
equations over L of the kind x =η f (x). Given anm-tuple of ordinals α , let us denote by zE (α )

them-tuple of ordinals where ν-components are set to 0, i.e., zE (α ) = β with βi = αi if ηi = µ and
βi = 0 otherwise. We define the small progress measure RE : BL →m → [λL]

m
⋆

RE (b)(i) = min⪯i {zE (ord(l)) | l is a µ-approximant ∧ l ∈ E(b, i)}

where min⪯i is the minimum on ⪯i as given in Definition 2.9, with the convention that min⪯i ∅ = ⋆.

Observe that RE is well-defined, i.e., it actually takes values in [λL]
m
⋆
. In fact, the components

of zE (ord(l)) corresponding to µ-indices are ordinals expressing the number of Kleene iterations
needed to reach under-approximations of the least fixpoint. These are clearly bounded by λL , since
for a monotone function f : L → L, the sequence f α (⊥) is strictly increasing until it reaches the
least fixpoint of f . For ν-indices, zE (ord(l)) is always 0.

Observe that while formally RE (b)(i) takes values in [λL]
m
⋆
, whenever j < i or ηj = ν , due to the

effect of the min⪯i and of the zE operations, the only possible value for the j-th component is 0.
Despite such components are then clearly irrelevant, we keep them for notational convenience.

The fact that RE is indeed a progress measure follows from Lemma 4.3. Moreover, we can easily
show that it is complete.

Lemma 5.5 (small progress measure). Let L be a continuous lattice and let E be a system ofm

equations over L of the kind x =η f (x). Then RE : BL →m → [λL]
m
⋆
is a complete progress measure.

5.2 Progress Measures as Fixpoints

Here we show that a complete progress measure can be characterised as the least solution of a
system of equations over tuples of ordinals, naturally induced by Definition 5.1.

Definition 5.6 (progress measure equations). Let L be a continuous lattice and let E be a system of
m equations over L of the kind x =η f (x). Let δ

η
i , with i ∈m, be, for η = ν , the null vector and, for

η = µ, the vector such that δ j = 0 if j , i and δi = 1. The progress measure equations for E over the
lattice [λL]

m
⋆
, are defined, for b ∈ BL , i ∈m, as:

R(b)(i) = min⪯i {sup{R(b
′)(j) + δ

ηi
i | (b ′, j) ∈ A(l)} | l ∈ E(b, i)}

We will denote by ΦE the corresponding endofunction on L →m → [λL]
m
⋆
which is defined, for

R : BL →m → [λL]
m
⋆
, by ΦE (R)(b)(i) = min⪯i {sup{R(b

′)(j) + δ
ηi
i | (b ′, j) ∈ A(l)} | l ∈ E(b, i)}

Observe that, since [λL]
m
⋆
is a lattice, also the corresponding set of progress measures, endowed

with pointwise ⪯-order, is a lattice. It is immediate to see that ΦE is monotone with respect to such
order, i.e., if R ⪯ R′ pointwise then ΦE (R) ⪯ ΦE (R

′) pointwise. This allows us to obtain a complete
progress measure as a (least) fixpoint of ΦE .

Lemma 5.7 (complete progress measure as a fixpoint). Let L be a continuous lattice and let E

be a system ofm equations over L of the kind x =η f (x). Then the least solution RM of the progress

measure equations (least fixpoint of ΦE with respect to ⪯) is the least λL-progress measure, hence it is

smaller than RE and it is complete.

Observe that, since RM ⪯ RE , in particular, for all b ∈ BL and i ∈ m, if RM (b)(i) , ⋆, then all
components of RM (b)(i) corresponding to ν-indices are 0.

Example 5.8. If we consider the system of equations of Example 3.7 we obtain as least fixpoint the
progress measure RM ({a})(1) = (1, 0) while RM ({a})(2) = RM ({b})(1) = RM ({b})(2) = (0, 0). Note
that RM never assumes the top value⋆, consistently with the fact that the solution is (u1,u2) = (S, S).
We will discuss how RM is obtained later when providing a more łefficientž way for computing it.
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We next observe that the operator ΦE creates functions R : BL → m → [λL]
m
⋆

which are
monotone, with respect to the pointwise order onm → [λL]

m
⋆
. Explicitly, R : BL →m → [λL]

m
⋆
is

monotone if for all b,b ′ ∈ L and i ∈m, if b ⊑ b ′ then R(b)(i) ⪯ R(b ′)(i).

