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ABSTRACT

Fourier-transform infrared (FTIR) spectra collected 
during milk recording schemes at population level 
can be used for predicting novel traits of interest for 
farm management, cows’ genetic improvement, and 
milk payment systems. The aims of this study were as 
follows. (1) To predict cheese yield traits using FTIR 
spectra from routine milk recordings exploiting previ-
ously developed calibration equations. (2) To compare 
the predicted cheese-making abilities of different dairy 
and dual-purpose breeds. (3) To analyze the effects of 
herds’ level of intensiveness (HL) and of the cow’s level 
of productivity (CL). (4) To compare the patterns of 
predicted cheese yields with the patterns of milk com-
position in different breeds to discern the drivers of 
cheese-making efficiency. The major sources of variation 
of FTIR predictions of cheese yield ability (fresh cheese 
or cheese solids produced per unit milk) of individual 
milk samples were studied on 115,819 cows of 4 breeds 
(2 specialized dairy breeds, Holstein and Brown Swiss, 
and 2 dual-purpose breeds, Simmental and Alpine 
Grey) from 6,430 herds and exploiting 1,759,706 FTIR 
test-day spectra collected over 7 yr of milk sampling. 
Calibration equations used were previously developed 
on 1,264 individual laboratory model cheese procedures 
(cross-validation R2 0.85 and 0.95 for fresh and solids 
cheese yields, respectively). The linear model used for 
statistical analysis included the effects of parity, lacta-
tion stage, year of calving, month of sampling, HL, CL, 
breed of cow, and the interactions breed × HL and 
breed × CL. The HL and CL stratifications (5 classes 
each) were based on average daily secretion of milk 
net energy per cow. All effects were highly significant 
(P < 0.001). The major conclusions were as follows. 

(1) The FTIR-based prediction of cheese yield of milk 
goes beyond the knowledge of fat and protein content, 
partially explaining differences in cheese-making abil-
ity in different cows, breeds and herds. (2) Differences 
in cheese yields of different breeds are only partially 
explained by milk fat and protein composition, and less 
productive breeds are characterized by a higher milk 
nutrient content as well as a higher recovery of nutri-
ents in the cheese. (3) High-intensive herds not only 
produce much more milk, but the milk has a higher 
nutrient content and a higher cheese yield, whereas 
within herds, compared with less productive cows, the 
more productive cows have a much greater milk yield, 
milk with a greater content of fat but not of protein, 
and a moderate improvement in cheese yield, differing 
little from expectations based on milk composition. Fi-
nally, (4) the effects of HL and CL on milk quality and 
cheese-making ability are similar but not identical in 
different breeds, the less productive ones having some 
advantage in terms of cheese-making ability. We can 
obtain FTIR-based prediction of cheese yield from indi-
vidual milk samples retrospectively at population level, 
which seems to go beyond the simple knowledge of milk 
composition, incorporating information on nutrient re-
tention ability in cheese, with possible advantages for 
management of farms, genetic improvement of dairy 
cows, and milk payment systems.
Key words: infrared predictions, FTIR, cheese yield, 
milk composition, breed × environment interaction

INTRODUCTION

Cheese manufacture is the main use of milk worldwide 
(USDA, Foreign Agricultural Service, 2020), and in the 
European Union it accounts for almost 40% of milk 
produced (75% in Italy; Eurostat, 2020). Cheese yield 
(the ratio between the cheese produced and the milk 
processed) is therefore the most important economic 
attribute of milk (Emmons, 1993). Genetic improve-
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ment of cheese yield is not pursued directly, as tak-
ing routine measurements of this property using milk 
samples from individual cows is very expensive and 
time consuming (Hicks et al., 1981; Cipolat-Gotet et 
al., 2016b). Traditionally, attempts to improve cheese 
yield are made indirectly by including the fat and pro-
tein (or casein) contents of milk in selection indices 
(VanRaden, 2004; Miglior et al., 2005). It is implicitly 
assumed that the recovery rates of milk nutrients (fat 
and protein) in cheese are constant, and that the reten-
tion of water in the curd depends only on the fat and 
protein content. However, it has been clearly shown 
that the recovery of fat and protein in the curd during 
cheese-making is affected by many environmental fac-
tors (Law and Tamine, 2010) and also by the genetics 
of the lactating females (Othmane et al., 2002; Bittante 
et al., 2013; Dadousis et al., 2017a,b). Environmental 
factors and genetics affect also the retention of water in 
the curd not only during cheese-making, but also while 
the cheese is ripening, thus influencing the final yield of 
ripened cheese (Cipolat-Gotet et al., 2020).

In a previous study on cows of 6 dairy and dual-
purpose breeds reared in multibreed herds (Stocco et 
al., 2018), we showed that the actual cheese yield, mea-
sured experimentally for individual cows using model 
cheese-making procedures, may differ from the theo-
retical cheese yield obtained from predictions based on 
milk composition (Emmons et al., 1990). Given the 
conceptual similarity to the residual DMI (the differ-
ence between a measured and an expected value), the 
ratio between the actual and the expected cheese yield 
could be interpreted as an estimation of the efficiency of 
cheese production. We also showed that cheese-making 
efficiency not only differs among different cows within 
the same herd and breed but is also significantly af-
fected by the breed of cow and the level of productivity 
intensiveness of the herd (Stocco et al., 2018).

