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Abstract We discuss a method that employs a multilayer
perceptron to detect deviations from a reference model in
large multivariate datasets. Our data analysis strategy does
not rely on any prior assumption on the nature of the devia-
tion. It is designed to be sensitive to small discrepancies that
arise in datasets dominated by the reference model. The main
conceptual building blocks were introduced in D’ Agnolo and
Waulzer (Phys Rev D 99 (1), 015014. https://doi.org/10.1103/
PhysRevD.99.015014. arXiv:1806.02350 [hep-ph], 2019).
Here we make decisive progress in the algorithm implemen-
tation and we demonstrate its applicability to problems in
high energy physics. We show that the method is sensitive
to putative new physics signals in di-muon final states at the
LHC. We also compare our performances on toy problems
with the ones of alternative methods proposed in the litera-
ture.

1 Introduction

In the study of the fundamental laws of Nature we face a num-
ber of open questions. In the past decades the field of particle
physics has produced a set of potential answers that seemed
inevitable in their simplicity. The experimental effort inspired
by these solutions is now mature and is slowly stripping them
of their initial theoretical appeal. As more and more data are
collected, the problems that confront us become sharper and
harder to solve. We know that the theories that well describe
current data are incomplete and should be extended, but our
prior beliefs on how the extension should look like and on
where to discover it experimentally become less concordant
every day. In this paper we show how to interrogate experi-
mental data in a new way, going beyond searches targeted at
one specific theoretical model.

4 e-mail: marco.zanetti @pd.infn.it (corresponding author)

We consider the problem of having large multivariate
datasets that are seemingly well described by a reference
model. Departures from the reference model can be statisti-
cally significant, but are caused only by a very small fraction
of events. The significance of the discrepancy might stem
from the extreme rarity of the discrepant events in the ref-
erence model and in this case standard anomaly detection
techniques might be employed. Or the discrepancy is due to
a small excess (or even a deficit) of events in a region of the
space of physical observables that is also populated in the
reference model. Our goal is to determine if the experimen-
tal dataset does follow the reference model exactly or if it
instead contains “small” departures as described above. In
the latter case, we also want to know in which region of the
space of observables the discrepancy is localized. This prob-
lem is relevant to Large Hadron Collider (LHC) datasets that
are well described by the Standard Model of particle physics
(SM) and CMB datasets that are well described by the stan-
dard cosmological model ACDM.

Our focus here will be physics cases relevant to the
LHC. Many attempts at generalizing traditional new physics
searches based on specific models have already been made
in this context, developing what are called “model indepen-
dent” search strategies. As customary in the literature [2—
15] by model independent analysis we mean an analysis
that does not target a specific new physics model. Typically,
analysis techniques of this kind assume that a background
model is at hand. This could be obtained from simulation or
some simulation-based reweighting of a data control region. !
Recent papers (e.g., Ref. [16]) started referring to data-driven
background estimates as (background) model-independence,

1" Also in the approach we follow in the present paper, both options are
viable since we only need a reference data sample distributed as the
SM predicts. It might come from a Monte Carlo simulation or from a
control region.
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to be accompanied by (signal) model-independence for a
truly model-independent approach. We do not employ this
latter notion of model independence in this study, and we keep
the estimate of the background predictions, with the associ-
ated uncertainties, as a separated aspect (see below) from the
one of model-independence. Notice that model-independent
analyses (no matter which notion of model-independence
is adopted) do rely on the choice of the specific final state
(reconstructed variables and acceptance cuts) to which they
are applied. This obviously restricts the sensitivity only to
new physics models that contribute to the specific final state,
and reintroduces some amount of model-dependence.

Model-independent analyses typically follow the binned
histogram technique, in which one selects a set of bins (i.e.
search regions) in the space of observables and compares the
amount of data observed in each bin with the reference model
(i.e., the SM). The main problem with this approach comes
from the fact that, as previously emphasized, the data distri-
bution will be identical to the one predicted by the SM in the
vast majority of the phase space. The observed countings in
almost all bins will thus be in agreement with the SM expec-
tation, but only up to the unavoidable Poisson fluctuations.
Poisson fluctuations from non-discrepant bins do contribute
to the binned likelihood, and if there are many non-discrepant
bins their contribution will overwhelm the contribution the
likelihood receives from the few genuinely discrepant bins.
This is not an issue in a binned (or unbinned) analysis tar-
geting a specific new physics model, because the bins where
no discrepancies are expected do not contribute to the likeli-
hood (which is the ratio between the new physics and the SM
Poisson likelihoods). In the model-independent case instead,
Poisson fluctuations from non-discrepant bins easily swamp
any potential signal of new physics. Typically this can be
mitigated only by paying a high price in flexibility [2,17].

In this work we apply a new methodology to the problem,
expanding on the ideas presented in Ref. [1]. Our technique
leverages the progress that the field of machine learning has
experienced in the past few years. In particular we exploit the
flexibility of neural networks as multidimensional function
approximants [18-25]. Here we show that this idea addresses
the challenge presented above for realistic multidimensional
datasets and physically motivated putative signals. In particu-
lar we consider i+ 1~ production at the LHC and we quantify
the sensitivity of our method to aresonance Z’ — u* ™ and
to a non-resonant signal induced by a four-fermion contact
interaction.

It should be stressed that the design of the algorithm is
purely based on the knowledge of the reference model with
the criteria described in Sect. 2. No optimization was per-
formed based on the putative new physics signals, as appro-
priate for a model-independent search strategy. We always
present the sensitivity of our method in comparison with the
“ideal” sensitivity one might obtain with a standard model-
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dependent search strategy that is instead optimized for the
specific model at hand. We will also discuss how the trained
neural network can help identifying the physical origin of the
observed discrepancy.

At this stage, we assume that the reference dataset pro-
vides a perfect representation of the background distribution
in real data. In a typical analysis, this is true within the effect
of systematic uncertainties, which are controlled by nuisance
parameters. The effect of these nuisance parameters can be
accounted for in our method, by a straightforward applica-
tion of the profile likelihood ratio methodology. The practical
implementation of this extension of the method will be the
topic of a future publication [26]. In this study, we ignore this
aspect and concentrate on the more pressing issue of gener-
alizing Ref. [1] to a multivariate problem. This motivates the
choice of relatively simple and clean experimental signature:
that in fact allows introducing the new method and discussing
its strength, knowing that the underlying assumptions (e.g.,
the possibility of accessing a trustable reference sample with
larger statistics than the data sample) will be fulfilled. It is
reasonable to expect that extending this method to other final
states (e.g., dijet) might imply additional practical problems
(e.g., the need of a large reference dataset).

Our results benefit from a crucial methodological advance
that we make in this paper compared to Ref. [1]. This con-
sists in an algorithmic procedure to select the regularization
parameters of the neural network and the network architec-
ture. We take the regularization parameter to be a hard upper
bound (weight clipping) on the magnitude of the weights.
While admittedly heuristic (even if based on robust results
in statistics), we will see that this procedure uniquely selects
the weight clipping and it also gives constraints on the viable
neural network architectures.”

Machine learning techniques have recently been intro-
duced to solve problems related to the one discussed
above [27-33]. In this paper we also directly compare our
sensitivity with that of two related ideas presented in the
literature. One has the same goal, but is based on a near-
est neighbors estimation of probability distributions [32,33].
The other targets only resonant signals, with the resonant fea-
ture occurring in a pre-specified variable, but leverages in a
similar way the capability of multilayer perceptrons to iden-
tify correlations in multivariate datasets [17]. For the com-
parison we employ simple toy benchmark examples defined
in the corresponding publications. We study these examples
with our method and compare our performances with the pub-
lished results. This is a first step towards an exhaustive com-
parison of the different proposals (that also include [27-32]),
which we consider necessary at this stage given the practi-

2 While more standard validation procedures like k-folding could be
exploited, in this study we only focus on the approach described in
Sect. 2.1, specifically designed to fit the proposed methodology.
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cal difficulties involved in directly evaluating their respective
strengths and weaknesses by just reading published work.