Lemma 5.9 (ΦE (R) is monotone). Let L be a lattice and let E be a system ofm equations over L of

the kind x =η f (x). For every function and R : BL →m → [λL]
m
⋆
, the function ΦE (R) is monotone.

5.3 Computing Progress Measures

5.3.1 Selections. In principle, at least on finite lattices, the previous results allow one to compute
the progress measure and thus to prove properties of the solutions of the system of equations.
However, the computation can be quite inefficient due to the fact that the existential player has a
(uselessly) large number of possible moves. In fact, given a system x =η f (x) on a lattice L, from
a position (b, i), given any move l ∈ E(b, i) for player ∃, i.e., any tuple such that b ⊑ fi (l), it is
immediate to see that all l ′ such that l ⊑ l ′ are valid moves for ∃, since by monotonicity of fi we
have b ⊑ fi (l) ⊑ fi (l

′). In other words, E(b, i) is upward-closed. However, player ∃, in order to win,
has to try to descend as much as possible, hence playing large elements is inconvenient.
We next introduce some machinery that formalises the above intuition and allows us to make

the calculation more efficient. The idea is discussed for a single function first, and then for a system
of equations. For this we need some additional notation. Given a monotone function f : Lm → L

and b ∈ BL , we write E(b, f ) = {l | l ∈ Lm ∧ b ⊑ f (l)}.

Definition 5.10 (selection). Let L be a lattice. Given a monotone function f : Lm → L, a selection
for f is a function σ : BL → 2

Lm such that for all b ∈ BL it holds E(b, f ) = ↑σ (b). Given a system E

ofm equations on L of the kind x =η f (x), a selection for E is anm-tuple of functions σ such that,
for each i ∈m, the function σi is a selection for fi .

Intuitively, a selection provides for each element of the basis and function fi , a subset of the moves
E(b, i) that are sufficient to łcoverž b in all possible ways. Indeed, we can show that when computing
the complete progress measure RM according to the equations in Lemma 5.7, we can restrict the
moves of the existential player to a selection. Dually, since the moves of the universal player A(l)
are downward-closed and the progress measures of interest are monotone (see Lemma 5.9), we can
restrict also such moves to a subset whose downward-closure is A(l).

Lemma 5.11 (progress measure on a selection). Let L be a continuous lattice, let E be a system

of equations over L of the kind x =η f (x) and let σ be a selection for E. Moreover, for all l ∈ Lm let

Ar (l) ⊆ BL ×m be such that A(l) = {(b ′, i) | (b, i) ∈ Ar (l) ∧ b ′ ⊑ b}. The system of equations over

the lattice [λL]
m
⋆
, defined, for b ∈ L, i ∈m, as:

R(b)(i) = min⪯i {sup{R(b
′)(j) + δ

ηi
i | (b ′, j) ∈ Ar (l)} | l ∈ σi (b)}

has the same least solution as that in Lemma 5.7.

Since the complete progress measure RM witnesses the existence of a winning strategy for ∃,
the above result implies that whenever ∃ has a winning strategy, it has one also in the game where
the moves of ∃ are restricted to be in the selection. A similar property holds for ∀ and Ar (l).
Clearly, for computational purposes, we are interested in having the selections as small as

possible. Given a monotone function f : Lm → L, and two selections σ ,σ ′ : BL → 2
Lm for f , we

write σ ⊆ σ ′ if for all b ∈ BL it holds σ (b) ⊆ σ ′(b). We will use the same notation for the pointwise
order on selections for systems of equations.

