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Since its first experimental signatures, the so called “critical brain hypothesis” has been

extensively studied. Yet, its actual foundations remain elusive. According to a widely

accepted teleological reasoning, the brain would be poised to a critical state to optimize

the mapping of the noisy and ever changing real-world inputs, thus suggesting that

primary sensory cortical areas should be critical. We investigated whether a single barrel

column of the somatosensory cortex of the anesthetized rat displays a critical behavior.

Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit

activities and population local field potentials, and their behavior during spontaneous

activity compared to the one evoked by a controlled single whisker deflection. By applying

a maximum likelihood statistical method based on timeseries undersampling to fit the

avalanches distributions, we show that neuronal avalanches are power law distributed

for both multi-unit activities and local field potentials during spontaneous activity, with

exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity

switches to a transient across-layers synchronization mode that appears to dominate

the cortical representation of the single sensory input.

Keywords: brain criticality, avalanches, local field potential (LFP), multi-unit activities, evoked potential,

somatotopy, sensory coding

1. INTRODUCTION

The cortex operates in a state of restless activity, whose meaning and functionality are not yet
understood. The critical brain hypothesis suggests that this is the result of the brain operating in
the vicinity of the critical point of a phase transition, leading to a rich and variable dynamics at rest.
In general, it has been argued that criticality provides biological systems with an optimal balance
between robustness against perturbations and the flexibility to adapt to changing conditions. In
the case of the brain, this would confer optimal computational capabilities [e.g., by optimizing the
correlation length and the dynamic range, leading to the existence of large dynamical repertoires
accompanied by maximal transmission and storage of information (Kinouchi and Copelli, 2006;
Shew et al., 2009; Shew and Plenz, 2013; Hidalgo et al., 2014;Muñoz, 2018)]. In this context, Hidalgo
et al. (2014) have shown that complex adaptive systems that have to cope with a great variety of
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stimuli are much more efficient when operating in the vicinity of
a critical point, and thus they benefit from dynamically tuning
themselves to that point.

By analyzing LFPs of cortical neurons in culture, the seminal
work of Beggs and Plenz (2003) provided the first evidence
of power law distributed neuronal avalanches, i.e., cascades of
activity interspersed by periods of quiescence typical of critical
systems. In particular, the exponents of these power laws were
remarkably close to the ones of a critical branching process,
hence suggesting a scenario in which neuronal networks are
characterized by a marginal propagation of the activity at
the critical point between an active and an absorbing phase.
Since then, such power laws have been observed repeatedly in
different experimental settings (Mazzoni et al., 2007; Gireesh
and Plenz, 2008; Pasquale et al., 2008; Petermann et al., 2009;
Hahn et al., 2010; Yu et al., 2011), thus strengthening the
critical brain hypothesis. Despite that, ambiguities, and open
questions remain.

A first problem concerns the experimental definition of
avalanche. In order to estimate avalanches, one needs to define
discrete events. While neuronal spikes and multi-unit activities
(MUAs) are events by nature, the conversion of coarse-sampled
brain signals such as LFPs into a discrete form (e.g., by simply
applying a threshold) is more ambiguous and difficult to interpret
in terms of neural correlates. As the relation between events
and actual underlying neural activity becomes more uncertain,
the definition of neural avalanches becomes fuzzy (Touboul and
Destexhe, 2010, 2017; Dalla Porta and Copelli, 2019; Villegas
et al., 2019).

An additional limiting factor is spatial sampling of
experimental recordings. Studies using coarse-sampled activity
like LFPs typically yielded power-law distributions both in vivo
and in vitro, but several experiments relying on spikes in awake
animals did not (Ribeiro et al., 2010; Dehghani et al., 2012;
Priesemann et al., 2014). One possible cause is insufficient spatial
sampling of recording in awake conditions. Avalanches are a
population phenomenon, but spikes are sparsely recorded in
these experiments and reflect a subpopulation of neurons, in
fact missing a consistent fraction of the real activity (Ribeiro
et al., 2010). On the other hand, LFPs are average and composite
signals that reflect neuronal populations but are difficult to
interpret in terms of single neurons activity (Einevoll et al., 2013;
Wilting and Priesemann, 2019; Neto et al., 2020). This makes
the event-extraction process less straightforward and threshold
dependent (Touboul and Destexhe, 2010), even though nLPFs
are known to correlate with synchronous spiking activity (Beggs
and Plenz, 2003; Petermann et al., 2009; Yu et al., 2011). For all
these reasons, it is informative to include spikes, MUAs and LFPs
when measuring neural avalanches (see for example Hahn et al.,
2010).