The paper is organized as follows. In Sect. 2, after a brief
review of the basic ideas behind our approach (see Ref. [1] for
a detailed exposition), we define its detailed implementation.
We describe in particular the strategy we adopt to select the
neural network architecture and the other hyperparameters.
In Sect. 3 we compare our performances with Refs. [17,32,
33] in the context of toy examples. The rest of the paper is
devoted to uT ™ production at the LHC. First, in Sect. 4,
we introduce the new physics signals and the details of our
simulated datasets. We also describe the dedicated analyses
that we use to estimate the ideal sensitivity. In Sect. 5 we
describe the application of our method and we extensively
study its performances. We conclude and outline directions
for future work in Sect. 6.

2 Methodology

Neural networks have already found a plethora of successful
applications in high energy physics, including jet physics
[34-58], optimized new physics searches [17,59-65], faster
detector simulations [66—71] and fits to parton distribution
functions [72], where they have been applied successfully
for decades [73]. In this work we show the power of these
techniques in the context of model-independent new physics
searches at the LHC, expanding the framework of Ref. [1].

We first choose a set of variables that describe the data,
a range for their values and the integrated luminosity of the
dataset. This is the only physics choice that we have to make,
which defines the “experiment” we want to analyze. For
instance our input space can consist of the momenta of the
two leading muons in events with at least two opposite-sign
muons within acceptance.

Once we have selected an input space of interest we gen-
erate a large reference sample that represents the SM (or,
“reference model”) prediction. This simulated dataset has
much larger statistics than the actual experimental data, we
denote with Ak the number of events in this sample, while the
expected number of events is N(R) < Ng. We also gener-
ate Nyoy toy datasets that again follow the SM prediction, but
have the same statistics as the actual experimental dataset.
Namely, they contain a variable number of events, thrown
randomly from a Poisson distribution with N(R) expected
events. At this point we have prepared the required input for
the neural network and we can choose a specific network
architecture.

Our neural networks are fully connected, feedforward
regressors, trained to learn a likelihood ratio. The training
is carried on with a supervised procedure, taking as input
the two datasets described above: the large reference dataset
that follows the SM (reference) prediction R and a smaller

dataset that represents the experimental data D. The training
datasets are preprocessed. Input variables allowing negative
values, as n, are normalized subtracting their mean and divid-
ing by their standard deviation. The other variables, like p7,
are simply divided by their mean. The loss L used to train
the network is

N(R e
LLf(-,w)] = NLR) DW= s w). (1)

x€R xeD

Here x is an element of the input space (for example 5 num-
bers describing the two muons pr, rapidity and azimuthal
angular difference) and f is the output of the network as a
function of the free parameters w (weights and biases) of the
network. The values of these parameters after training will
be denoted as W in what follows.

The neural network defines a composite hypothesis for the
distribution (denoted as n(x|w)) of the data, namely

n(x|w) = e/ FWn(x[R),

where n(x|R) is the distribution (see Table 1 for a summary
of our notation) in the reference hypothesis. Our search strat-
egy is constructed as an hypothesis test between the simple
hypothesis n(x|R) and the composite (depending on the free
parameters w) alternative hypothesis n(x |w). The loss is con-
structed [1] to reproduce the maximum log-likelihood ratio
(Neyman—Pearson) test statistic # (D) for composite alterna-
tive hypothesis [74]. Namely it is such that

Min L = —Max 1 log e n(x|w) = —@
{w) {w) e NR) 1 (x[R) 2’
X

@)

when AR is much larger than the number of events in D.
The minimum of the loss at the end of training (or, more pre-
cisely, (D)) is thus employed as the statistic of our hypoth-
esis test. Notice that after training, the output of the network
is an estimate of the log-ratio of the data distribution over
the reference distribution: f(x; W) >~ log [n(x|W)/n(x|R)],
as a function of the input variables x. It can thus be used, in
case of tension between the data and the reference model, to
identify the most discrepant regions of the phase space.
Armed with the input datasets, the network and loss
described above we can analyze the data. The procedure is
rather straightforward. The neural network is trained using
the reference sample and a data sample collected by the
experiment. The loss at the end of training produces a sin-
gle value 74} for the test statistic. We then train the network
again using, instead of the experimental data, the Ny Syn-
thetic datasets distributed according to the reference hypoth-
esis, previously described. This gives us Ny values of the
test statistic ¢ that populate the distribution of the test statistic
in the reference model hypothesis: P (¢#|R). Comparing tops

@ Springer
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Table 1 Summary of notation introduced and employed in Sects. 2 and 4

Distributions

n(x|R) Distribution of the variable x in the reference model R
n(x|NP) Distribution in the new physics model NP (signal plus background)
n(x|w) Distribution of x estimated by the Neural Network (NN)

Events
N(R) Number of expected events in the reference model R
Nr Number of events in the reference dataset
N(W) Number of expected events estimated by the NN

Test Statistic
t(D) Test statistic computed by the NN on the Data sample D
tid(D) Ideal test statistic (requires prior knowledge of the signal)
P(t|IR) Probability distribution of the test statistic ¢ in the reference model

Normalization
[n(x)dx =N n(x): Events distribution
f P(x)dx =1 P (x): Probability distribution

with P (¢|R) tells us if our dataset is consistent with the ref-
erence model. More precisely we can compute a global® p
value as

p= /oodtP(ﬂR). 3)
lo

bs

We also define a corresponding Z score as
Z(p)=o"'(1-p), @)

where ®~! is the quantile of a Normal distribution with
zero mean and unitary variance, so that Z is conveniently
expressed as a number of o’s. The presence of a new physics
signal in the experimental dataset would manifest itself as a
large value of Z.

The discussion above concisely lays out our data analysis
strategy (see Ref. [1] for a more complete exposition), to be
putin place once the neural network architecture and the other
hyperparameters have been selected. We now describe the
criteria and the algorithmic procedure by which this selection
is made, which constitute the major methodological advance
of the present paper.

3 We stress the fact that our p-values are global. i.e., we do account for
the look-elsewhere effect in the specific analysis at hand. On the other
hand, there is a residual trial factor, induced by repeating the procedure
on multiple final states. This trial factor is difficult to quantify, and
analogous to the usually neglected trial factor of the global search effort
by an LHC experiment consisting of hundreds of searches in different
final states. We do not discuss it further here.

@ Springer

2.1 Hyperparameters selection

Our goal is to design an effectively model independent
search, so the construction of our method must not assume
to know anything specific about the signal that we are look-
ing for. Our selection strategy is thus purely based on the
reference model (SM) prediction, and relies on two general
criteria.

The first criterion that we adopt is flexibility. Namely we
would like the neural network to have as many parameters as
possible, free to vary in the largest possible range, in order
to be sensitive to the largest possible variety of new physics.

This has to be balanced against a second criterion, based
on the following observation. Our method is mathematically
equivalent to the Maximum Likelihood hypothesis test strat-
egy where the set of alternative hypotheses is defined by the
neural network. Hence we can rely on the classical results
by Wilks and Wald [75,76] (see also [77] for a more recent
exposition) according to which the maximum log-likelihood
ratio test statistics is distributed in the Asymptotic Limit as
a x2 with a number of degrees of freedom equal to the num-
ber of free parameters in the alternative probability model.
From here we conclude that the distribution of our test statis-
tic on reference-model toy datasets (i.e., P(¢|R)) approaches
in the asymptotic limit a x> with a number of degrees of
freedom given by the number of parameters of the neural
network. Clearly we should not expect this result to hold for
a finite dataset. However if it does apply, namely if the distri-
bution does resemble the XZ, we can conclude heuristically
that the dataset is sufficiently abundant for the network that
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is being fitted. If instead the distribution violates the asymp-
totic formula, it means that the test statistic is sensitive to
low-statistics regions of the dataset that are subject to large
and uncontrolled fluctuations. We can define this behavior as
“overfitting” in our context and restrict ourselves to hyper-
parameters configurations for which a good compatibility of
P(t|R) with the appropriate x? distribution is observed. We
will see that combining the two criteria of flexibility and of
x2-compatibility dramatically restricts the space of viable
options.