To translate this theoretical knowledge into practical 
use for the benefit of the dairy chain, it is important 
to find methods for predicting cheese yield that are not 
merely based on milk composition but are also able 
to capture other intrinsic factors affecting the actual 
cheese yield of milk. We tested the feasibility of using 
Fourier-transform infrared (FTIR) spectroscopy to 
predict cheese yield and nutrient recoveries in practice 
(Bittante et al., 2014; Ferragina et al., 2015). These and 
other FTIR predictions of cheese yield (Bonfatti et al., 
2017; El Jabri et al., 2019) have been found to be heri-
table and can therefore be used to establish a selection 
program aimed at improving the cheese-making ability 
in different breeds (Cecchinato et al., 2015; Bonfatti et 
al., 2017; Sanchez et al., 2018).

What has not yet been fully clarified is whether 
FTIR-based predictions, unlike traditional cheese yield 

formulas based on milk fat and protein contents, are 
able to capture these other intrinsic factors at the popu-
lation level and whether they are able to reproduce the 
differences among different breeds and dairy systems 
found experimentally using laboratory model cheese-
making procedures. The aims of this study, therefore, 
were as follows: (1) to predict cheese yield traits at the 
population level using FTIR from a large data set of 
milk infrared spectra collected during routine milk re-
cordings, with special attention to circannual variations 
and to the effects of lactation stage; (2) to compare 
the predicted cheese-making abilities of different dairy 
and dual-purpose breeds; (3) to stratify different herds 
within breed according to the herd’s level of intensive-
ness and different cows within herds according to the 
cow’s level of productivity to analyze their effects on 
the predicted traits; and (4) to compare the patterns of 
predicted cheese yields with the patterns of milk com-
position in different breeds (interactions) to discern the 
drivers of cheese-making efficiency.

MATERIALS AND METHODS

Experimental Design

To meet the objectives of this study, we consulted the 
historical database of the Breeders Federation of Alto 
Adige/Südtirol (Associazione Provinciale delle Orga-
nizzazioni Zootecniche Altoatesine / Vereinigung der 
Südtiroler Tierzuchtverbände, Bolzano/Bozen, Italy) of 
the northeastern area of the province of Bolzano/Bozen 
in Italy. We extracted all the data pertaining to cows of 
the 4 most common breeds in the province. These were 
2 specialized dairy breeds, Holstein (HO) and Brown 
Swiss (BS), and 2 dual-purpose breeds, Simmental 
(SI) and Alpine Grey (AG). Multibreed herds, that is, 
those with cows of 2 or more breeds (about one-third of 
the total), were treated as 2 or more single-breed herds.

The herds within each breed were assigned to 1 of 5 
classes on the basis of the herd’s intensiveness of pro-
duction level (HL), defined on the basis of the corrected 
average daily milk energy output of the herd (dMEO, 
MJ/d), described later. Individual cows within each 
herd were also classified into 5 productivity levels (CL) 
according to their individual dMEO.

Milk Recording Data and Editing

The data we used were collected during milk record-
ing sessions between January 2011 and December 2017. 
We extracted a total of 1,898,994 test-day records. Only 
herds with more than 5 cows, and cows with more than 
5 records, were retained. Parity was classified as first, 
second, third, fourth, or fifth and over. The numbers 
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of herds, cows, lactations, and test days retained after 
editing and used for the data analyses are summarized 
in Table 1.

Test-day milk recording data included daily milk 
yield. Milk composition was determined from a sample 
(with preservative added) at the laboratory of the 
Federazione Latterie Alto Adige/Sennereiverband 
Südtirol (Bolzano/Bozen). The milk samples were 
analyzed with a MilkoScan FT+ 6000 (Foss A/S) on 
the basis of FTIR spectra using the calibration equa-
tions preinstalled by the manufacturer. All operations 
complied with ICAR (2016) guidelines. The milk com-
ponents examined in this study were fat, protein, and 
lactose. For all milk traits, only data within the range 
of mean (μ) ± 3 standard deviations (SD; σ) for each 
trait were retained.

Editing and Pre-Processing of Milk FTIR Spectra  
and Predictions of Cheese Yield Traits

The FTIR spectra used in the study were edited as 
follows: a principal component analysis was performed 
on the FTIR spectra, and Mahalanobis distances were 
calculated from the first 5 principal component scores. 
The probability level for the chi-squared distribution 
of each sample was then calculated, and samples with 
a probability of <0.01 were considered outliers and re-
moved from the data set (Shah and Gemperline, 1989). 
To overcome the spectral variations, the absorbance 
values for every wave were centered to a null mean 
and standardized to a unit sample variance within year 
periods.

Two previously determined calibration equations, 
developed on the entire spectral interval, were used 
to predict the cheese yield of the milk samples from 
individual cows. These equations were obtained from 
a large study carried out on 85 herds managed under 
different dairy systems, which involved sampling 1,167 
individual cows (2.0 L of milk per cow) once during 

a calendar year and processing the milk samples into 
individual model cheeses (Ferragina et al., 2013).