Up to now, most of the work on neuronal avalanches has
focused on spontaneous activity, while much remains to be
understood about their behavior after perturbations caused by
incoming inputs. Investigating the response to sensory stimuli
in primary cortical areas is a clear-cut strategy to address this
point. First, these brain regions can be expected to benefit from
operating around a critical point to encode the sensory stimuli

themselves. Moreover, sensory inputs, which are under direct
experimental control, propagate to cortical networks across a
limited number of well characterized processing stages (contrary
to, e.g., associative or motor areas). Avalanches were studied in
the turtle visual cortex ex-vivo while the retina was exposed to a
movie acting as a continuous visual stimulus (Shew et al., 2015;
Clawson et al., 2017). Based on neural avalanches extracted from
LFPs, results suggested that the cortical network self-adapts to
a critical state after a short period from the stimulus. However,
in these experiments, LFPs were sparsely measured and reflected
populations of neurons scattered across the visual processing
cascade and downstream to important processing structures
including the retina.Work on the primary auditory cortex hinted,
instead, at a critical behavior both in resting and post-stimulus
conditions (Bowen et al., 2019). Noteworthy, measurements were
confined to either layers 2/3 or 4 and limited by the slow
dynamics of calcium imaging to obtain an indirect estimate of
neural activity.

In this work we contribute to verify the critical brain
hypothesis with a systematic study of neuronal avalanches in the
rat barrel cortex (the region of the rat primary somatosensory
cortex that encodes tactile sensory inputs from the whiskers).
We run our measurements across cortical layers in single barrel
columns of the rat anesthetized with tiletamine. This common
preparation for electrophysiology (Sorrenti et al., 2021) displays
rich cortical spontaneous activity, including UP and DOWN
states and oscillations that have been linked to avalanches
and criticality (Scarpetta and de Candia, 2014; di Santo et al.,
2018). Given the current challenges to test the critical brain
hypothesis and the various nature of recorded signals (Ribeiro
et al., 2010; Dehghani et al., 2012; Priesemann et al., 2014),
we explored activity across a wide frequency range, covering
spikes, MUAs and LFPs (i.e., up to 3,000 Hz). In particular,
we investigated both spontaneous activity and the evoked
activity that followed a single whisker deflection and analyzed
neural avalanches through a protocol based on state-of-the-art
maximum likelihood statistical method (Gerlach and Altmann,
2019).

2. MATERIALS AND METHODS

2.1. Electrophysiological Recordings and
Surgical Procedures
Extracellular spikes and MUAs and LFPs recordings. Spikes
and MUAs were recorded using a neural probe with a linear
array of 32 Iridium Oxide (IrOx) microelectrodes with 65 µm
inter-electrode distance and 2015 µm array length (E32+R-65-
S1-L6 NT; Atlas Neuroengineering) (Figure 1). Raw signals were
acquired by an Open Ephys Acquisition Board (OEps Tech,
Lisbon, Portugal) with a 32-channels head stage (RHD2000,
Intan Technologies) and an SPI cable at 25 KHz sampling
frequency and band-pass filtered (300–3,000 Hz). Single unit
activity (spikes) represented only about one percent of the activity
recorded which was, therefore, mostly represented byMUAs. The
maximum number of neurons contributing to a MUA is of a
few tens per microelectrode as it can be estimated assuming a
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FIGURE 1 | (A) Experimental setting for recording with the anesthetized rat immobilized on the stereotaxic apparatus. The Atlas probe for spikes and MUAs recording

is inserted in the barrel cortex through the dedicated cranial window. The cortical surface is bathed by Krebs’ solution that is grounded through the immersed Ag/AgCl

reference electrode. The piezoelectric bender with cannula used to control single whisker deflection is visible on the left. An identical arrangement, but with the custom

high-density probe, was adopted for LFPs recording. (B) Custom 2D 64× 4 array used for LFPs and commercial 1D array used for MUAs spanning across cortical

layers as during recording (schematic drawing). The actual number of electrodes spanning the barrel cortex was 220 for LFPs (organized in a 55× 4 matrix form) and

27 for MUAs, with the other electrodes of the arrays remaining above the cortical surface bathed by the grounded electrolyte. Examples of MUAs (C) and LFPs (D)

traces (from three representative channels each).

spherical volume of tissue centered around the recording site, an
average density of neurons in the rat barrel cortex∼ 55,000/mm3
from Ren et al., 1992) and and approximate distance of one
hundred micrometers at which the amplitude of an extracellular
action potential is above the background noise (∼ 10 microvolts
RMS in the 0.1–3 kHz bandwidth). LFPs were recorded at high
density using a CMOS based neural probe with an array of
256 microelectrodes (7.4 µm in diameter size and organized in
four vertical columns and sixty-four horizontal rows) (Schroder
et al., 2015) with 32 µm inter-electrode distance along both
the horizontal and vertical axis and 2023.4 µm array length
(Figure 1). Raw multiplexed signals were acquired through a NI
PXIe-6358 (National Instruments) board (sampling frequency
1.25 MS/s at 16 bit) and demultiplexed using a custom-made
LabVIEW software. The resulting whole-array LFP signal was
sampled at 976.56 Hz and band-pass filtered (2–300 Hz). Once
inserted in the barrel column, both arrays were spanning across
all the six cortical layers (from 0 to 1,800 µm).

Surgical implantation and single whisker stimulation.