In order to illustrate how the optimization strategy works
in practice we first need to specify our framework. We restrict
ourselves to fully-connected neural networks with logistic
sigmoid activation functions in the inner layers. The archi-
tecture is characterized by the dimensionality of the input
of each of the “L” layers, i.e. by a set of integers ag-aj-. . .-
ay—1, plus the output dimensionality that is fixed to ap, = 1
in our case. So for example a 1-3-1 (L = 2) network acts
on a one-dimensional feature space (ap = 1), has one inner
layer with three neurons (a; = 3) and one-dimensional out-
put (a2 = 1). In this notation the total number of parameters
(weights and biases) in the network is

L
Npar (@) =Y an(ap—1 + 1). )
n=1

We regularize the network by imposing an upper bound
(weight clipping) on the absolute value of each weight. In the
following we capitalize Weight Clipping when referring to
this specific use of the parameter (i.e., an upper bound on each
individual weight). The minimization of the loss function in
Eq. (2) is performed using ADAM [78] as implemented in
Keras [79] (with the TensorFlow [80] backend) with
parameters fixed to 1 = 0.9, B = 0.99, ¢ = 1077 and
initial learning set to 1073, The batch size is always fixed to
cover the full training sample. The hyperparameters we want
to determine are thus the number of layers and of neurons in
each layer (i.e., the architecture of the network), the weight
clipping parameter and the number of training epochs.

The first step of the optimization procedure consists in
choosing an initial network architecture. This can be done
heuristically by considering the dimension of the input space
and the number of events in the datasets of interest. Here
we consider for illustration a one-dimensional slice (specifi-
cally, the momentum of the leading lepton in the x direction)
of the SM di-muon dataset described in Sect. 4 with a rela-
tively low expected number of data events N (R) = 2000. The
number of events in the reference sample is A/g = 20,000.
A small 1-3-1 network is a reasonable starting point in this
case. According to the flexibility criterion, the weight clip-
ping parameter should be taken as large as possible in order
to maximize the expressive power of the network. However

if we take it very large training does not converge even after
hundreds of thousands of training epochs. This is not accept-
able because reaching the absolute minimum of the loss func-
tion as in Eq. (2) is conceptually essential for our strategy.
We observe this behaviour in the upper left corner of Fig. 1,
where we plot the upper quantiles of P(#|R) as a function
of training rounds. The phenomenon is avoided by lowering
the weight clipping below a certain threshold Wy,x, which
we find to be Wax =~ 30 in the case at hand as shown in the
figure.

The test statistic distribution P(¢|R) can now be com-
pared with the X[%/ " distribution, with a number of degrees
of freedom equal to the number of parameters of the neu-
ral network as in Eq. (5). We have Ny, = 10 for the 1-3-
1 network. The left panel of Fig. 2 displays the evolution
with the training rounds of the x>-compatibility, defined as a
simple Pearson’s %2 test statistic on the P (7|R) distribution
sampled with 1000 toy experiments. We see that requiring
an acceptable level of x2-compatibility further restricts the
allowed range for the weight clipping parameter. The max-
imum weight clipping for which compatibility is found is 7
in the case at hand. Since the Weight Clipping should be as
large as possible to maximize flexibility, this is the value to
be selected.

In summary, the strategy we adopt to select the weight
clipping parameter is the following:

1. Starting from a large weight clipping, decrease it until
the evolution of the 95% quantiles of P (z|R) achieve a
plateau as a function of training epochs.

2. In the range of weight clippings below W,x where the
plateau is reached, choose the largest Weight Clipping
value that gives a good compatibility between P (z|R)
and a x 2 distribution whose degrees of freedom are equal
the total number of trainable parameters in the network,
as shown in Fig. 2.

3. The total number of training epochs should also be fixed.
To reduce the computational burden of our procedure this
is chosen as the minimum value for which the evolution
of the x2-compatibility has reached its plateau.

We should now explore different neural network archi-
tectures. In particular we would like to consider more com-
plex architectures than 1-3-1 to increase the expressive power
of the network. Complexity can indeed be increased, but
not indefinitely as shown in Fig. 3 for a 1-10-1 network.
A suitable Wy, can be identified below which the quan-
tiles of P(f|R) converge, but P (¢|R) fails to fulfil the x2-
compatibility criterion for any choice of the Weight Clipping
parameter. The 1-10-1 network should thus be discarded and
the optimal (largest) viable network of the 1-N-1 class sits
in the range 3 < N < 10. By studying the networks in this

@ Springer
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Fig. 1 Quantiles of the test statistic distribution vs training epochs for different choices of weight clipping. The quantiles are obtained from 1000
toy experiments and are a plotted for a 1D example discussed in the text. The architecture of the network is fixed at 1-3-1

Compatlblllty of P(tIR) w1th Y2
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a5% N

~]
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Fig. 2 Left: compatibility of the test statistic distribution in the ref-
erence hypothesis with a x?2 distribution with Npar = 10 degrees of
freedom (1-3-1 network). The plot was made using 100 toy experi-
ments and a 1D example discussed in the text. Note that the x2 on the

range we might uniquely select the architecture and all the
other hyperparameters that are suited for the problem at hand.

The behaviour described above for the toy one-dimensio-
nal dataset has been confirmed in other cases and it is believed
to be of general validity. Namely it is generically true that
x 2-compatibility places an upper bound on the network com-

plexity, leaving us with a finite set of options to explore.

@ Springer
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not related with the x,%,par that approximates reference model distribu-

tion of ¢. Right: the test statistic distribution for weight clipping set to
7, compared with the X120

On the other hand we cannot claim that the our selection
strategy always singles out a unique hyperparameters con-
figuration. Even in our one-dimensional example one might
extend the complexity of the network by adding also new
layers, obtaining several viable options with similar number
of parameters. Selecting one of these options would require
to introduce a strict notion of neural network “complexity”,
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Compatibility of P(t|R) with ,\/2
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Fig. 3 Compatibility of the test statistic distribution in the reference
hypothesis with a x % distribution with Npar = 31 degrees of freedom (1-
10-1 network) as a function of a training rounds and for different choices
of the Weight Clipping parameter. A satisfactory level of compatibility
is never reached

to be maximized. Furthermore one might consider departures
from the general neural network framework that we are con-
sidering. For instance the weight clipping might be imposed
on the norm of the weight vector at each layer rather than
on each individual weight, and/or a different weight clipping
threshold might be imposed on each layer. Even the choice of
logistic sigmoid activations and of fully-connected networks
might be reconsidered.

While this aspect should be further studied, it is probably
unnecessary to consider this extended space of possibilities.
This belief is supported by a number of tests that we per-
formed with different activation functions, training methods
and architectures. We find that the performances of our strat-
egy in terms of sensitivity to putative new physics signals
depend quite weakly on the detailed implementation of the
algorithm. Performances are very similar for all the hyperpa-
rameters configurations that are reasonably flexible and obey
the x2-compatibility criterion. Even slight departures from
compatibility typically do not change the sensitivity appre-
ciably. Establishing this fact for a number of putative new
physics signals and for several neural network configurations
selected with our criteria would justify the choice of restrict-
ing to a single configuration. Or, alternatively, would allow
to combine the p-values obtained from different strategies
without loosing sensitivity by the look-elsewhere effect.