Example 5.12 (selections for µ-calculus operators). Given a transition system (S,→), consider the
powerset lattice 2S ordered by subset inclusion, with basis B2S = {{s} | s ∈ S}. Then standard
µ-calculus operators admit a least selection, as detailed below.
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• Given f : (2S)2 → 2
S defined by f (X1,X2) = X1 ∪ X2, then σ : B2S → 2

(2S)2 is σ ({s}) =
{(∅, {s}), ({s}, ∅)}

• Given f : (2S)2 → 2
S defined by f (X1,X2) = X1 ∩ X2, then σ : B2S → 2

(2S)2 is σ ({s}) =
{({s}, {s})}

• Given f : 2S → 2
S defined by f (X ) = ^X , then σ : B2S → 2

2
S

is σ ({s}) = {{s ′} | s → s ′}

• Given f : 2S → 2
S defined by f (X ) = □X , then σ : B2S → 2

2
S

is σ ({s}) = {{s ′ | s → s ′}}

We next provide sufficient conditions for a function to admit a least selection.

Lemma 5.13 (existence of least selections). Let L be a lattice with a basis BL and let f : L
m → L

be a monotone function. If f preserves the meet of descending chains, then it admits a least selection

σm that maps each b ∈ BL to the set of minimal elements of E(b, f ).

Example 5.14. Consider our running example in Example 3.7. Minimal selections for the functions
f1 and f2 associated with the first and second equation are given by

• σ1({a}) = {({a}, ∅), ({b}, ∅)} and σ1({b}) = {(∅, ∅)};
• σ2({a}) = {({a}, {a,b})} and σ2({b}) = {({b}, {b})}.

Observe that the winning strategy for ∃ discussed in Example 4.2 is a subset of the selection. This
is a general fact: if a winning strategy exists, we can find one that is a subset of any given selection.

Selections can be constructed łcompositionallyž, i.e., if a function f arises as the composition of
some component functions then we can derive a selection for f from selections of the components.
More details can be found in the full version of the paper.

5.3.2 A Logic for Characterising the Moves of the Existential Player. The set of possible moves of the
existential player is an upward-closed set in the lattice. Such sets can be conveniently represented
and manipulated in logical form (see, e.g., [Delzanno and Raskin 2000]). Intuitively, (minimal)
selections describe a disjunctive normal form, but more compact representations can be obtained
using arbitrary nesting of conjunction and disjunction. For instance, the minimal selection for
the monotone function f (X1, . . . ,X2n) = (X1 ∪ X2) ∩ (X3 ∪ X4) ∩ · · · ∩ (X2n−1 ∪ X2n) would be of
exponential size (think of the corresponding disjunctive normal form), but we can easily give a
formula of linear size.
This motivates the introduction of a propositional logic for expressing the set of moves of the

existential player along with a technique for deriving the fixpoint equations for computing the
progress measure, avoiding the potential exponential explosion.

Definition 5.15 (logic for upward-closed sets). Let L be a continuous lattice and let BL be a basis
for L. Givenm ∈ N, the logic Lm(BL) has formulae defined as follows, where b ∈ BL and j ∈m:

φ ::= [b, j] |
∨

k ∈K

φk |
∧

k ∈K

φk

We will write true for the empty conjunction. The semantics of a formula φ is an upward-closed set
JφK ⊆ Lm , defined as follows:

J[b, j]K = {l ∈ Lm | b ⊑ lj } J
∨

k ∈K

φk K =
⋃

k ∈K

Jφk K J
∧

k ∈K

φk K =
⋂

k ∈K

Jφk K

It is easy to see that indeed each upward-closed set is denoted by a formula, showing that the
logic is sufficiently expressive.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 26. Publication date: January 2019.



26:22 Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso Padoan

Lemma 5.16 (formulae for upward-closed sets). Let L be a continuous lattice with basis BL
and let X ⊆ Lm be upward-closed. Then X = JφK where φ is the formula in Lm(BL) defined as follows:

φ =
∨

l ∈X

∧

{

[b, j] | j ∈m ∧ b ⊑ lj
}

.

For practical purposes we should restrict to finite formulae. This can surely be done in the case
of finite lattices, but also for well-quasi orders (see, e.g., [Delzanno and Raskin 2000]).

Definition 5.17 (symbolic ∃-moves). Let L be a continuous lattice and let f : Lm → L be amonotone
function. A symbolic ∃-move for f is a family (φb )b ∈BL of formulae in Lm(BL) such that JφbK =
E(b, f ) for all b ∈ BL .
If E is a system ofm equations of the kind x =η f (x) over a continuous lattice L, a symbolic

∃-move for E is a family of formulae (φi
b
)b ∈BL ,i ∈m such that for all i ∈ m, the family (φi

b
)b ∈BL is a

symbolic ∃-move for fi .