Wistar rats were maintained under standard environmental
conditions in the animal research facility of the Department of
Biomedical Sciences - University of Padova. All the procedures
were approved by the local Animal Care Committee (O.P.B.A.)
and the Italian Ministry of Health (authorization number
522/2018-PR). Rats of both sexes, aged 36–50 days (P36-P50)
and weighting between 150 and 230 g, were anesthetized with
an intra-peritoneal induction mixture of tiletamine-xylazine (2

mg and 1.4 g/100 g body weight, respectively), followed by
additional doses (0.5 mg and 0.5 g/100 g body weight) every hour.
The anesthesia level was constantly monitored by testing the
absence of eye and hind-limb reflexes and whiskers’ spontaneous
movements. Before starting with surgery, the rat was fixed
on a stereotaxic apparatus by teeth and ear bars. The body
temperature was monitored continuously with a rectal probe and
maintained at 37◦C by a heating pad. The skull was exposed
through an anterior-posterior opening of the skin in the center of
the head and a window was drilled over the right somatosensory
barrel cortex at stereotaxic coordinates from −1 to −4 AP, from
+4 to +8 ML referred to bregma (Swanson, 2003). A slit in the
meninges was made with dedicated fine forceps at coordinates
−2.5 AP, +6 ML for the subsequent insertion of the recording
probe, and the brain was constantly bathed in Krebs’ solution (in
mM: NaCl 120, KCl 1.99, NaHCO3 25.56, KH2PO4 136.09, CaCl2
2, MgSO4 1.2, glucose 11).

The recording probe was fixed to a dedicated holder
connected to a Patchstar micromanipulator (Scientifica Ltd, East
Sussex, UK), which was used for inserting the probe into the
cortex orthogonal to the cortical surface. The depth was set at
0 µm when the electrode proximal to the chip tip touched the
cortical surface. An Ag/AgCl electrode bathed in Krebs’ solution
in proximity of the probe was used as reference.

Contralateral whiskers were trimmed at around 10 mm from
the mystacial pad. To control deflection, single whiskers were
inserted for 8mm inside a cannula glued to a piezoelectric bender
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FIGURE 2 | Evoked response by whisker stimulation: LFPs and MUAs. Example of LFP (A) and spike (B) traces with the 3 standard deviations (SD) thresholds used

for events detection (indicated by dots). The corresponding raster plots are shown in (C,D). The 2D array in (C) was rearranged in one dimension (groups of four

sensors in a row are reported consecutively along the vertical axis). The early response to the stimulus occurred within few tens of milliseconds and was characterized

by a high degree of events synchronization across channels both for LFPs and MUAs. The typical LFP evoked response consisted in a first negative peak followed by

a slower positive wave. Both were detected as events which is reflected in the raster plot. After the early response large and frequent avalanches typically followed,

taking the form of oscillations of synchronous events across channels fading after a few hundreds of milliseconds from the stimulus. Correspondingly, epochs of high

frequency firing (bursts) were observed in the MUAs domain (C,D).

with integrated strain gauges (P-871.122; Physik Instrumente (PI)
GmbH & Co. KG) and driven by a custom-made digital closed-
loop control system. Each stimulus, delivered by a waveform
generator (Agilent 33250A 80 MHz, Agilent Technologies Inc.,
Colorado, USA), was consisting of a voltage pulse of 5 ms
duration and 100 µs rise/fall time applied to the piezoelectric
bender. The principal (maximally responding) whisker identified
on the basis of the amplitude of evoked LFP responses was
selected for the recording session.

2.2. Avalanches Analysis
MUAs and high-density LFPs recordings were performed
separately in four and five rats, respectively. The minimum time
interval between consecutive whisker stimuli was set to 2 s to
avoid receptors and central adaptation phenomena. Accordingly,
2 s of recording after the stimuli were excluded from the analysis
of basal activity. Due to the different duration of the stimulus-
evoked avalanches in the LFPs and MUAs domains (Figure 2),
post-stimulus intervals were set for analysis at 2 s or 500 ms for
LFPs and MUAs, respectively. In total, 2 min long recordings of
LFPs basal activity and 5 min long recordings of MUAs basal
activity were analyzed for each rat. Forty stimulations of the
whisker were considered for each rat in the analysis of LFPs
evoked activity, while in MUAs data the recordings of each rat
included at least 60 stimulations of the whisker.

For the detection of LFP events, the standard deviation (SD)
and the mean of the signal was computed for each channel.

In order to distinguish real events from noise, a three SD
threshold was chosen basing on the distribution of the signal
amplitudes which significantly deviated from a Gaussian best
fit above that threshold (see Supplementary Figure 1). Both
negative and positive LFPs (i.e., nLPFs adn pLFPs, respectively)
were considered as events in accordance with previous work
(Shew et al., 2015; Clawson et al., 2017). Within our specific
experimental settings, one reason is that across the depth of
the cortex there are polarity changes of the LFP signal because
of compensatory capacitive ionic currents particularly along
dendrites of pyramidal cells (Buzsaki et al., 2012; Einevoll
et al., 2013). Since in our experiments electrodes span multiple
cortical layers, both nLFPs and pLFPs were found and detected.
Moreover, alternatively, pLFPs can be related to activation of
populations of inhibitory neurons leading to inhibitory outward
postsynaptic currents, which also justifies their inclusion in the
events count. For detection, each deflection was considered
terminated only after it crossed the mean of the signal. For
completeness, we report analyses on nLFPs only, and also
considering separately the superficial layers of the cortex and the
bottom layers (Supplementary Figures 8–13).