Before concluding this section it is worth to point out that
the compatibility with the Xl%/pa, distribution can be leveraged
to compute the p-value without generating a large number
of toy experiments

p= / P(t|R)dt ~ / X]%,par(t)dt. (6)
To

bs Tobs

This considerably reduces the computational burden of eval-
uating the global significance. However one should keep in

mind that P(t|R) =~ Xlzvpar (t) is an approximate statement,
which we can only test at a statistical level given by the num-
ber of toys that we generated. However in cases where gener-
ating a sufficient number of toy samples is unfeasible, as for
example the high significance models discussed in Sect. 3,
we will be obliged to report estimates of the p-value obtained
with this approximation.

We stress that our hyperparameter selection strategy is not
based on an a priori assumed new physics model, hence it
is not optimal to detect any specific signal. In particular, the
network we select with our method might not be expressive
enough to be fully sensitive to complex new physics signals.
However we will see this is not a problem for the BSM sce-
narios studied in this paper.

3 Comparison with related work

In the previous section we have introduced all the ingredients
needed to implement our data analysis strategy. In this section
and in Sect. 5 we test its performances on a series of examples.
This section is devoted to comparisons with other ideas that
have related goals.

Machine learning has recently seen a surge of popular-
ity following the latest developments in deep learning and
computer vision. A number of works proposing anomaly
detection strategies for LHC datasets has appeared in the
literature in the past few years [27-33]. This effort is still rel-
atively recent and the field has not fully matured yet. Ongoing
efforts (LHC Olympics [81,82] and DarkMachines [83]) are
establishing benchmarks for common comparison.

We take a step towards making the comparison between
different strategies more transparent by testing our method-
ology on some toy examples present in the literature. We
consider three examples: two incarnations of a method that
has the same goal, but a very different estimation strategy
for the test statistic and a third method that has a narrower
scope, but a similar technical approach to the problem, based
on multilayer perceptrons trained as classifiers.

The first strategy that we compare with is the nearest
neighbors approach of Refs. [32,33]. This is a truly model-
independent approach* that aims at reconstructing the true
probability distributions for the data and the reference model,
using a nearest neighbors technique [84-86]. A comparison
to this method is instructive because it allows us to test a
completely different approach to the estimation of the likeli-
hood.

We first study the performance of our algorithm on a two-
dimensional example, considered in Ref. [33], comprised of

4 Note that in reality one always needs an alternative hypothesis
to obtain a significance. Our use of the term model-independent is
explained in the previous section and in Ref. [1].
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Fig. 4 Top: test statistic distribution for the signal and background
models considered in [33], obtained with our analysis technique. The
plot displays our sensitivity obtained using the toy samples (Z) and the
x 2 approximation of P(f|R) (Z)z(). The significance quoted in Ref. [33]

events extracted from Normal distributions. The reference
model is a two-dimensional Gaussian with mean i = (1, 1)
and covariance matrix ¥ = 154>. The number of expected
events in the reference model is N(R) = 20,000.

We consider two different putative new physics (NP) mod-
els:

e NP;: the data have mean i = (1.12, 1.12) and covari-
ance matrix ¥ = 15,,. The number of events predicted
is the same as in the reference model: N (NP) = 20000.

e NP,: the data have mean it = (1, 1) and covariance
matrix ¥ = ((0.95, 0.1), (0.1, 0.8)). Again, N(NPy) =
20000.

The results are shown in Fig. 4 (top) for a 2-5-1 network
with weight clipping 1.2 and 150,000 epochs of training. We
generated 1000 toy SM samples and 300 data samples dis-
tributed according to the new physics hypothesis. The lowest
significances that we find, using the x % approximation (6) for
the reference model test statistic distribution, are Z $2 = 190
for NP; and Z N2 = 240 for NP,. The nearest neighbor
approach of [33] finds Z = 2.2(3.5)c for NP;(NP,) for
5 nearest neighbors and 1000 permutations used to estimate
the test statistic distribution in the reference hypothesis.
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is 2.20 for NP and 3.50 for NP,. Bottom: test statistic distribution for
the signal and background models considered in [32], obtained with our
analysis technique

An alternative implementation of the nearest neighbors
approach was proposed in Ref. [32]. The following two-
dimensional problem is considered:

e Reference model (R): the data have mean 1 = (0, 0) and
covariance matrix X = 1547. The number of expected
events is N (R) = 10,000.

e New Physics (NP): a signal component with i =
(1.5, 1.5) and covariance matrix ¥ = 0.1 15> is present
in addition to the background (reference) one. The
expected signal is N(S) = 500 and the total number of
expected events is N(NP) = N(S) + N(R) = 10,500,
with the remaining 10* events generated by the reference
model.

For a 2-5-1 network, weight clipping equal to 1.35 and
150,000 epochs, the results of our method are displayed in
Fig. 4 (bottom). We generated 1000 toy SM samples and
300 NP samples. The median significance, obtained with a
X2 approximation of the test statistic, is 20o0’, while Ref. [32]
quotes between 5 and 160 for the nearest neighbors approach
depending on the cut on their discriminating variable. We
can conclude that both approaches are sensitive to the simple
problem at hand.
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Fig. 5 Test statistic distribution for the signal and background models considered in [17,87], obtained with our analysis technique. The figure

refers to the 3D toy example discussed in v1 and v2 of [17,87]

The other idea that we compare with is the bump hunter
technique in Ref. [17,87]. This approach does not have the
same goal as ours, as it requires prior knowledge of the signal
showing up as a peak in a pre-specified variable. It is further
assumed that the background distribution of the other vari-
ables used in the analysis is the same in the peak and in the
sideband regions. Clearly we have a price to pay in sensitivity
for signals that satisfy these assumptions, since we discard
this knowledge. On the other hand the approach in [17,87] is
much less effective on (or blind to) signals that do not satisfy
them. Given these differences, it is instructive to check what
is exactly the price that we are paying on resonant signals
compared to this refined bump hunter.

We test our strategy on a three-dimensional toy example
(see [17,87]) defined by:

e Reference model: the three variables m, x and y are uni-
formly distributed in the ranges [m| < 2, |x| < 0.5 and
|y| < 0.5. The number of expected events is N(R) =
10,000.

e New Physics (NP): there are N(S) = 300 signal events
with variables uniformly distributed in the ranges: |m| <
1, |x] < 0.1 and |y| < 0.1 and N(R) = 10,000 events
distributed as the reference model, for a total number of
expected events N(NP) = N(S) + N(R) = 10,300.

Our results are shown in Fig. 5 for a 3-5-1 network with
weight clipping 3.4 and 150,000 epochs of training. As in
the previous examples, we generated 1000 toy SM samples
and 300 NP samples.

‘We obtain a median significance of 8.1c, to be compared
with the 10.80 claimed in Ref. [17,87] for the optimal choice
of the neural network discriminant threshold. In the compar-
ison it should be taken into account that 10.80 is a local
significance, based on prior knowledge of the peak position
and width. The degradation due to the need of scanning over
the peak position and width (inherent of the bump hunter
approach) and over the neural network threshold (specific of

this strategy, see Ref. [87]) should be quantified for a bet-
ter comparison with our 8.1o significance, which is instead
global. However such a refined comparison is unnecessary
in this benchmark example because no quantitative meaning
should be attached to the asymptotic estimates of such high
levels of significance. We can only conclude that our method
is sensitive to this toy problem in spite of not being optimized
for (and hence limited to) the detection of resonant signals.

4 Benchmark examples

In the previous sections we have introduced our methodology
and compared our data analysis strategy with two alternative
ideas present in the literature. The comparisons involved toy
examples that can not be directly mapped on cases of physical
interest.