The first equation predicted the cheese yield of the 
unprocessed milk sample in terms of the obtainable 
fresh curd, expressed as a percentage of the milk des-
tined for cheese-making. This equation had a coefficient 
of determination (R2) of cross-validation of 0.85, and a 
standard error (SE) of prediction, corrected for bias, 
of 0.97%. To account for the possibility of controlling 
water retention in the fresh cheese by modifying the 
cheese-making procedure, and to account for the pos-
sibility that the residual variability of this trait can-
not be easily controlled, the second equation predicted 
cheese yield in terms of the obtainable DM of fresh 
cheese expressed as a percentage of the milk destined 
for cheese-making. This second equation had a larger 
R2 of cross-validation (0.95) and a smaller SE of predic-
tion (0.27). The corresponding ratio of prediction to 
deviation was 2.45 for the first equation and 4.24 for 
the second, corresponding to very good predictability 
and excellent predictability, respectively, according the 
classification proposed by Viscarra Rossel et al. (2007).

Stratification by Herd Intensiveness Level and Cow 
Productivity Level

The herds were stratified into 5 HL levels, defined ac-
cording to the average dMEO of all the lactating cows 
in the herd. The net energy content (NEL) of the milk 
was estimated using the following equation proposed by 
the NRC (2001):

 NEL (Mcal/kg) = 0.0929 × fat, % + 0.0547   

× protein, % + 0.0395 × lactose, %,

where NEL is the energy of one kilogram of milk. The 
NEL values obtained were converted to MJ/kg and 
multiplied by the daily milk yield of each cow (kg/d) to 
obtain the individual dMEO of each cow (MJ/d). The 

Bittante et al.: CHEESE-MAKING ABILITY BY BREED, HERD, AND COW PRODUCTIVITY

Table 1. Data available after editing by breed of cows1

Item, N Total HO BS SI AG

Years 7 7 7 7 7
Herds 6,430 1,298 2,212 1,800 1,120
Lactating cows 115,819 24,421 42,278 33,503 15,617
Lactations 291,129 57,081 103,353 87,855 42,840
 First lactations 95,049 20,048 34,277 27,920 12,804
 Second lactations 74,976 15,830 26,746 22,001 10,399
 Third lactations 55,780 10,964 19,990 16,597 8,229
 Fourth lactations 33,578 5,866 11,912 10,452 5,348
 ≥Fifth lactations 31,746 4,373 10,428 10,885 6,060
Test days/FTIR spectra 1,759,706 355,662 656,694 509,858 237,492
1HO = Holstein; BS = Brown Swiss; SI = dual-purpose Simmental; AG = Alpine Grey.
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herds were classified according to their dMEO using a 
mixed model of the following form:

 yijklmnop = µ + Pi + Dj + YSk + b1Bl + b2Sm   

+ b3An + b4Ho + Rp + eijklmnop,

where yijklmnop is the dMEO for the test-day; µ is the 
general mean; Pi is the parity number (i = 1, 2, 3, 4, or 
≥5); Dj is the category of DIM (j = 12 groups of 30 d 
each, with the last category open); YSk is the combined 
effect of year-season (k = 2011–2017; seasons = April–
September or October–March); Bl, Sm, An, and Ho are 
the percentages in the herd of Brown Swiss, Simmental, 
Alpine Grey, and Holstein cows, respectively; b1, b2, b3, 
and b4 are the linear regression coefficients for Bl, Sm, 
An, and Ho, respectively; Rp is the random effect of herd 
(p = 6,430 herds); and eijklmnop is the random experi-
mental error. Herd and residuals were assumed to have 
a normal distribution with a mean of zero and vari-
ances of σh

2  and σe
2,  respectively. The herd solutions 

were used to classify them into 5 dMEO levels (HL 
1–5). The 5 classes of HL were obtained as follows: first 
class (HL-1) with herds <−1.5σ; second class (HL-2) 
−1.5σ to −0.5σ; third class (HL-3) −0.5σ to +0.5σ; 
fourth class (HL-4) +0.5σ to +1.5σ; and fifth class 
(HL-5) >+1.5σ, where σ is the SD of the herd’s least 
squares means (LSM) within breed.

To classify the individual cows within each breed and 
within the herds (CL), we used a mixed model of the 
following form:

 yijklmn = µ + Pi + Dj + YSk + HLl + Am + eijklmn, 

where yijklmn is the dMEO for the test-day; µ is the 
general mean; Pi is the parity number (i = 1, 2, 3, 4, or 
≥5); Dj is the category of DIM (j = 12 groups of 30 d 
each, with the last category open); YSk is the combined 
effect of year-season (k = 2011–2017; seasons = April–
September or October–March); HLl is the herd inten-
siveness level (l = 1–5); Am is the random effect of the 
animal (m = 115,819 cows); and eijklmn is the random 
experimental error. Animal and residuals were assumed 
to have a normal distribution with a mean of zero and 
variances of σa