For extracellular spikes and MUAs the detection threshold
was set at three SD of the noise (Quiroga et al., 2004). In fact,
this threshold excludes the Gaussian “white noise” component
from the signal (Supplementary Figure 2). Events recorded at
the same time frame (temporal resolution: 0.04 ms) by different
microelectrodes were ascribed to the same neuron and thus
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counted as one event, although avalanches results were not
significantly affected by this correction.

For both post stimulus and basal (resting state) activity, an
average inter event interval (〈IEI〉) was calculated and used
for temporal binning to estimate avalanches. Since the 〈IEI〉 is
calculated in the periods post-stimuli separately from the periods
of resting state, our procedure is analogous to adaptive binning
(Yu et al., 2017). Avalanches were defined as sequences of 〈IEI〉
time bins presenting activity in the form of events, with the end
of the avalanche identified by the first empty bin. The number of
events in each avalanche accounted for its size, while the duration
was the number of temporal bins comprising the avalanche.

2.3. Power Law Fitting and Statistical
Testing
The avalanches sizes and durations distributions are fitted using
the maximum likelihood method. The fitting function for both
avalanche sizes and duration is a discrete power-law:

p(y;α) =
y−α

∑x=xmax
x=xmin

x−α
. (1)

The parameter xmax is set to the maximum observed size or
duration. Then the tails of the distributions are fitted by selecting
as parameter xmin the one that minimizes the Kolmogorov-
Smirnov distance (KS), following the method proposed by
Clauset et al. (2009):

KS = max
y≥xmin

|S(y)− P̂(y)| (2)

where S(y) is the cumulative distribution function (CDF) of the
data and P̂(y) is the CDF of the theoretical distribution fitted with
the parameter that best fits the data for y ≥ xmin.

After finding the best-fit power law, to assess goodness-of-
fit we compared the experimental data against 1,000 surrogate
datasets drawn from the best-fit power law distribution with
the same number of samples as the experimental dataset. The
deviation between the surrogate datasets and a perfect power law
was quantified with the KS statistic. The p-value of the power-
law fit was defined as the fraction of these surrogate KS statistics
which were greater than the KS statistic for the experimental data.
Note that the data were considered power law distributed if the
null hypothesis could not be rejected, namely if the the p-value
turned out to be greater than the significance level, which was set
to a conservative value of 0.1.

However, when estimating the parameters and evaluating
the p-value, we take into consideration another aspect that has
been recently pointed out in Gerlach and Altmann (2019). A
point often ignored is that maximum likelihood methods rely on
two assumptions:

1. the observations y are distributed as p(y;α), where α is the
power law exponent;

2. the empirical observations yi, i = 1, ...,N, are independent.

While the first assumption corresponds to our choice of a
statistical law, statistical tests rely on the second one, which
for instance is implicitly assumed when the log-likelihood is

computed as
∑i=N

i=1 log p(yi). However, complex systems are often
characterized by strong temporal and spatial inter-dependencies,
thus often violating the independence assumption. This may
lead to false rejections of the statistical laws and to over-
optimistic uncertainties of the estimated parameters. The authors
of Gerlach and Altmann (2019) propose a method to distinguish
between these assumptions, and we exploit it here to estimate the
parameters and evaluate the goodness-of-fit. Briefly, we take the
timeseries of sizes or durations of consecutive avalanches, and
we estimate the time τ ∗ after which two observations (e.g., the
avalanche sizes) are independent from each other. In practice, τ ∗

is obtained by computing the time at which the autocorrelation
of the timeseries reaches an interval around zero (1-percentile of
the random realization). Then, the original sequence of length
N is randomized, N∗ = N/τ ∗ observations are selected and the
standard statistical analysis is applied to the new sample. This
guarantees that the new sample of dimension N∗ < N comprises
only uncorrelated avalanches.

Indeed, in our timeseries of sizes and durations we find non
negligible values of τ ∗ (see Supplementary Figure 4), and we
verify that the acceptance rate of the statistical law increases for
uncorrelated avalanches. Because of the variability of the different
realizations of the subsampling procedure, the exponents and the
p-values shown in Tables 1, 2 are obtained averaging over 20
repetitions of this subsampling.

3. RESULTS

3.1. Preliminary Considerations
The standard approach to infer criticality is to search for
neuronal avalanches whose sizes and durations follow scale-
free distributions in resting state (i.e., unperturbed) conditions.
Indeed, at criticality, it is expected that such distributions scale as
the power laws

P(S) ∼ S−τ , (3)

P(T) ∼ T−τt , (4)

where S is the number of events in an avalanche (i.e., the size),
T is its duration (also called avalanche lifetime) and τ and τt are
the related critical exponents. Power laws, however, can also stem
from non critical systems and generative mechanisms. Thus, a
more robust test of criticality is to verify whether the so-called
crackling noise relation holds. This scaling relation was first
developed in the context of crackling noise (Sethna et al., 2001),
hence the name, but nonetheless it is expected to hold in general
in all systems close to their critical point (Friedman et al., 2012),
and in particular in systems with absorbing states (di Santo et al.,
2017). The relation predicts that the critical exponent δ, which
relates the duration of an avalanche to its mean size as

〈S〉(T) ∼ Tδfit (5)

obeys the scaling relation

δpred =
τt − 1

τ − 1
. (6)
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TABLE 1 | Exponents before and after subsampling in LFP data, with the corresponding p-values.