Interestingly, symbolic ∃-moves can be obtained compositionally, namely, the formulae corre-
sponding to a functions arising as a composition can be obtained from those of the components.

Lemma 5.18 (symbolic ∃-moves, compositionally). Let L be a continuous lattice with a basis BL ,

and let f : Ln → L, fj : L
m → L for j ∈ n be monotone functions and let (φb )b ∈BL , (φ

j

b
)b ∈BL , j ∈ n

be symbolic ∃-moves for f , f1, . . . , fn . Consider the function h : L
m → L obtained as the composition

h(l) = f (f1(l), . . . , fn(l)). Define (φ
′
b
)b ∈BL as follows. For all b ∈ BL , the formula φ ′

b
is obtained from

φb by replacing each occurrence of [b ′, j] by φ
j

b′
. Then (φ ′

b
)b ∈BL is a symbolic ∃-move for h.

Example 5.19. Consider again our running example in Example 3.7. The selections specified in
Example 5.14 can be expressed in the logic as follows:

φ1{a } = [{a}, 1] ∨ [{b}, 1] φ1{b } = true

φ2{a } = [{a}, 1] ∧ [{a}, 2] ∧ [{b}, 2] φ2{b } = [{b}, 1] ∧ [{b}, 2]

These formulae can be obtained compositionally. For instance the formula φ2
{a }

for the equation

x2 =ν x1 ∩ □x2 is obtained by combining a logical formula for x1 (namely [{a}, 1]) via conjunction
with a logical formula for □x2 (namely [{a}, 2] ∧ [{b}, 2]).

A symbolic ∃-move for a system can be directly converted into a recipe for evaluating the fixpoint
expressions for progress measures. Essentially, every disjunction simply has to be replaced by a
minimum and every conjunction by a supremum (although the proof, which relies on complete
distributivity of the lattice [λL]

m
⋆
is not trivial). Furthermore, in the case of an algebraic lattice, where

we can ensure that the elements of the basis are compact, an atom translates to a straightforward
lookup of the progress measure without additional computation.

Proposition 5.20 (progress measure from symbolic ∃-moves). Let E be a system ofm equations

over a continuous lattice L and let BL be a basis for L. Let (φ
i
b
)b ∈BL ,i ∈m be a symbolic ∃-move for E.

Then the system of fixpoint equations for computing the progress measure can be written, for all

b ∈ BL and i ∈m, as R(b)(i) = Ri
φi
b

where Ri
ψ
is defined inductively as follows:

Ri
[b , j] = min⪯i {sup{R(b

′)(j) + δ
ηi
i | b ′ ≪ b}} Ri∨

k∈K φk
= min

k ∈K
Riφk Ri∧

k∈K φk
= sup
k ∈K

Riφk

Whenever the basis element b is compact it holds that Ri
[b , j]
= min⪯i {R(b)(j) + δ

ηi
i }.

Note that the operator min⪯i in the definition of Ri
[b , j]

above is just there to ensure that all entries

in positions smaller than i are set to 0.
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Example 5.21. Using the logical formulae from Example 5.19, we obtain the following equations
for the progress measure (where max⪯i works analogously to min⪯i : it sets all vector entries in
positions smaller than i to 0):

R({a})(1) = min⪯1 {R({a})(1) + (1, 0),R({b})(1) + (1, 0)} R({b})(1) = (0, 0)

R({a})(2) = max⪯2 {R({a})(1),R({a})(2),R({b})(2)} R({b})(2) = max⪯2 {R({b})(1),R({b})(2)}

The solution for the progress measure equations has already been given in Example 5.8.

5.3.3 Complexity Analysis. The benefit of the progress measures introduced in [Jurdziński 2000] is
to ensure that model-checking is polynomial in the number of states and exponential in (half of)
the alternation depth. We will now perform a corresponding complexity analysis for our setting,
based on symbolic ∃-moves and by assuming that we are working on a finite lattice.