2  and σe
2,  respectively. The cow solutions 

were used to classify them into 5 dMEO levels (CL 
A–E) as follows: first class (CL-A) with cows <−1.5σ; 
second class (CL-B) −1.5σ to −0.5σ; third class (CL-C) 
−0.5σ to +0.5σ; fourth class (CL-D) +0.5σ to +1.5σ; 
and fifth class (CL-E) >+1.5σ, where σ is the SD of 
animals within breed and herd. Table 2 summarizes the 
numbers of herds, cows, and test dates, and the average 
dMEO of each class within each breed. The number of 

herds in the different strata of HL and CL were not 
much different from expectations on the basis of as-
sumption of a normal distribution. The number of cows 
per herd for all breeds is increased moving from HL-1 
to HL-2, because high-intensive herds tended to be 
larger than low-intensive ones. Thus, the number of 
cows (and test dates) increased with HL (but not with 
CL), with respect to “normality” expectations. Finally, 
the number of test dates per cow increased with CL 
(but not with HL), possibly because of an anticipated 
culling of low-producing cows.

Statistical Analyses

Milk yield, composition, and cheese-related traits 
were analyzed using a linear model of the following 
form:

 yijklmnop = µ + Pi + Dj + Yk + Ml + HLm + CLn   

+ Bo + HLm × Bo + CLn × Bo + eijklmnop,

where yijklmnop is the response of the trait (milk yield, 
fat, protein, lactose, fresh cheese, cheese solids); µ is 
the general mean; Pi is the parity number (i = 1, 2, 3, 
4, or ≥5); Dj is the category of DIM (j = 12 groups of 
30 d each, with the last category open); Yk is the effect 
of year (k = 2011–2017); Ml is the effect of the month 
(l = January–December); HLm is the herd intensiveness 
level (m = 1–5); CLn is the cow productivity level (n 
= 1–5); Bo is the effect of breed (o = Brown Swiss, 
Simmental, Alpine Grey, or Holstein); HLm × Bo is 
the effect of the interaction between herd intensiveness 
level m and breed o; CLn × Bo is the effect of the 
interaction between cow productivity level n and breed 
o; and eijklmnop is the random residual. The models were 
fitted using the lm and aov functions in R.

Least squares means (LSM) were estimated for each 
trait for the effects of month, DIM, breed, HL, and 
CL, and the interactions HL × Breed and CL × Breed. 
Orthogonal contrasts were estimated between the LSM 
of traits for the effect of breed as follows: (a) specialized 
dairy (HO and BS) versus dual-purpose breeds (SI and 
AG); (b) within specialized breed (HO vs. BS); and 
(c) within dual-purpose breed (SI vs. AG). All data 
editing and statistical analyses were conducted in the 
R environment (R Core Team, 2016).

RESULTS AND DISCUSSION

Main Sources of Variation in Milk Yield  
and Composition, and in Cheese Yield Traits

Table 3 summarizes the descriptive statistics and the 
results of the ANOVA conducted on the 6 traits con-
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sidered in this study. Due to the very large amount of 
data analyzed, all the effects included in the statistical 
model were highly significant for all traits (P < 0.001), 
but they are not necessarily all relevant to the dairy 
industry. The relative importance of the various factors 
for each trait can be evaluated from the size of the F-
values in the table. It is worth noting that the different 
traits are ranked differently according to the sources of 
variation.

Year of production was a notable source of variation 
but was never among the most important for any of 
the traits considered. Milk yield exhibited an increasing 
pattern during the 7 yr of observation (21.2–22.5 kg/d), 
reflecting the positive genetic trend in the breeds and 
improvements in feeds and management. In the case 
of milk composition and predicted cheese yield traits, 
the yearly fluctuations (SD of LSM of the year effect: 
±0.28%) are probably more a reflection of the effects of 
climatic variations on the animals and the quantity and 
quality of forages produced. Seasonal variations were 
less important than yearly variations, with the excep-
tion of lactose content, but because some of the traits 
exhibited interesting patterns, this will be illustrated 
and discussed in the next section. As expected, parity 
affected the daily milk yield, which increased with the 
maturity of the cow (19.3 kg/d on average at first lacta-
tion, to 22.6 kg/d on average for the fifth+ lactation) 
but also had an appreciable decreasing effect on the 
lactose (4.86% on average at first lactation to 4.69% 
at fifth+ lactation) and protein contents (3.30–3.23%), 
and a much smaller effect on milk fat content. In paral-
lel with the variations in nutrient contents, cheese yield 

traits also decreased with increasing parity of the cow 
(15.0% on average at first lactation to 14.7% at fifth+ 
lactation).

For milk yield, fat, and protein contents, the second 
most important source of variation was HL, whereas 
CL was less important and differed little from the effect 
of lactation stage, with the exception of milk protein 
content, which was much less affected than fat content 
and milk yield by CL (Table 3). Lactose presented a 
completely different picture, being primarily affected 
by the cow’s parity and then by lactation stage. Breed 
of cow, HL, and CL were much less important for this 
trait than for the other milk components.