The natural next step is to study the performances of our
strategy on more realistic datasets and new physics exam-
ples. We choose to study LHC di-muon production and to
consider two well-known new physics scenarios. In this sec-
tion we describe the signal and background samples used for
the analysis. The results of our study are presented in the
next section. We consider two distinct possibilities for how
new physics can manifest itself a resonant signal, represented
by a Z’ decaying to 4™, and a smooth signal given by a
contact interaction that we call “EFT”. The samples used to
study our performances are:

SM di-muon The reference sample and the SM toy data
are composed of SM Drell-Yan events: pp — utu™. All
events were generated with MadGraph5 [88], showered
with Pythia6 [89], simulating proton-proton collision at
/s = 13 TeV with an average of 20 overlapping collisions
per bunch crossing. The events were further processed with
Delphes 3 [90]. We use the default CMS detector card.
We run the Delphes particle-flow algorithm, which com-
bines the information from different detector components to
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Fig. 6 Transverse momenta of the two leading muons for a SM DY sample and our mock data samples containing a Z’ decaying to muons (upper
panel) or new physics events from the contact interaction in Eq. 7 (lower panel). The samples are described in Sect. 4

derive a list of reconstructed particles. The five kinematical
variables relevant for the analysis are the p7’s and n’s of the
two leptons and their A¢. These are given as input to the
neural network after preprocessing. The integrated luminos-
ity of the dataset, corresponding to the number of expected
events in the toy SM (and BSM) samples are varied to study
the performances of the algorithm as discussed in Sect. 5.

7/ to di-muon We study a new vector boson with the same
couplings to SM fermions as the SM Z boson. We gener-
ate events for three different masses: mz = 200, 300 and
600 GeV. The signal manifest itself as a narrow resonance
at the LHC: 'z ['zmz /mz. The events are generated
using the same software and detector cards as the reference
model events described above. The number of events in the
data sample and the signal to background ratio N(S)/N (R)
are varied to study the performances of the algorithm and
are discussed in Sect. 5. The input variables distribution for
three representative signal points are shown in Figs. 6 and 7.

~

EFT We consider a non-resonant BSM effect due to the pres-
ence of a dimension-6 4-fermion contact interaction (see e.g.

[911)

@)

W g
kid n
2 /LulLas
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where J; " isthe SU(2); SM current and A is conventionally
set to 1 TeV. We generate di-muon events with the same
tools described above (supplemented with a MadGraph5
model for the EFT operator obtained by FeyRules [92])
by varying cw in order to study the performances of the
algorithm as discussed in Sect. 5. The distribution of the
input values for three representative values of cy are shown
in Figs. 6 and 7.

In Sect. 5 we will extensively study the sensitivity of our
method to the BSM scenarios described above. For a mean-
ingful presentation of the results, and in order to compare
the performances on different scenarios, we need an absolute
measure of how much a given BSM hypothesis is “easy” to
detect with a given integrated luminosity. As in Ref. [1], this
measure is introduced by the notion of “ideal significance”,
described below.

4.1 The ideal significance

The ideal significance is the highest possible median Z-score
(Ziq) that any search specifically targeted to a given BSM
scenario in a given experiment could ever obtain. By the
Neyman—Pearson lemma, it is obtained using the “ideal” test
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Fig. 7 Pseudo-rapidities and A¢ of the two leading muons for a SM Drell-Yan sample and our mock data sample containing a Z’ decaying to

muons (upper panel) or new physics events from the contact interaction in Eq. 7 (lower panel). The samples are described in Sect. 4
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The ideal significance can be reached only in a fully model-
dependent search where the exact knowledge of both the new
physics distribution n(x|NP) (see Table 1) and the reference
distribution n(x|R) are available. This knowledge is avail-
able, in principle, for the BSM scenarios under examination.
However computing n(x|NP)/n(x|R) is cumbersome. An
estimate for it sufficiently accurate to serve as a reference of
performance in the present paper (hence quoted as Zy) is
readily obtained as follows.

Z/ to di-muon The signal shows up as a resonant peak in
the di-muon invariant mass m;; around the Z’ mass mz. A
simple cut-and-count strategy in a suitably designed interval
my; € [Mmin, Mmax] around m 7/ should provide a reasonable
estimate of the ideal reach. The ideal significance is thus

estimated as

Zyer = Z[1 — CDFIP (s +b)] ~ —=,

s = fsigN(S)
where { b= foxeN(R) . 9)

Sl

In the equation, CDF[P;] denotes the cumulative of the
Poisson distribution with mean “b” while fs;; and fpkg are
respectively the signal and background fractions in the mass-
window

/mmax
fsig =
Mmin

dP(my|S)
mpy————

dmy
P /m‘“‘“ d P (my|R)
kg = my——-—-—-=.
£ Mumin dmy

The signal fraction is estimated with a Monte Carlo sam-
ple consisting of 16,000 signal-only events. The background
is computed by fitting a Landau distribution to the tail of a
SM sample with 1.6 million events. The boundaries of the
mass-window [mmin, Mmax] are selected by optimizing the
significance and reported in Table 2 together with the corre-
sponding signal and background fractions.
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Table 2 Mass-window, signal and background fractions for the estimate of Ziq in Eq. (9)

mgz N(S) NR) [Mmin, Mmax] fsig JSbkg

200 GeV 40, 60, 80 20-10° (185, 215] 0.62 9.0 x 107

300 GeV 20, 30 20 - 103 [278, 322] 0.72 23 %1074
25,35 20103 [279, 321] 0.71 22 x 1074

600 GeV 6,10 20 - 103 [554, 656] 0.77 2.4 %1073
15 20103 [549, 662] 0.83 2.8 %1073

In order to validate Eq. (9) as a reasonable estimate of Zjg
we compared it with the truly “ideal” significance obtained
with the Neyman-Pearson test performed on the m;; variable.
We fitted the background Monte Carlo data using two Landau
distributions (one for 250 GeV < my; < 600 GeV, the
other for m;; > 600 GeV) and a Normal distribution for
the Z’ peak. This allowed us to compute the test statistic in
Eq. (8) and in turn the ideal significance by toy experiments.
Good agreement with Eq. (9) was found. Notice however that
the comparison was possible only in configurations with low
enough Z.¢. For cases with Z.¢ = 4, which we do consider
in Sect. 5, validation is unfeasible and we exclusively rely on
Eq. 9).

EFT Alsoin this case, the di-muon invariant mass is the most
relevant discriminant. Since the excess is spread over the
entire spectrum, the ideal significance is estimated through
a likelihood ratio (Neyman—Pearson) test on the binned m;
distribution. The number of expected events in each bin is
quadratic in cy

ni(ew) = NR)(; + Bicw + vicly), (10)

with coefficients determined from Monte Carlo simulations
at varying cy, reported in Table 3. The test statistic is the
log-ratio for the Poisson distributed observed countings “o;”
in each bin

(D)=3 2 |:n,-(0) — ni(cw) + 0; log ”nl(f(‘)’;)] .an

iebin
and the reference significance is evaluated from the distribu-
tion of ¢ in the SM (cw = 0) extracted from toy experiments.
5 Results on benchmark examples
In this section we study the sensitivity of our data analysis

strategy to the physics examples discussed in the previous
section. Our main results are:

1. In the examples we studied, in all cases where the esti-
mate of the ideal significance exceeds 5o, the probability

@ Springer

of finding a 20 tension for the SM using our approach
is p(a = 20) 2 20% and grows to p(ax = 20) 2, 40%
if we exclude the Z-boson peak from the input data by
a cut on the invariant mass. The probability of finding a
30 tension is p(a = 30) = 7% and p(x = 30) 2 20%
including or excluding the Z-peak, respectively (Fig. 8).

2. For any given “experiment” (i.e., at fixed luminosity and
input space), the observed significance mostly depends
on the ideal significance of the putative signal, while it
weakly depends on the type of signal (Fig. 9).

3. The neural network output correctly reconstruct the data
to reference likelihood-ratio, finding a good approxima-
tion to the properties of the signal in the space of input
variables, for all the signals that we consider (Fig. 10).