Let E be a fixed system ofm equations over a finite lattice L, let k be the number of µ-equations
and let BL be a basis for L. Let (φ

i
b
)b ∈BL ,i ∈m be a symbolic ∃-move for E and assume that the size

of every such formula is bounded by s . Note that the formulae are typically of moderate size. For
instance, µ-calculus model-checking, the branching of a transition system (i.e., the number of
successors of a single state) is a determining factor. In fact, as it can be grasped from our running
example (see Example 5.19), the size of the symbolic ∃-move φi

b
will be linear in the number of

propositional operators and, in the presence of modal operators, linear in the branching degree of
the transition system. For arbitrary monotone functions it is more difficult to give a general rule.
The shape of the formulae in the symbolic ∃-move determine how the values of the progress

measure at various positions (b, i) of the games are interrelated. These dependencies clearly play a
role in the computation and thus are made explicit by following definition.

Definition 5.22 (dependency graph). Given two game positions (b, i), (b ′, j) ∈ BL ×m of ∃ we
say that (b, i) is a predecessor of (b ′, j) if [b ′, j] occurs in φi

b
. We will write pred(b ′, j) for the set of

predecessors of (b ′, j). In this situation we will also call the pair ((b, i), (b ′, j)) an edge and refer to
corresponding graph as the dependency graph for E.

As a first step we provide a bound to the number of edges in the dependency graph.

Proposition 5.23 (edges in the dependency graph). The number e of edges in the dependency

graph for system E is such that e ≤ min{|BL | ·m · s, (|BL | ·m)2}, wherem is the number of equations

and s is the bound on the size of symbolic ∃-moves.

In order to bound the complexity of the overall computation of the progress measure, first note
that the lattice [λL]

m
⋆
contains (λL + 1)

m
+ 1 elements. However only h = (λL + 1)

k
+ 1 are relevant,

since the entries of ν -indices are always set to 0. As an example, when model-checking a µ-calculus
formula over a finite state system, λL is the size of the state space of the Kripke structure. In fact,
the lattice is (2S, ⊆) where S = {s0, . . . , sn} is the state space, then the longest ascending chain is
∅ ⊆ {s0} ⊆ {s0, s1} ⊆ . . . ⊆ S.

This fact and the observation that we can perform the fixpoint iteration for the progress measure
using a worklist algorithm on the dependency graph, lead to the following result.

Theorem 5.24 (computing progress measures). The time complexity for computing the least

fixpoint progress measure for system E is O(s · k · e · h), where s is the bound on the size of symbolic

∃-moves, k is the number of µ-equations, e the number of edges in the dependecy graph, and h =

(λL + 1)
k
+ 1.

We compare the above with the runtime in [Jurdziński 2000], which is O(dд
(

n
d

) ⌈ d2 ⌉), where d
is the alternation depth of the formula, д the number of edges and n the number of nodes of the
parity game.
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The correspondence is as follows: д corresponds to our number e and n to λL (where we cannot
exploit the optimisation by Jurdziński which uses the fact that every node in the parity game is
associated with a single parity, leading to the division by d). Furthermore s is a new factor, which
is due to the fact that we are working with arbitrary functions. But this is mitigated by the fact
that we often obtain smaller parity games than in the standard µ-calculus case (see for instance

Example 4.2, Figure 4). The number d
2 corresponds to our k . However d

2 could be strictly lower
than k , since we did not take into account the fact that some equations might not be dependent on
other equations.
To incorporate this and possibly further optimisations into the complexity analysis we need a

notion of alternation depth for equation systems. This can be easily obtained by extending the
one introduced in [Cleaveland et al. 1992; Schneider 2004]. A system of equations can be split into
closed subsystems corresponding to the strongly connected components of the dependency graph
for the system. Then the alternation depth of the system is defined as the length of the longest chain
of mutually dependent µ and ν-equations within a closed subsystem. By solving every component
separately we obtain a more efficient algorithm.
In particular, systems of fixpoint equations that consist only of µ-equations or ν-equations can

be solved by a single fixpoint iteration on Lm , wherem is the number of equations [Venema 2008].
Similarly, equations with indices i, i + 1 where ηi = ηi+1 can be merged. This results in an equation
system where subsequent equations alternate between µ and ν . (Notice that this transformation
means that the equations are over Lj instead of L, but this can be easily adapted in our setting.)
Note also that the runtime might be substantially improved by finding a good strategy for

computing the progress measure, as spelled out in [Jurdziński 2000], in the same way as efficient
ways can be found for implementing the worklist algorithm in program analysis.