Finally, the predicted cheese yield traits were influ-
enced first by the cow’s stage of lactation and then 
by HL. The effects of parity, breed, and CL on cheese 
yield were less important. The unexpected differences 
in the ranking of the sources of variation between milk 
composition and cheese yield are worth discussing in 
detail and will be dealt with in following sections.

For all traits, the interaction of HL and CL with 
the cow’s breed was highly significant (P < 0.01) but 
quantitatively much less relevant than either the effect 
of breed or the effects of HL and CL. Nonetheless, these 
interactions will be discussed in detail, because they 
contribute to identifying different genetic and environ-
mental drivers of cheese-making efficiency.

The results on the relative importance of different 
source of variation of milk composition traits and 
cheese yields cannot be compared with others, because 
the scientific literature does not contain any studies 
that quantify simultaneously the relative importance 
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Table 3. Descriptive statistics and ANOVA (F-values) of milk yield, milk composition, and cheese yield1

Item2 df
Milk yield, 

kg/d

Milk composition, %

 

Cheese yield, %

Fat Protein Lactose Fresh cheese2 Solids3

Descriptive statistics         
 Mean — 23.2 3.95 3.33 4.79  15.06 7.22
 SD — 7.4 0.50 0.29 0.18  2.05 0.83
ANOVA         
 Year of calving 6 3,691 823 4,109 1,441  4,355 3,449
 Month 11 996 550 2,235 1,806  214 384
 Parity 4 47,847 94 6,023 49,986  1,549 1,161
 Stage of lactation 11 138,265 3,013 21,924 14,868  52,075 59,310
 Breed 3 372,766 47,210 108,402 12,905  3,467 4,144
 Herd intensiveness class 4 246,246 9,050 31,458 4,150  14,221 16,904
 Cow productivity class 4 131,360 4,608 55 1,372  1,536 1,531
 Herd intensiveness by breed 12 214 248 607 57  57 64
 Cow productivity by breed 12 170 53 84 42  15 15
 RMSE4 1,759,637 4.0 0.44 0.31 0.14  1.73 0.70
1All effects are highly significant (P < 0.001); thus, P-values are not reported in table.
2Cheese yield of fresh cheese is the weight of the fresh cheese after salting, expressed as a percentage of the weight of the milk processed.
3Cheese yield of solids is the weight of the DM of the fresh cheese, expressed as a percentage of the weight of the milk processed.
4RMSE = root mean squared error.
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of different sources of variation (year, season, parity, 
lactation stage, breed, dairy system, and cow produc-
tivity) for several traits.

The yearly variation of milk yield and the effects of 
parity followed the expected patterns, as also reported 
by other authors in same study area (Kühl et al., 2020), 
and, being not included in the objective of this study, 
are not shown and discussed in detail.

Circannual Variation in Milk Yield and Composition, 
and in Cheese Yield Traits

As depicted in Figure 1, the circannual pattern of 
the 6 traits considered all showed a sinusoidal pattern 
with a wave period of one calendar year. Daily milk 
yield reaches its zenith (crest of the wave) in the winter 
months (December–March), and its nadir (trough of the 
wave) in the summer months (July and August). This 
pattern has frequently been observed in the northern 
hemisphere (Heck et al., 2009), but the peak-to-peak 
amplitude was also found to be very small (less than 
1 kg/d). The prevailing climate in the study area is 
humid-continental (warm summer subtype) according 
the Köppen classification (Belda et al., 2014), and heat 
stress during summer is not frequent. Regarding feed-
ing systems, the more intensive modern farms use total 
mixed rations with a roughly constant composition all 
year round, whereas the more traditional farms use hay 
and sometimes silages with compound feed. Traditional 
farms that transhume part or all of their herd to sum-
mer highland pastures are normally excluded from milk 
recording during the pasturing period (Bittante et al., 
2015).

Milk fat content reaches its nadir in spring (May) and 
its zenith in autumn (October), whereas milk protein 
content reaches these values about one month earlier 
(April and September, respectively). In both cases, the 
peak-to-peak amplitude is about 0.1% (Figure 1). In the 
case of lactose content, the amplitude is much smaller 
(0.02%), and the nadir is reached contemporaneously 
with fat and protein (April–May), while the zenith is 
later, in December.

The patterns of the predicted cheese yield traits differ 
slightly from the typical sinusoid: they are rather flat 
from autumn to winter and in early spring, then rise to 
their peak, reaching the zenith in July when expressed 
as fresh cheese, and in August as cheese DM (Figure 1). 
We can speculate, from the fact that they reach their 
zenith about 2 mo earlier than fat and protein content, 
that the efficiency of milk nutrient recovery in cheese is 
not constant throughout the year but is instead slightly 
higher in summer than in autumn.

The peak-to-peak amplitude of cheese solids yield is 
also about 0.1%, which is lower than the value expected 
assuming an additive effect of milk fat and protein and 
after taking into account their average recovery rates in 
the curd (Emmons et al., 1990). The amplitude of fresh 
cheese yield is only slightly greater than that of cheese 
solids, meaning that water retention is probably not 
greatly affected by seasonal variations.