τ p-values τ (sub.) p-values (sub.) τt p-values τt (sub.) p-values (sub.)

Rat 1 Post stim. 1.85 0.04 1.87 0.48 2.44 0.16 2.45 0.50

Resting state 1.82 < 0.001 1.80 0.33 2.38 0.40 2.36 0.63

Rat 2 Post stim. 1.59 0.1 1.59 0.50 1.87 0.004 1.88 0.14

Resting state 1.60 0.02 1.60 0.38 1.84 < 0.001 1.84 0.24

Rat 3 Post stim. 1.60 0.13 1.60 0.41 2.19 0.05 2.18 0.36

Resting state 1.57 0.07 1.58 0.60 1.87 < 0.001 1.87 0.03

Rat 4 Post stim. 1.98 0.27 1.97 0.56 2.78 0.41 2.75 0.7

Resting state 2.16 0.54 2.15 0.72 2.67 0.30 2.65 0.58

Rat 5 Post stim. 1.74 0.30 1.73 0.71 2.19 0.07 2.19 0.45

Resting state 1.72 0.56 1.73 0.78 2.18 0.09 2.20 0.55

Note that the p-values obtained after subsampling are always greater than the significance level 0.1 both for τ and τt, except for the τt p-value of rat 3.

TABLE 2 | Exponents before ad after subsampling in MUAs data, with the corresponding p-values.

τ p-values τ (sub.) p-values (sub.) τt p-values τt (sub.) p-values (sub.)

Rat 1 Post stim. 1.98 0.077 1.97 0.63 2.27 0.27 2.30 0.79

Resting state 2.23 0.2 2.23 0.66 2.52 0.34 2.52 0.67

Rat 2 Post stim. 2.00 0.73 1.95 0.74 2.25 0.41 2.27 0.74

Resting state 2.04 0.003 2.03 0.43 2.23 < 0.001 2.23 0.1

Rat 3 Post stim. 2.05 0.72 2.04 0.75 2.34 0.84 2.29 0.73

Resting state 2.18 0.004 2.18 0.42 2.41 < 0.001 2.41 0.26

Rat 4 Post stim. 1.98 0.06 2.00 0.91 2.51 0.01 2.33 0.63

Resting state 2.50 0.12 2.50 0.19 2.67 < 0.001 2.60 < 0.001

Note that the p-values obtained after subsampling are always greater than the significance level 0.1 both for τ and τt, except for the τt p-value of rat 4.

We estimated δ in two independent ways, as δpred and as δfit, i.e.,
the slope of the least square fit of the average sizes given their
durations. In principle, if these two estimates are compatible,
then the system is compatible with criticality. Proving such
relation is however challenging. First, it is sensitive to the fitting
methods of the distributions of avalanche sizes and lifetimes, as it
has been recently shown (Destexhe and Touboul, 2021). Second,
in the case of LFPs, the range of avalanche lifetimes typically
extends over one order of magnitude only, which undermines
reliability of power law fitting.

A complementary approach is to look for criticality by
perturbing the system, that is by shifting activity to a subcritical
or supercritical regime and then measure the distance from
a critical state (Shew et al., 2009; Meisel, 2020). Thus, when
measuring neural activity across a cortical barrel column of
the rat brain, we also provided sensory stimuli consisting
of impulsive deflections of the corresponding whisker and
therefore representing strong, well defined, and accurately
reproducible perturbations.

Neural avalanches sizes and durations were fitted with a
discrete power law through the maximum likelihood method
(see section 2.3). As mentioned in the Materials and Methods
section, we found non negligible values of the correlation time
τ ∗ both for spikes/MUAs and LFPs, suggesting that events
were not independent. Therefore, to test if avalanches were

power law distributed, we corrected for dependencies between
avalanches by subsampling the data of sizes and durations
as described in section 2.3. Further results are reported in
Supplementary Tables 1–8.

3.2. Avalanches in LFP Data
We first analyzed avalanches in LFP recordings and found similar
results across five animals (Table 1). First of all, we focused on
spontaneous (i.e., resting, non stimulated) activity. We estimated
τ ∗ and subsampled the sizes and the lifetimes accordingly to
ensure that individual observations were uncorrelated (thus
not violating the assumption of the maximum likelihood
method). Following this correction, avalanches resulted power
law distributed across the five rats, except for one case for the
avalanches durations (see Figure 3 and Table 1).