4. Inthe examples that we have studied, where the observed
significance is not close to saturating the reference signif-
icance, the observed significance increases linearly with
luminosity, as opposed to the /L growth of the reference
significance. Both significances increase linearly with the
number of signal events as expected (Fig. 11).

Properties “1” and ‘“2” make our technique ideally suited
to identify an unexpected new physics signal. Because of
“3”, if a tension is observed in the data the sensitivity to the
signal can be increased with a dedicated analysis on new data,
selected using the likelihood ratio learned by the network.

As stated in “2” above, Zyps essentially depends only on
the ideal significance (approximated by Zr) for a given
experiment. However in a different experiment (e.g., if we
change the luminosity) the relation between Zyps and Zper
changes. The relation becomes more favorable at high lumi-
nosity because of point “4”.

Let us now turn to an extensive description of the items
above, and of our findings on a few technical points relevant
to the implementation of the algorithm. For all the results
in this paper the minimization of the loss function is per-
formed using ADAM [78] as implemented in Keras [79]
(with the TensorF1low [80] backend) with parameters fixed
to: 1 = 0.9, B = 0.99, ¢ = 10~7, initial learning rate
= 1073, The batch size is always fixed to cover the full train-
ing sample. Network architecture, size of the weight clipping
and number of training rounds were selected following the
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Table 3 The coefficients of the polynomial fit in Eq. (10)

Bin 1
[60,148] GeV

Bin 2
[148, 296] GeV

Bin 3
[296, 444] GeV

Bin 4
[444, 592] GeV

Bin 5
[592, 740] GeV

o (9.9340.03)107" (0.3%) (4.95+0.03)1073 (0.6%) (4.01 £ 0.02)10~* (0.5%) (8.5 0.2)1075 (2.3%)
B (1.0£0.5107%(3.5%)  (5.06 £0.04)107* (0.8%) (1.52 £0.02)107* (1.3%) (6.7 & 0.3)107> (4.4%)
y (1.214+0.07)107° (5.8%) (2.28 +0.07)107° (3.0%) (2.20 £0.07)1073 (3.1%) (1.96 £ 0.02)1073 (1.0%)

(2.64 £ 0.02)1073 (0.8%)
(3.37 £0.05)107> (1.5%)

(1.703 £ 0.005)1073 (0.29%)

Bin 6
[740, 888] GeV

Bin 7
[888, 1241] GeV

Bin 8
[1241, 1594] GeV

Bin 9
[1594, 1947] GeV

Bin 10
[1947, 2300] GeV

o (9.84£0.051076(0.5%)  (7.59 £ 0.07)1076 (0.9%) (1.4+0.2)1076 (14%) (3.6 £ 0.7)10~7 (19%)

(1.10 £ 0.03)10~7 (0.8%)

B (1.8540.01)1075 (0.5%)

(2.30 £0.01)1075 (0.4%) (6 =+ 1)1076 (17%)

(22+0.61076(27%)  (1.34 £ 0.09)1075 (1.5%)

y (1432 4£0.005)1075 (0.3%) (2.90 £ 0.01)1075 (0.3%) (1.6 +0.2)1075 (13%) (1.09 £ 0.05)1075 (4.6%) (6.769 % 0.001)1076 (0.01%)
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Fig. 8 Probability of finding a @ = 20, 30, 50 evidence for new physics using our technique as a function of the reference significance of the
signal, for the Z" model described in Sect. 4. (Left) Including the Z-peak in the data. (Right) Without the Z-peak

procedure described in Sect. 2. Where not specified other-
wise, the results were obtained with a 5-5-5-5-1 network and
3 x 10° training rounds, using 100 data samples and 100 toy
reference samples. The median observed significance plotted
in the Figures and its 68% C.L. error were obtained approx-
imating P (¢|R) with a x? distribution with as many degrees
of freedom as free parameters in the network as discussed in
Sect. 2. We always consider a five-dimensional input space
composed of the p7’s and n’s of the two leptons and their
A¢. The range of the input variables and their distribution
for three representative signal points are shown in Figs. 6 and
7.

Sensitivity The first goal of our study is to show that our tech-
nique is sensitive to realistic signals. By realistic we mean
having N(S)/N (R) « 1,1.e. asmall number of signal events
compared to the total size of the sample, and ideal signifi-
cances of order a few o’s. These choices reproduce signals
that we might have missed at the LHC so far, if not targeted
by a dedicated search. The best way to illustrate the per-
formances of a model-independent strategy is to report the
probability it has to identify a tension with respect to the
SM if a putative new physics effect is present in the data.

This measures the chances that the analysis has to produce
an interesting result. In the left panel of Fig. 8 we show
the probability of finding evidence for new physics at the
o = 20, 30 and 50 levels given a reference significance for
the signal. We consider for illustration the Z’ signal model
with mz = 300 GeV described in the previous section, but
similar or better performances are obtained for other masses
and for the case of the EFT. The two plots here presented are
obtained by fixing the luminosity while the ratio N (S)/N (R)
is varied.

On the left panel of the figure, and in the results that follow
if not specified otherwise, we applied our algorithm to the
entire dataset which includes the SM Z-boson peak. This
choice was made in order to challenge our analysis strategy
in a situation where the dataset is dominated by the peak,
where no new physics effect is present. On the other hand
the peak would be excluded in a realistic application of our
method to the di-muon final state because it is hard to imagine
new physics appearing on the Z peak not excluded by LEP
and because detailed analyses of the Z resonant production
could be performed separately. If we exclude the Z-peak from
the input data, with a cut m;; > 95 GeV (whose efficiency
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is 10%), the performances of our analysis improve as shown
on the right panel of Fig. 8.

Another way to quantify the sensitivity is to report the
median significance obtained for different new physics sce-
narios, still as a function of the ideal significance. The result is
shown in Fig. 9, with the error bars representing the 68% C.L.
spread of the observed significance distribution. The study
was performed for a given experimental setup, namely by
fixing N(R) = 2 x 10* (and Nz = 5 N(R)), and varying the
signal fraction or the EFT Wilson coefficient cy as shown
in the legend. We observe, similarly to Ref. [1], a good level
of correlation between our sensitivity and the ideal one and
a weak dependence on the nature of the new physics. This
correlation was sharper in the examples studied in Ref. [1],
however it should be taken into account that the present study
relies on approximate (see Sect. 4) estimates of Zjq and that
high values of Z,s are also approximate, being estimated
with the Asymptotic x> formula (see Sect. 2.1).

Likelihood Learning 1t is instructive to study directly what
the network has learned during training. The network should
learn approximately the log-ratio between the true distribu-
tion (n(x|T), see Table 1) of the data and the reference model
distribution n(x|R). We should thus be able to get informa-
tion on the nature of the discrepancy by inspecting the likeli-
hood ratio learned by the network as a function of the physical
observables chosen as input or any of their combinations. In
the case of a Z’ signal, for instance, we would like to see
a bump in the invariant mass distribution as learned by the
network.

In Fig. 10 we plot the distribution ratio learned by the
network as a function of the invariant mass of the dimuon
system. In the figure we also show the true likelihood ratio
used for the generation of the events and its estimate based
on the specific data sample used for training. The signals are
the Z’ with a 300 GeV mass with N(S)/N(R) =2 x 1073,
N(R) = 2 x 10* and Nz = 10° and an EFT signal with
the same N(R) and Nk and cyy = 107°. Notice that my; is
not given to the network, the input variables being the muon
pr’s, rapidities and A¢.

The ratios in the figure were obtained in the following
way. The yellow “ideal” likelihood-ratio was obtained by
binning the invariant mass of a large data sample, containing
one million events, and of the reference sample and taking
the ratio. The red likelihood-ratio pertaining to a specific toy
was obtained in the same way, replacing the large data sam-
ple with the relevant toy. Finally, the ratio as learned by the
network was obtained by reweighting reference sample by
e W) where f is the neural network output after training,
binning it and taking the ratio with the reference.