It is worth noting that the seasonal relationships be-
tween milk yield, milk nutrient concentrations, cheese 
yield and quality, and defects in cheeses are very com-
plex. Several traditional cooperative dairies in the area 
produce a hard, long-ripened cheese (Trentingrana) 
in accordance with European Union regulations for 
Protected Designation of Origin certification (Legisla-
tive Decree July 20, 2006), and the bimonthly batches 
of cheese produced are monitored by the Consortium 
of Cooperative Dairies for sensory characteristics (on 
sampled wheels) and for quality classification of all 
wheels after 9 and 18 mo of ripening. Both the sensory 
evaluations and quality classifications are the basis of a 
quality-based payment system for the cheese. Monitor-
ing over 10 yr has established that both the sensory 
descriptors and quality classifications of cheese follow a 
circannual pattern (Bittante et al., 2011a,b). The qual-
ity score, which summarizes the sensorial description, 
reaches its highest average value for cheeses produced 
during spring (Bittante et al., 2011b), when daily milk 
yield is high, and milk nutrient concentrations and 
cheese yield percentages are low (Figure 1), and its 
lowest values for cheese produced during summer. The 
cheese classification, based specifically on the presence 
or absence of cheese defects, showed that the cheeses 
produced from late spring to early summer had the 
highest incidence of top-quality wheels, and those pro-
duced in winter the lowest (Bittante et al., 2011a). This 
means that the cheese yield is related to but does not 
overlap with milk composition, whereas the quality of 
the cheese seems to depend mainly on other factors, 
among which milk and cheese microbiota may play a 
major role (Carafa et al., 2019).

Effects of Lactation Stage on Milk Yield  
and Composition, and on Cheese Yield Traits

Stage of lactation had a much greater effect than 
parity on the milk traits, with the exception of lactose 
(Table 3), and was the most important source of varia-
tion in predicted cheese yield traits. Figure 2 depicts 
the lactation curve for all 6 milk traits considered. The 
lactation curve for daily milk yield reached its maxi-
mum peak between the first and second month after 
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Figure 1. Circannual variation of milk yield and composition and cheese yield (LSM ± SE). Cheese yield of fresh cheese is the weight of the 
fresh cheese after salting, expressed as a percentage of the weight of the milk processed; cheese yield of DM is the weight of the DM of the fresh 
cheese, expressed as a percentage of the weight of the milk processed.
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Figure 2. Effect of lactation stage (classes of DIM) on milk yield and composition and predicted cheese yields (LSM ± SE). Cheese yield of 
fresh cheese is the weight of the fresh cheese after salting, expressed as a percentage of the weight of the milk processed; cheese yield of DM is 
the weight of the DM of the fresh cheese, expressed as a percentage of the weight of the milk processed.
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calving, and then declined almost linearly until a final 
value almost half that of the peak (“zenith curve”). 
In previous studies we found the peak to be higher 
and later for cows with higher productivity levels and 
reared in intensive farms (Stocco et al., 2017).

The lactation curve for milk fat and protein con-
tent had a reversed shape (“nadir curve”), reaching 
its minimum during the third month of lactation and 
increasing thereafter almost linearly until the end of 
lactation. The pattern of milk fat and protein does not 
therefore mirror that of milk yield, as it reaches its 
peak later. Contrary to fat and protein, lactose content 
had a “zenith curve,” as did daily milk yield, reaching 
its peak value during the second month of lactation and 
thereafter decreasing until the end.

The curves for the 2 predicted cheese yield traits had 
a shape more similar to the curves for milk fat and 
protein contents (“nadir curves”), but with some dif-
ferences: The initial decrease is sharper and shorter, 
reaching minimum values during the second month of 
lactation; that is, one month earlier than milk com-
ponents. Quantitatively, the maximum variation (from 
the nadir to the end of lactation) in milk fat content 
was about +0.17%, and in milk protein +0.30%. In 
the same interval, the predicted cheese solids yield in-
creased by 1.5% and the predicted fresh cheese yield by 
+3.4%. The increase in the former trait is much larger 
than expected, given the variation in fat and protein 
(3 times), meaning that the rate of recovery of milk fat 
and protein in the cheese is not constant but rather in-
creases during lactation, thus improving cheese-making 
efficiency. The large increase in fresh cheese yield (7 
times the increase in fat and protein) clearly shows that 
the increased efficiency of fat and protein recovery in 
the curd is accompanied by a parallel increase in water 
retention.

Using laboratory cheese-making procedures with 
milk from individual cows (1,167 model cheeses pro-
duced from Brown Swiss cows), we found that protein 
recovery in the cheese increased during the first part 
of lactation (about +1% unit) and remained constant 
throughout the second part (Cipolat-Gotet et al., 
2013). In contrast, fat recovery in the cheese decreased 
during the first half of lactation and increased during 
the second. Overall, the recovery of milk solids and 
energy decreased until the peak of lactation (between 
1 and 2 mo after calving) and then increased until the 
end of lactation (+4% units for total solids, +1.5% for 
energy). Therefore, the improvement in cheese-making 
efficiency throughout lactation that we observed in 
this study when comparing the predicted cheese yield 
and milk composition is not an artifact of the FTIR 
predictions but reflects a phenomenon observed experi-
mentally in the laboratory over more than 1,000 model 

cheese-makings using milk from individual cows. In a 
recent study carried out with cows of 6 breeds (Hol-
stein, Brown Swiss, Jersey, Simmental, Alpine Grey, 
and Rendena) reared in multibreed herds, we found a 
similar increase in milk total solids and energy recover-
ies in the cheese throughout lactation (513 individual 
model cheeses; Stocco et al., 2018), but we also found a 
significant interaction with the breed of the cow.