Then, we analyzed stimulus-evoked responses over 2 s after
the stimulus and confirmed power law scaling (accepted by
statistical tests). However, at a more careful look, the size
distribution was altered by the presence of a bump and similar
to the heap observed in previous work (di Santo et al., 2018)
(Figure 4). Clearly, the bump derived from an excess of large size
avalanches (i.e., involving a large number of microelectrodes).
As suggested by Figure 2, these avalanches were not only large,
but also composed by highly synchronous events across cortical
layers. In fact the bump vanished in the duration distribution,
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FIGURE 3 | Exponents obtained after subsampling in Local Field Potential data (τ is the exponent for the sizes, τt for the durations, δfit is the fitted exponent from

S(T) ∼ Tδfit ). The exponents predicted by the critical branching process are shown in the plot as gray dashed lines. The line δ = 1.28 is also plotted, which is reported

in Fontenele et al. (2019) as a universal exponent found in many different experiments. It is noteworthy that, as seen in the plot on the right, the exponents δfit are

always far from the hallmark of the branching process, except for one case after stimulation, where the presence of large bumps in the size distribution makes the

slope of the line in the (〈S(T )〉, T ) plane steeper.

confirming that the size increase was not accompanied by a
corresponding increase of lifetime and that events remained
concentrated within a few time bins.

In general, we found that the crackling noise relation was
verified both at resting and during the post-stimulus (Figure 4
and see Supplementary Figure 5 for the avalanches results on
all the rats). However, after the stimulus, a localized deviation
from the expected trend was observed in correspondence of the
bump found in the size distribution, and therefore also caused
by large and synchronized waves of activity unleashed by whisker
deflection. As anticipated previously, avalanches durations, and
consequently also 〈S〉(T), extended over about two orders of
magnitude. In fact, since LFPs are average signals that integrate
over space and time single neuron events, it is expected that
the maximum size of the avalanches extracted from LFPs is of
the order of the array size (see Supplementary Figure 3 for an
analysis of finite size effects in LFPs avalanches) (Beggs and Plenz,
2003). Specifically, a cutoff in P(S) around a value NC ≈ NE,
with NE the number of the recording electrodes, is commonly
observed experimentally, meaning that during an avalanche each
electrode is typically activated just once. This cutoff in P(S)
implies that 〈S〉(T) < NC, and, from 〈S〉(T) ∼ Tδ , it also implies

T < N
1
δ

C (Neto et al., 2020). Thus, if δ > 1, the cut-off in P(S)
causes a much earlier cut-off in both P(T) and 〈S〉(T).

3.3. Avalanches in Spikes and MUAs Data
Spikes and MUAs avalanches (largely dominated by MUAs as
reported in the Methods) were analyzed for four rats. Albeit
similar to LFPs, the results unveiled important differences.
First of all, MUAs were much less affected by the finite size
of the recording array. In fact, despite the low number of
microelectrodes (twenty-seven sites spanning across the cortex
in the vertical direction), avalanches could be observed with
size greater than 102 events. The reason is that, in MUAs, the
same avalanche can reach an electrode repeatedly and in quick

succession, contrary to LFPs where single neuron contributions
are integrated over space and time within the brain tissue and
coalesce to generate the recorded signal (Neto et al., 2020). As
a consequence, MUAs provided a much better estimate of the
avalanche duration distributions.

Similarly to LFPs, we found a power law distribution of
avalanches both in terms of size and duration, except for one
rat deviating from this general trend with respect to duration
alone (Figure 6 and Table 2). Moreover, we confirmed the
emergence of the bump of activity in the post-stimulus size
distribution caused by the abundant number of large-sized
avalanches (Figure 5). The exponents τ and τt were greater
than the ones found in LFPs (Table 2), but also greater than
the ones predicted for a critical branching process (Figure 6).
Interestingly, the exponent δ was consistently close to the value
δ ≈ 1.28 which was found in Fontenele et al. (2019) to be
universal, i.e., to hold across different experimental conditions,
from cultured slices to freely moving or anesthetized mammals.

Finally, as avalanche size and duration were less affected by
finite size effects, MUAs allowed us to reliably test the crackling
noise relation, which was verified in all dataset (Figure 5, see
also Supplementary Figure 6). In particular, as MUAs data are
believed to be more robust in this respect (Friedman et al.,
2012), we concluded that post-stimulus avalanches statistics is
also compatible with the results recently reported by Fontenele
and collaborators (Fontenele et al., 2019). Nevertheless, also in
this case, the waves of large and synchronized activity triggered
by whisker deflection generated a local bump deviating from the
crackling noise relation.

4. DISCUSSION AND CONCLUSIONS

In this work we investigated criticality in the rat barrel cortex,
which offers advantages over other sensory systems. First, there
is a clear and well characterized somatotopic representation
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FIGURE 4 | LFP avalanches. Representative probability densities of avalanches sizes in one rat after the sensory stimulus (A), or in resting state conditions (B). A

bump deviating from the power law can be recognized in the post-stimulus distribution in correspondence of large avalanche sizes, pointed to by an arrow.