6 MODEL-CHECKING LATTICED µ-CALCULI

As explained earlier, model-checking for µ-calculus formulae can be reduced to solving fixpoint
equations over the powerset lattice 2S where S is the state space of the system under consideration.
A state x ∈ S can either satisfy or not satisfy a formula, meaning it either belongs to the solution
or not. However, there are also multi-valued logics for modelling uncertainty, disagreement or
relative importance in which it is natural to have łnon-binaryž truth values (see, e.g., [Eleftheriou
et al. 2012; Fitting 1991; Grumberg et al. 2005; Kupfermann and Lustig 2007]). Such a setting, as
detailed later, can also be used to model and verify conditional (or featured) transition systems
with upgrades. Here we discuss latticed µ-calculi, inspired by the work cited above, and discuss a
corresponding model checking procedure.

A lattice of truth values L is fixed, which is typically finite. and then formulae are evaluated over
the lattice LS, endowed with the pointwise order. Also transitions are associated with an element
in the lattice of truth values.

Definition 6.1 (multi-valued transition system). A multi-valued transition system over L is a
function R : S × S→ L, where S is the set of states.

Since L can be non-boolean, multi-valued modal logics express forms of negation or implication
by relying on residuation or relative pseudo-complement operation which is well defined for all
complete lattices L.

Definition 6.2 (residuation). Let L be a lattice. Given l,m ∈ L, we define (l ⇒ m) =
⊔

{l ′ ∈ L |

l ⊓ l ′ ⊑m}.
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Latticed µ-calculi use atoms, conjunction, disjunction and residuation. The modal operators ^
and □ are interpreted as follows. Given u ∈ LS we define ^u,□u ∈ LS as

(^u)(x) =
⊔

y∈S

(R(x,y) ⊓ u(y)) (□u)(x) =
l

y∈S

(R(x,y) ⇒ u(y))

The approach discussed in ğ 3.2 for model-checking the µ-calculus can be easily adapted to this
setting. Instead of the powerset lattice we now have LS and, as a basis BLS we can take the functions
bx ∈ BLS , with x ∈ S, b ∈ BL , defined by bx (x) = b and bx (y) = ⊥ for all y , x .

In order to perform the calculation of the progress measure efficiently, we use symbolic ∃-moves
as defined in ğ 5.3.2. Here we assume that L is a finite distributive lattice. In this case ≪ and ⊑

coincide. Moreover, for finite distributive lattice it is is well-known from the Birkhoff duality (see
also [Davey and Priestley 2002]) that every element can be uniquely represented as the join of a
downward-closed set of join-irreducibles. Note that if BL is the set of join-irreducibles in L, then
the basis BLS = {bx | x ∈ S,b ∈ BL}, given above is the set of join-irreducibles of LS.

Proposition 6.3 (symbolic ∃-moves in latticed µ-calculi). Let L be a finite distributive lattice,

let BL be the set of its join-irreducibles. The following are symbolic ∃-moves for the semantic functions:

• For ⊔ : LS × LS → LS, we letψ⊔
bx
= [bx , 1] ∨ [bx , 2].

• For ⊓ : LS × LS → LS, we letψ⊓
bx
= [bx , 1] ∧ [bx , 2].

• For l ⇒ _ : LS → LS (where l ∈ L is fixed and seen as a constant function S → L), we let

ψ⇒
bx
=

∧

{[b ′x , 1] | b
′ ⊑ l ∧ b ′ ⊑ b}.

• For ^ : LS → LS we letψ^
bx
=

∨

{[by , 1] | y ∈ Y ∧ b ⊑ R(x,y)}

• For □ : LS → LS we letψ□
bx
=

∧

{[b ′y , 1] | y ∈ Y ∧ b ′ ⊑ R(x,y) ∧ b ′ ⊑ b}.

Note that residuation is only monotone in the second argument and that distributivity is essential
for this definition of symbolic ∃-moves. For instance, if b is not a join-irreducible then b ⊑ l1 ⊔ l2 is
not equivalent to b ⊑ l1 ∨ b ⊑ l2.