We have also found that the recovery of nutrients in 
cheese is not constant throughout lactation in other 
species. In buffaloes, in particular, we observed in-
creases in the recovery of protein in the cheese of about 
4 percentage units with advancing lactation, in total 
solids of 8 units, and in milk energy of 5 units, whereas 
the recovery of fat increased by only 1 unit (180 indi-
vidual cheese-makings; Cipolat-Gotet et al., 2015). We 
also found a significant improvement in the recovery 
of total milk solids (+5% units) and energy (+3.5% 
units) in the manufacture of sheep’s milk cheese, but 
not of protein and fat (169 individual cheese-makings, 
Sarda sheep breed; Cipolat-Gotet et al., 2016a). In the 
case of goat milk, we observed much smaller variations 
throughout lactation, but here we used a simplified 
cheese-making procedure (560 individual cheese-mak-
ings, 6 breeds; Vacca et al., 2018).

It is not easy to test the process of making cheese 
using milk from cows at different stages of lactation on 
an industrial scale, but Kefford et al. (1995) mimicked 
industrial production of Cheddar cheese using bulk 
milk from cows at mid- or late-lactation. Those authors 
also observed a significant increase in milk total solids 
recovery in the cheese (+2% units) but no significant 
variations in fat and protein recoveries.

The main reason for this variation in cheese-making 
efficiency corrected for milk fat and protein contents is 
probably found in the proportions of the different milk 
protein fractions throughout lactation. In fact, in a 
recent study modeling changes throughout lactation in 
the detailed protein profiles of milk produced by cows 
of 6 breeds raised in the same geographical area as 
the present study, we found that different nitrogenous 
fractions are characterized by very different lactation 
curve shapes (Amalfitano et al., 2021). Amalfitano et 
al. (2019) showed that increasing the concentrations or 
proportions of αS1-casein and κ-casein in milk clearly 
improves coagulation, curd firming, and syneresis 
properties, whereas increasing the concentrations or 
proportions of αS2-casein and β-lactoglobulin causes 
a worsening of these properties. Using the laboratory 
model cheese-making procedure, Cipolat-Gotet et al. 
(2018) confirmed that the αS1-CN concentration and 
proportion exerts a favorable effect on cheese yield and 
the recovery of both milk fat and protein in the curd, 
whereas αS2-CN and β-LG exert an unfavorable effect 
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on cheese yield and nutrient recoveries. Both β-CN and 
κ-CN had positive effects on cheese yield but the oppo-
site effect on milk nutrient recovery in the curd: β-CN 
improved the recovery of protein and worsened the 
recovery of fat, whereas κ-CN worsened the recovery of 
protein and improved the recovery of fat. As the major 
casein fractions αS1-CN and β-CN expressed as propor-
tions of total milk nitrogen ×6.38 have almost opposite 
lactation patterns (the former “downward,” the latter 
“zenith”), and, as both have a favorable effect on cheese 
yield, they tend to compensate for each other. Also, 
αS2-CN and κ-CN had opposite lactation patterns (the 
former “downward,” the latter “upward”), but, because 
αS2-casein has an unfavorable effect and κ-casein a very 
favorable effect, both fractions contributed to explain-
ing the increasing efficiency of cheese-making through-
out lactation.

Effects of Breed on Milk Yield and Composition,  
and Cheese Yield Traits

The LSM of the effect of breed are summarized in 
Table 4. They confirm that the daily production of 
the specialized dairy breeds is higher than that of the 
dual-purpose breeds, and that within the former group 
daily production of HO is higher than BS, whereas in 
the latter group SI is higher than AG. It is worth not-
ing that these differences are due not only to breed 
characteristics but also to the environment, facilities, 
management, handlers, feeding techniques, and hygiene 
practices, as the cows of these different breeds are often 
reared in monobreed herds. The inclusion of HL in the 
model does not correct the estimates of the breed effect 
for differences in farm intensiveness, because the herds 
were stratified according to HL within each breed—
that is, the HL classes are specific to each breed. A 
study carried out in the same area on multibreed herds, 
comparing breeds within the same farm (Stocco et al., 

2017), found lower differences in breed than we did 
(about 3 instead of 5–6 kg/d for every orthogonal con-
trast), which means that about half the differences are 
due to differences in the environment or management, 
and half to genetic breed specificities.