Distributions of the avalanches’ durations do not display clear alterations instead (C,D). Durations are expressed in ms by multiplying the number of bins by 〈IEI〉. In

the randomized dataset the exponential distribution provides a better fit in all cases (dashed gray lines). The shuffling procedure consists in randomizing the

occurrence times of the events of each channel, so that the events rate of each channel is preserved. (E,F) The crackling noise relation is verified in both cases within

the experimental errors (i.e., δpred is compatible with δfit). Once more, notice in (E) the presence of a bump (indicated by an arrow) in the post-stimulus regime.

of the whiskers in this primary sensory cortex, where single
whiskers are mapped to single cortical columns with a one-to-
one correspondence. This differentiates the barrel cortex from,

e.g., the primary visual cortex, where functional columns are
not as clearly segregated by septa in a cylindrical structure
perpendicular to the cortex surface as in the barrel field,
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FIGURE 5 | Avalanches in MUAs data. Avalanches sizes probability density in one rat after a stimulus (A), and during resting state (B). Notice the bump in the

post-stimulus distribution. (C,D) The same, for avalanche durations. Durations are expressed in ms by multiplying the number of bins times 〈IEI〉. In the randomized

datasets the exponential distribution provides a better fit in all cases. The shuffling procedure consists in randomizing the occurrence times of the events of each

channel, so that the events rate of each channel is preserved. (E,F) The crackling noise relation is verified in both cases within the experimental errors. Once more,

notice in (E) the presence of a bump in the post-stimulus regime.

which facilitates the recording of single column activity by
a neural probe (Horton and Adams, 2005). Second, whisker
receptors, which are transducers placed around the follicle,

directly activate primary sensory neurons, that therefore encode
whisker deflections without interposed processing. In other
circumstances, such as in the visual system, the transduced
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FIGURE 6 | Exponents obtained after subsampling in multi-unit activities data (τ exponent for the sizes, τt for the durations, δfit the fitted exponents of the

crackling-noise relation). The exponents predicted by the critical branching process are also plotted. The line δfit = 1.28 is also plotted, which is found in Fontenele

et al. (2019), and which turns out to be remarkably close to our results.

stimulus is subject to extensive processing already at the
periphery (e.g., by the retina network) which makes it difficult to
disentangle the dynamics and the contributions of cortical and
pre-cortical networks in response to sensory inputs (Diamond
et al., 2008; Feldmeyer et al., 2013). Third, single-whisker
deflection can be controlled with high accuracy through closed-
loop piezoelectric systems enabling a tight experimental control
over repeated sensory stimuli.

As for other sensory cortical areas, it can be hypothesized
that the barrel cortex takes advantage of criticality to efficiently
map tactile stimuli. This holds also for the single barrel column,
which faces the severe challenge to represent the parameters
related to deflection of its corresponding whisker (e.g., amplitude,
direction and velocity of displacement), as transduced by the
follicle receptors, in an efficient, noise-tolerant manner and in
real-time. Along a similar line of reasoning, previous work has
addressed the barrel cortex (Gautam et al., 2015) using an air
puff on the snout for stimulation and with avalanches analysis
that was tailored to UP/DOWN states dominating activity
under urethane anesthesia. According to a simplified general
model of the processing in the barrel column, it is believed
that layer IV acts as main input stage of sensory information
propagating from the thalamus, whereas layer V is the main
output. However, the few thousands neurons composing a single
barrel form complex microcircuits of excitatory and inhibitory
connections across layers. These microcircuits generate a rich
dynamics that has been shown, both in-vitro and in-vivo, to
include avalanches or synchronization states, such as UP and
DOWN states and oscillations, and whose significance in terms
of tactile information mapping and processing is far from being
understood (Feldmeyer, 2012; Petersen, 2019).

We run our experiments under tiletamine anesthesia by
precisely controlling single whisker deflection by a closed-loop

controlled piezoelectric actuator. With tiletamine, that contrary
to urethane is also used in clinics, spontaneous activity remains
rich, with a mix of oscillations and UP and DOWN states, and
with the activity evoked by whisker stimulation that shows clear
similarities to the one in the awake animal (Rojas et al., 2006). In
the context of our study, another advantage of the anesthetized
animal with respect to the awake condition was that, by reducing
cortico-cortical communication, the anesthetic was insulating
the somatosensory barrel region from external “contaminating”
waves of activity propagating from other brain areas (Aronoff
et al., 2010; Voss et al., 2019; Sorrenti et al., 2021).

We measured neural activity across the six cortical layers of
a single barrel both in the domain of spikes/MUAs (although
MUAs were largely overwhelming) and LFPs, thus extending the
avalanches analysis over a wide frequency range and covering
both single neuron and population dynamics. Recently, some first
attempts were made to characterize criticality in neural systems
in a broader sense (Agrawal et al., 2019; Meshulam et al., 2019;
Nicoletti et al., 2020) but, despite some well-known limitations
(Beggs and Timme, 2012), as of now scale-free avalanches are still
the most employed approach to test the critical brain hypothesis.
For LFPs, we used a high-density 2D array of microelectrodes
developed at the purpose to monitor at high spatial resolution the
electrical potential within a planar section of the barrel column
(Thewes et al., 2016) whereas for spikes and MUAs we used a 32
channels linear array probe.