Example 6.4 (conditional transition systems with upgrades). An interesting special case are con-
ditional transition systems with upgrades [Beohar et al. 2017] for which a logic satisfying the
Hennessy-Milner property has been studied in [Poltermann 2017]. This logic uses the opera-
tors given above, enriched with constants. This kind of systems extend the well-known featured
transition systems for modelling software product lines [Cordy et al. 2012] by upgrades.
Let (P, ≤) be a given partial order where P is the set of products and ≤ is the upgrade relation.

If p ≤ q, it is possible to make an upgrade from q to p during the runtime of the system, i.e., p
is the more advanced product compared to q. We consider the lattice L = (O(P), ⊑), where O(P)

is the set of all downward-closed subsets of P . (In fact the sets ↓ p, for p ∈ P , where ↓ denotes
downward-closure, are the join-irreducibles of L.) A transition system that compactly specifies
the system behaviour for all possible products is given by R : S × S → O(P) where p ∈ R(x,y)

means that there exists a transition from x to y if one is in possession of product p. More advanced
products lead to additional transitions, due to the downward-closure. It is possible to spontaneously
perform upgrades during runtime.
Now one can study the latticed modal logic or latticed µ-calculus arising in such a setting.

Evaluating a formula φ yields a function ||φ || : S→ O(P) which intuitively gives us for every state
those products on which φ holds (taking upgrades into account).

The approach outlined in the first part of the section can be directly used for model checking the
Hennessy-Milner logic on product lines. Note that, as it happens in this case, the lattice L of truth
values can have a considerable size and thus the availability of general approaches for handling
latticed µ-calculi can be of great help.
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7 CONCLUSION

Related work. Our work is based on lattice theory and in particular on continuous lattices. The
use of lattices in program analysis and verification has been pioneered by the work [Cousot
and Cousot 1977]. Continuous lattices, which received this name due to their intimate connec-
tion with continuous functions, have originally been studied by Scott as a semantic domain for
the λ-calculus [Scott 1972] and have since found many further applications in the semantics of
programming languages [Abramsky and Jung 1994; Gierz et al. 2003].
The modal µ-calculus is an expressive temporal logics, which originated in an unpublished

manuscript by Scott and de Bakker and was further developed by Kozen [Kozen 1983]. For a good
overview see [Bradfield and Walukiewicz 2018]. Its introduction posed the problem of efficient
model-checking, which involves the solution of nested fixpoint equations, see, e.g., [Browne et al.
1997; Cleaveland et al. 1992; Seidl 1996]. The paper [Cleaveland et al. 1992] introduced the notion of
a hierarchical system of fixpoint equations, on which our paper is based as well. One way to tackle
the model-checking problem is to translate it into the question of finding winning strategies for
parity games as first described in [Emerson and Jutla 1991]. A very satisfying technique for solving
parity games was proposed in [Jurdziński 2000] resulting in an algorithm which is exponential only
in half of the alternation depth. The approach crucially relies on the notion of progress measure, that
can be seen as generalising both invariants and ranking functions. The complexity of computing
progress measures has recently been improved to quasi-polynomial [Calude et al. 2017].

An extension to general lattices has been given in [Hasuo et al. 2016], which was very inspiring
for our development. Compared to [Hasuo et al. 2016] we brought games back into the picture by
introducing a game that generalises both parity games and the unfolding games in [Venema 2008].
This allowed us to define a notion of progress measures which is closer to the original definition of
Jurdziński and, as such, admits a constructive characterisation as a least fixed point. This works in
the general context of continuous lattices, providing a way of solving systems of fixpoint equations
in settings that are beyond powerset lattices and were not covered by previous work. We devised
the notion of selection and a logics for specifying the moves of the existential player, with the aim
of making the computation of progress measures more efficient. We view as a valuable contribution
the identification of continuous lattices as the right setting where these general results can be
stated.
Usually, µ-calculus formulae are evaluated over the state space of a transition system, i.e.,

over a powerset lattice. This changes if the µ-calculus is not a classical logic, but lattice-valued
as in [Kupfermann and Lustig 2007] or real-valued as in [Huth and Kwiatkowska 1997], which
presents an algorithm based on the simplex method for the non-nested case. Solving equation
systems over the reals was considered in [Gawlitza and Seidl 2011] and in [Mio and Simpson 2015,
2017]. In particular, [Mio and Simpson 2017] presents an algorithm for solving nested fixpoint
equation systems over the interval [0, 1] by a direct algorithm which represents and manipulates
piecewise linear functions as conditioned linear expressions. Our results can offer an alternative
way to solve such equation systems.