The network is doing a pretty good job in reproducing a
peak or a smooth growth (for the Z" and the EFT, respec-
tively) in the invariant mass. Therefore if one had access to
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a new independent data set, distributed like the one used for
training (i.e., following n (x|T)), one could employ the neural
network f (x, W) (trained on the first dataset) as discriminant
(for instance, by a simple lower cut), and boost the signifi-
cance of the observed tension.

In the studies presented so far we have chosen as input to
the network five independent kinematic variables that char-
acterize the di-muon final state under examination, paying
attention not to include the invariant mass m2;; which is essen-
tially the only relevant discriminant in the new physics sce-
narios under investigation. This choice was intended to max-
imize the difficulty of the network task, reproducing the real-
istic situation where, since the actual signal is unknown, the
most discriminant variable cannot be identified and given to
the network. However it is interesting to study the potential
improvement of the performances that could be achieved with
a judicious (but model-dependent) choice of the input vari-
ables. The first test we made was to present m1;; to the network
in addition to the five variables pr1 2, 71,2 and A¢. This led
to no substantial improvement of the performances suggest-
ing that the neural network is already learning to reconstruct
my; sufficiently well from the five variables and does not need
the sixth one. The second test was to trade the variable A¢ for
my;, considering an alternative five-dimensional parametriza-
tion of the phase-space. Notice that A¢ has no discriminating
power whatsoever because the new physics scenarios under
examination emerge in 2 — 2 scattering processes where the
muons are back-to-back in the transverse plane up to show-
ering and detector effects, as it is the case for the SM. The
A¢ distribution is thus (see Fig. 7) strongly peaked at 7 and
identical in the SM and in BSM. Replacing it with mz;;, which
is instead the most discriminant one, is thus the strongest test
we can make of the robustness of our approach against change
of input space parametrization. For the m 7 = 300 GeV sig-
nal with N(S)/N(R) = 1073 and N(R) = 2 x 10*, whose
significance was Zgps = (O.9J_r(l):g)a, replacing A¢ with my;
increases the observed significance to Zyps = (2.3f}:‘1‘)0.

Luminosity and signal fraction In the left panel of Fig. 11
we show our performances for the Z’ model with mz =
300 GeV as a function of N(R), i.e. as a function of the
integrated luminosity “L” of the dataset. The observed sig-
nificance shown in the plot is the median over 100 data sam-
ples with its 68% C.L. error. The signal fraction is fixed to
N(S)/NR) = 1073, the size of the reference sample is
Ngr = 5N(R) and we increase N (R) from 10% to 10°. Inter-
estingly, in the regime where these tests are performed, the
observed significance increases linearly with the luminosity
Zobs ~ L, as opposed to the VL growth of the reference sig-
nificance. This can be explained by the fact that our analysis
technique benefits from having enough statistics in the data
to accurately reproduce the likelihood ratio. So increasing L
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Fig. 11 Sensitivity (Zobs) to Z' — u* ™ formz = 300 GeV. We show the sensitivity as a function of Luminosity (left panel) and signal fraction
(right panel). For reference we plot the reference significance Zf and a polynomial fit to the sensitivity

does not only make the signal more abundant and easier to
see as in standard model-dependent analyses, but it also helps
the learning process to reconstruct the most powerful (like-
lihood ratio) discriminant to detect it. Note however that at
some point this behaviour must change and match the usual
VL scaling; this is expected to happen for very large sig-

nals corresponding to very large Zt, somewhat beyond the
regimes typically relevant for new physics searches.
Increasing the signal fraction N(S)/N (R) at fixed lumi-
nosity has the only benefit of increasing the ideal significance
and its estimate. So both Z,,s and Zef increase linearly with
the signal fraction as show in the right panel of Fig. 11. This
study was performed on the mz = 300 GeV sample with

@ Springer
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Fig. 12 (Left) Observed significance as a function of the statistical error on the reference sample in the m z» = 300 GeV case. (Right) Optimized

weight clipping as a function of reference size Nz

N(R) = 2x10* N = 10’ as for the study of the luminosity
in the same figure.

(In)Sensitivity to data selection. As discussed in the Intro-
duction, traditional model-independent strategies based on
countings in bins suffer from the presence of regions in the
phase space that are insensitive to new physics, because of
uncorrelated Poisson fluctuation in the corresponding bins.
In our approach this effect is greatly reduced, because the
smoothness of the neural network protects it from follow-
ing the bin-by-bin statistical fluctuations [1]. One particular
implication of this fact is that we expect our sensitivity to
depend weakly on the presence or on the absence of selection
cuts that eliminate signal-free regions of the phase space. This
isillustrated by studying the dependence of the observed sen-
sitivity on: 1) a cut on the pr of the leading muon and 2) a cut
on the invariant mass of the di-muon system. The 300 GeV
7' model, with Ngx = 10° and N(S)/N(QR) = 1 x 10~*
(before selection) is considered for this investigation.

We find that the pr cut does not alter our sensitivity. For
instance the median Z,ps remains at 1o aftera pr > 75 GeV
selection, in spite of the fact that the cut rejects 96% of the
background and only 5% of the signal. The selection on the
invariant mass instead slightly increases our sensitivity. For
example my; > 95 GeV (that rejects 90% of the background
and nothing of the signal) increases the median significance
t0 Zops = 1.40.5 We have observed this phenomenon already
in Figs. 8 and 9.

Reference size and optimal weight clipping An accurate
knowledge of known processes in the phase space of interest
is crucial for the success of any new physics search. There-
fore the size Nk of the Reference Sample should be taken as

5 To face the reduced amount of training data, a less complex neural
network is used for this study: the 5-5-5-5-1 architecture is replaced by a
5-5-5-1. Also in this case the weight clipping and the number of training
rounds are optimized following the procedure described in Sect. 2.1.
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large as possible, compatibly with the computational price
for training. To give an idea of the needed reference sample
size, we study the performances of our method as a function
of Nr/N(R). The result on the left panel of Fig. 12 is reas-
suring: the sensitivity is very stable as a function of this ratio
up to Ng/N(R) = 1. Below this value the statistical error
on the reference sample in the signal region becomes siz-
able. If we define ¢ = 1/4/Ng (278 < m < 322), i.e. count-
ing only events in the invariant mass window populated by
the signal (see Sect. 4) then the first point in the left panel
of Fig. 12, where Z is degraded, corresponds to ¢ ~ 1/2.
However this holds for a specific signal (mz = 300 GeV
N(S)/N(R) = 2 x 1073 and N(R) = 2 x 10%), in gen-
eral we expect that a degradation of the performances might
be observed if Ny is not well above N(R), because of the
result shown on the right panel of Fig. 12. The plot shows
the evolution with N'g/N (R) of the weight clipping param-
eter, selected with the criteria of Sect. 2. The Weight Clip-
ping becomes stable for Ng/N(R) > 10, but it abruptly
drops for smaller values of this ratio. Small Weight Clipping
reduces the flexibility of the neural network, which is thus
less suited to identify complex new physics signals. Employ-
ing Reference samples with Nz /N (R) > 10, slightly above
the benchmark Ng/N(R) = 5 we employed here, is thus
recommended.

6 Conclusions and outlook

We have discussed a new physics search strategy that is
“model-independent” (i.e., not targeted to a given new
physics model), with the alternative hypothesis needed for
hypothesis testing being provided by a neural network. This
approach was proposed in Ref. [1]. In this paper we made
progress on its implementation and on the study of its per-
formances.
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The main methodological advance, described in Sect. 2.1,
consists of a strategy to select the hyperparameters associated
with the neural network and its training, prior to the exper-
iment, and without relying on assumptions on the nature
of the putative new physics signal. It is crucial to identify
one such strategy in order to avoid the look-elsewhere effect
from the ambiguities in the choice of the hyperparameters.
The one we propose is heuristic, but convincing, and reduces
the ensemble of hyperparameters choices to a manageable
level. Progress might come on this aspect from a more sharp
notion of neural network “flexibility” (or capacity). Notice
however that the concrete impact of the hyperparameters on
the sensitivity to new physics signal has been observed to
be extremely limited in all the examples we studied. Even if
no systematic study has been performed, this suggests that
residual ambiguities in the hyperparameters selection could
be ignored.