On the one hand, and contrary to previous works based
on imaging methods (Scott et al., 2014; Bellay et al., 2015),
we found that in the anesthetized animal avalanche sizes and
lifetimes followed power laws during basal activity, in agreement
with findings on LFPs and spikes (Hahn et al., 2010; Ribeiro
et al., 2010). Notably, we observe inter-rats variability in the
power-law exponents (Figures 3, 6), but this phenomenon is
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not unexpected as it was observed in previous experiments
(Shew et al., 2015) and a theoretical explanation has also been
recently proposed in terms of quasi-criticality (Fosque et al.,
2021). In particular, in Fontenele et al. (2019) a statistical meta-
analysis of a large number of experiments suggests that, even
if the avalanche exponents vary across individuals and across
experimental settings, they all lie along a scaling line consistent
with the crackling noise relation and an exponent δ ≈ 1.28. We
do find that the exponent δ consistently converge to the same
value (Figure 6). Intriguingly, and in contrast to the classical
view of avalanches seen as generated by a quiescent-to-active
phase transition—even though a different scenario involving a
disorder-induced transition has been recently proposed as well
(Ponce-Alvarez et al., 2018)—the analysis of Fontenele et al.
(2019) suggests that the critical transition occurs at the edge
of synchronization (di Santo et al., 2018) and this non-trivial
exponent might emerge in different contexts (Dalla Porta and
Copelli, 2019; Neto et al., 2020; Carvalho et al., 2021). In this
context, we also note that if we assume as a generativemechanism
a model with absorbing states, such as the branching process,
it would imply no correlation between avalanches (Dalla Porta
and Copelli, 2019). However, in our data, we found non-
negligible values of τ ∗ hinting at the existence of temporal
correlations between subsequent avalanches. These latter results
are in agreement with previous works in which long range
temporal correlations emerged through a detrended fluctuations
analysis (DFA) of the signals (Linkenkaer-Hansen et al., 2001;
Ribeiro et al., 2010; Hardstone et al., 2012). Although the nature
of such correlations remains unknown, we speculate that they
may derive from a variety of neuronal and circuital mechanisms
including, e.g., a neuromodulation of the barrel column, acting at
time scales that are large compared to avalanches lifetimes.

After the stimulus, power laws displayed localized bump-
like alterations. The associated Kuramoto order parameters
(see Supplementary Table 9) point at the emergence of a
high, but brief, synchronization across layers. A control test
of the avalanches’ distributions without the first 200 ms
after the stimulus shows indeed that the bumps in the
sizes’ distributions disappear both in LFPs and MUAs (see
Supplementary Figure 7). Importantly, bumps are not just a
spurious effect of the bin chosen, as we adopted a similar
procedure to the one proposed by Yu et al. (2017) by evaluating
〈IEI〉 in the periods after stimuli separately from the periods of
resting state. However, at the same time, one should note that
bumps are also influenced by the finite size of the system (de
Arcangelis, 2012). Indeed, being bounded by the system size, an
excess of large avalanches can create a peak at a characteristic
scale in the distributions. This is precisely the case of LFP
avalanches, that are known to be constrained by the size of
the array. In the case of MUAs, instead, finite size constraints
are more relaxed, bumps are genuine although less evident in
some MUAs distributions (see Supplementary Figure 6). Hence,
in summary, the presence of bumps marks the occurrence of
avalanches with large sizes that appear with a higher probability
than what predicted by the power law scaling and, in the case of
LFPs, these sizes are of the order of the array size.

This seemingly simple observation has quite profound
implications. These avalanches, characterized by a highly
synchronous activity across microelectrodes (see Figure 2),
are related to a strong response to the stimulus that is
thought to emerge prominently in layer IV first, and then
to quickly spread among the other layers eliciting a global
activity in the barrel. This suggests that synchronization
waves together with oscillations play a fundamental role
in shaping the neural activity during the mapping of the
tactile stimulus. Indeed, the LFPs evoked response is also
characterized by oscillations at a frequency close to 6 Hz
(Supplementary Figure 14), whose power is particularly high
in the central layers. These oscillations are not present in
the spontaneous activity phase. Let us note that, most likely,
these small-amplitude oscillations in the LFP mainly reflect
subthreshold synaptic potentials as the 6 Hz component is not
visible in the spikes domain (see Supplementary Figure 14).
Moreover, being below the signal detection threshold for LFPs,
these oscillations do not overall contribute to LFP avalanches
distributions. In recent years, some modeling efforts taking
into account synchronizations and oscillations phenomena were
made (Poil et al., 2012; di Santo et al., 2018; Fontenele et al.,
2019) but a comprehensive model of this kind remains elusive
and further experimental studies will be needed to address this
crucial point.

In perspective, in addition to further investigating the
relation between resting state and stimuli with respect to
brain criticality, an interesting route could be the investigation
of other markers of criticality beyond neuronal avalanches,
such as scale-free correlations (Mariani et al., 2021) or other
patterns of dynamic functional connectivity, e.g., obtained by
computing the instantaneous phase difference between signals
at different locations (Cabral et al., 2017). On the other
hand, it is likely that sound models of the possible self-
organizing mechanisms of the cortex will have to take into
account its oscillatory behavior, whose signature in the present
work emerges through both the bumps in the avalanche
size distribution and the presence of a characteristic peak
in the power spectrum in the periods after stimuli. In
perspective, avalanches and oscillations may represent two
intertwined and functionally relevant faces of the cortical
brain dynamics, that will have to be considered together in
future theoretical and experimental investigations on the brain’s
sensory coding.
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