Games for quantitative or probabilistic µ-calculi have been studied in [McIver and Morgan 2007;
Mio 2012]. As opposed to our game, such games closely follow the structure of the µ-calculus
formula on which the game is based (e.g., ∃ makes a choice at an ∨-node, ∀ at an ∧-node). It is an
interesting question whether the conceptual simplicity of our game can lead to a new perspective
on existing games.

Future work. A parity game over a finite graph can be easily converted into a system of boolean
equations whose solution characterises the winning positions for the players. Since our game is a
standard parity game, possibly played on an infinite graph, the standard conversion would lead to
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infinitely many equations. Systems of equations of this kind are considered, e.g., in [Mader 1997].
An interesting question is under which conditions an infinite parity game can be converted into
finitely many equations on an (infinite) powerset lattice.

When solving systems of fixpoint equations over infinite lattices, in particular lattices of infinite
height, one typically faces the problem that the progress measure could not be computed in finite
time. This is due to the fact that the fixpoints might only be reached after at least ω steps. Hence a
symbolic representation is required in order to solve a fixpoint equation system over such lattices.
We already took some steps in this direction. The starting observation is that the existence of a
winning strategy for player ∃ in the game can be expressed as a first-order formula with nested
quantifiers (existential quantifiers for the ∃ player, universal quantifiers for the ∀ player). Usually
such a formula is infinite in size, but the main idea is that it can be made finite by adding a stopping
condition if an equation index is visited for the second time (without any higher index in between).
We have to make sure that the lattice value reached at this point is smaller or equal than the one
obtained at the earlier corresponding position. For µ-indices one additionally has to add a so-called
decrease-predicate in order to ensure that we will truly decrease and eventually reach ⊥. Such
decrease-predicates ś which have to satisfy a well-foundedness condition ś are straightforward for
well-founded orders (one checks for strict inequality), but more elaborate for non-well-founded
orders such as the one on the reals. Using well-founded predicates one can easily show correctness,
but so far we have only partial results for completeness.
Of particular interest are equations over the real interval [0, 1], as considered also in [Mio

and Simpson 2017] as a precursor to model-checking PCTL or probabilistic µ-calculi. We have
successfully experimented with simple equation systems, involving both linear and non-linear
arithmetic, and used the resulting formulas, stating the existence of a winning condition for the
existential player, as input for an SMT solver (such as z3 or cvc4). These case studies are contained
in the complete fragment and the SMT solver computes the correct solution.

We refer the reader to [Baldan et al. 2018] for more details on the treatment of systems of fixpoint
equations over infinite lattices and, in particular, over the reals.

We also plan to study fixpoint equations on the (non-distributive, but continuous) lattices of
equivalence relations and pseudo-metrics. As explained in the introduction, the computation of
fixpoints for equivalence relations is essential for behavioural equivalences, and the same holds for
pseudo-metrics and behavioural distances [van Breugel and Worrell 2005].
We would also like to determine whether we can handle quantitative logics whose modalities

interact with (lattice) truth values in a non-trivial way, such as logics with discounted modalities
as studied in [Almagor et al. 2014]. Expressing such logics as systems of fixed point equations over
suitable continuous lattices and thus obtaining a game theoretical characterisation of the model
checking problem seems reasonably easy. However, turning such characterisation into an effective
technique requires some non-trivial symbolic approach due to the fact that the lattice is infinite.

Furthermore we would like to study situations in which local (or on-the-fly) algorithms rather
than global fixpoint iteration can be used to check whether a lattice element is below the solution.
Examples of such local algorithms are backtracking methods studied in [Hirschkoff 1998; Stevens
and Stirling 1998]. In particular we are interested in the integration of local methods with up-to
techniques for general lattices, see for instance [Bonchi et al. 2018; Pous and Sangiorgi 2011].
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