It is not easy to quantify the performances of a model-
independent search strategy. The assessment unavoidably
relies on the selection of putative new physics models that are
potentially present in the data, which we can try to make as
broad and varied as possible. Once this choice is made, one
way to proceed is to compare the sensitivity to other model-
independent strategies. This is what we did in Sect. 3, finding
that our approach compares favorably to other ideas recently
proposed in the literature. This comparison is however highly
incomplete because it is based on a few toy problems, which
are not representative of realistic LHC datasets and where
new physics is extremely easy to see with our method. This
is a second direction in which further work is needed.

We also need to quantify the performances in absolute
terms. To this end, the most indicative quantity is arguably
the probability to observe a tension with the SM if the data
follow the new physics distribution. That is, the probabil-
ity for our analysis to produce an interesting result. This is
shown in Fig. 8 for different levels of observed tension and
as a function of the ideal median significance of the putative
new physics signal. The latter quantity, defined in Ref. [1]
and in Sect. 4, serves as an objective measure of how “easy-
to-detect” the new physics scenario is. Notice that the ideal
significance is not the target of our method. The ideal sig-
nificance can be reached, because of the Neyman—Pearson
lemma, only in a fully model-dependent search where all the
details of the new physics scenario are known. It cannot be
obtained with any model-independent approach. With this
in mind, one can still compare the observed and ideal sig-
nificance directly as in Fig. 9. The picture displays a good
correlation between the ideal and observed significance in
a given experiment and a weak dependence on the type of
signal that is responsible for the discrepancy. This behavior
might have a deep explanation, which is worth trying to iden-
tify. Yet another direction for future work is the assessment

of the performances presented for more complex final states
than dimuon and for more exotic putative signals.

All the items listed above are worth investigating. How-
ever the most pressing aspect to be explored in view of
the application of our strategy to real data is the inclu-
sion of the systematic uncertainties in the reference (SM)
Monte Carlo. This is conceptually straightforward because
our method is based on the Maximum Likelihood approach
to hypothesis testing, and systematic uncertainties are easily
included in that framework as nuisance parameters. All steps
needed to turn likelihood maximization into a training prob-
lem are straightforwardly repeated in the presence of nui-
sance parameters, as mentioned in Ref. [1]. The final outcome
is simply that training should be performed against a refer-
ence Monte Carlo sample where the nuisance parameters are
set to their best-fit values for the dataset under consideration.
The concrete implementation of the algorithm in the pres-
ence of nuisance parameters thus requires two steps. The first
one is to fit the nuisance parameters under the SM hypothe-
sis to the observed data, including auxiliary measurements.
Since this first step is the same as in any other experimental
analysis, it should not pose any specific issue. Implement-
ing the second step is instead problematic because it would
require running the Monte Carlo with the nuisance param-
eters set to the observed best-fit value. Doing so for many
toy SM datasets would be computationally very demanding
or unfeasible. Potential solutions are either to obtain the ref-
erence sample by reweighting (which will require fitting the
dependence on the nuisance of the SM likelihood possibly
with a neural network) or to employ a reference sample with
benchmark nuisance and correct the test statistics by some
approximation of the ratio between the best-fit and the bench-
mark SM likelihood. It is important to verify if and how these
solutions work in practice.

Before concluding it is worth outlining that the problem
we are addressing is of rather general relevance in data anal-
ysis. The methods we are developing could thus find appli-
cations outside the specific domain of new physics searches
at collider. In abstract terms, the problem can be phrased in
terms of two distinct datasets, each of which can be of natural
or artificial origin. The first set of data, obeying the “Refer-
ence” probability model, must be more abundant than the
“Data” because it has to provide both the Reference dataset
used for training and the Reference-distributed toy data used
to compute the test statistic distribution. In these conditions
are met, ours is a strategy to tell if the two datasets are thrown
from the same statistical distribution or not, which could be
useful in different domains of science. Still remaining in the
context of particles physics, other potential applications of
our strategies are the comparison of different Monte Carlo
generators and data validation.
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Appendix: Effects of reference sample’s mis-modelling

For this technique to be applied to a New Physics search on
real data one needs to carefully match the reference sample
to the data. Possible sources of mis-modelling need to be
studied and corrected.

The method presented in this work aims at catching dis-
crepancies between the data and the reference, i.e. the best
possible description of the SM predictions. At this stage, no
distinction is made upon the source of such discrepancies.
Therefore a similar response is expected to effects which
arise from systematic errors affecting the reference sample
and those originated from New Physics phenomena. In the
case systematics uncertainties are not properly assessed and
coped with, the method would likely lead to type I errors,
e.g. false positives.

As already mentioned in Sect. 6, the method can indeed be
extended to include and treat systematic uncertainties as nui-
sance parameters; the details about this procedure are being
worked out and will be properly documented in a future pub-
lication [26]. In this appendix we verify the aforementioned
hypothesis about how a bias in the reference sample would
impact the final result.

The benchmark examples addressed in Sects. 4 and 5
are again considered, introducing this time an artificial mis-
modelling. In order to represent a realistic systematic uncer-
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Fig. 13 Test statistic distributions for toys generated accordingly to
the Standard Model, in the case of —0.1% (yellow), 0.5% (red) and
—0.5% (green) mis-calibration of the momentum scale

tainty, a mis-calibration of the muon momentum scale is
assumed; the relative error is typically of the order of 0.1%,
see for instance [93]; still, larger values are also consid-
ered in the following, to encompass the cases with final state
objects measured with worse accuracy than muons. The mis-
calibration is applied separately to the central (|n| < 1.2)
and the forward (1.2 < |n| < 2.4) pseudorapidity regions;
while the effects are treated as fully correlated, the magnitude
in the forward region is assumed three times larger than in
the central part. Furthermore, as the decay of the Z boson to
muons is usually exploited as a “candle” for in situ calibra-
tion, those events are excluded from the analysis, selecting
the cases where the mass of the lepton pair is larger than 100
GeV.

The response of our test statistic to artificially injected
bias is checked both for toys generated according to the Stan-
dard Model and for toys containing New Physics. As far as
the former are concerned, mis-calibrations of the momen-
tum scale of —0.1% and +0.5% have been tested (with those
values referring to the central pseudorapidity region): as can
be seen from the plot in Fig. 13, a mis-modeling at the per
mil level is not revealed by the algorithm, whereas for larger
biases higher values of the test statistics are found and thus a
smaller p-value; as expected, the method yields a false posi-
tive.

Testing toy datasets including New Physics effects against
a mis-modelled reference sample results in the test statistic
distributions shown in Fig. 14. We consider a Z’ signal (plot
on the left) similar to what used for previous tests, corre-
sponding to a reference significance of about 100, yielding
an observed significance of 40 when tested against the unbi-
ased reference sample. If a mis-calibration of +0.5% on the
momentum scale is introduced, the discrepancy between the
reference sample and the New Physics toys increases, lead-
ing to larger values of the test statistics. The same happens
when an EFT signal (with cyy = 107 TeV~2) is injected
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scale

and compared to the reference sample: the mis-modelling of
the latter enhances the significance of the signal.

In conclusion, systematic errors in the description of the
SM reference sample lead to type I errors; in the case New
Physics is present in the data, the corresponding signal is not
hidden by the mis-modelling (i.e. we do not incur into false
negatives), on the contrary its significance increases.
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