The fat content was, on average, higher in milk from 
herds of dairy breeds than in milk from herds of dual-
purpose breeds, and, within the former group, higher 
from BS than from HO herds, and in the latter group 
higher from SI than AG herds (Table 4). The protein 
content of milk from herds of dairy breeds and herds of 
dual-purpose breeds differed little, and within groups it 
was higher in BS versus HO milk, and in SI versus AG, 
the difference being much greater in the former group. 
Lactose content, on the other hand, was higher in milk 
from AG than from SI herds, and from BS compared 
with HO herds, although in the latter case the differ-
ence was modest.

Regarding the FTIR-predicted cheese yield traits, 
Table 4 shows that, unlike milk composition traits, the 
yield from dual-purpose herds surpasses that of dairy 
herds, regardless of whether cheese productivity is ex-
pressed in terms of fresh cheese or cheese solids. Within 
groups, cheese yield traits were higher in milk from BS 
herds compared with HO herds, and in AG herds than 
in SI herds.

The superiority of BS over HO milk reflects only 
partially the composition of the milk from the herds 
of the 2 breeds, and confirms the results obtained from 
multibreed herds in the same area. The superiority 
of AG milk over SI milk (and also over dairy breeds) 
does not parallel the differences in milk composition. 
In the study on mixed-breed farms, where cheese yield 
traits were obtained experimentally through the model 
cheese-making procedure and not predicted from milk 
FTIR spectra (Stocco et al., 2018), these traits in AG 
milk were similar to (slightly lower than) those in SI 
milk obtained from the same farms. However, more 
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Table 4. Effect of breed of cows (LSM) on milk yield and composition and on cheese yield (HO = Holstein, BS = Brown Swiss, SI = Simmental, 
AG = Alpine Grey)

Item

Dairy breed

 

Dual-purpose breed

 

Orthogonal contrast

HO BS SI AG HO+BS vs. SI+AG HO vs. BS SI vs. AG

Milk yield, kg/d 26.8 21.9  22.0 15.6  *** *** ***
Milk composition, %       
 Fat content 3.90 4.06  3.94 3.66  *** *** ***
 Protein content 3.14 3.40  3.29 3.25  *** *** ***
 Lactose content 4.73 4.75  4.74 4.80  *** *** ***
Predicted cheese yield, %       
 Fresh cheese1 14.72 14.83  14.99 15.13  *** *** ***
 Cheese solids2 7.12 7.16  7.24 7.30  *** *** ***
1Predicted cheese yield of fresh cheese is the weight of the fresh cheese after salting expressed as a percentage of the weight of the milk processed.
2Predicted cheese yield of solids is the weight of the DM of the fresh cheese expressed as a percentage of the weight of the milk processed.
***P < 0.001.
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fresh cheese and cheese solids were produced from the 
AG milk than expected based on milk composition, 
giving it a better estimated cheese-making efficiency. 
The cheese-making efficiency index was defined as the 
percentage ratio between the cheese yield measured ex-
perimentally and the cheese yield predicted on the basis 
of the milk fat and protein content. Other authors have 
defined efficiency as the ratio between the measured 
value of a trait and the maximum predicted value of the 
same trait in the given conditions (Caballero-Villalobos 
et al., 2018). The cheese-making efficiency index of AG 
milk (Stocco et al., 2018) was 102.2 (vs. 101.0 for SI, 
102.4 for BS, and 96.1 for HO). It should be considered 
that the large majority of AG cows are reared on tradi-
tional farms, often in tiestalls, and fed a diet based on 
hay and some compound feed. In the aforementioned 
study on multibreed farms, the milk from less-intensive 
farms was found to be better for cheese-making than 
milk from intensive farms (cheese-making efficiency 
index 102.6 vs. 99.4, respectively), independently of the 
breed. Thus, FTIR predictions seem able to capture 
differences in cheese yield properties of milk that go 
beyond its fat and protein contents and that reflect 
differences in both genetics and dairy systems.

The reasons for these differences in the cheese-
making efficiencies of different breeds, or even of dif-
ferent individuals within a given breed, may lie mainly 
in the proportions of the different protein fractions of 
the milk protein. Whereas the proportion of αS1-CN, 
αS2-CN, and β-CN, despite being significant, differed 
little among the 6 different breeds (Amalfitano et al., 
2020), the proportion of κ-CN was much lower in the 
milk from HO cows than in the milk from all the other 
breeds, and the proportion of β-LG was much higher, SI 
excluded. The comparisons are further complicated by 
the fact that the milk protein fractions have different 
genetic variants, which not only affect the expression 
level of the gene in the udder, but also often differ-
ently affect the cheese-making properties of milk. Be-
cause the frequency of the different alleles of the genes 
codifying for milk proteins differs greatly in different 
breeds, we can expect that genetic variants—and not 
just the proportions and concentrations of the protein 
fractions—also contribute to explaining the differences 
in cheese-making efficiency observed in different breeds.

The FTIR spectra can predict the concentrations of 
different protein fractions in milk (De Marchi et al., 
2009; Rutten et al., 2011; Sanchez et al., 2017), albeit 
with a moderate level of accuracy, and milk infrared 
spectra can capture information that goes beyond sim-
ply the quantity of protein in milk. Furthermore, it 
is well known that FTIR spectra can also be used for 
predicting the coagulation properties of milk (Ferragina 
et al., 2015; El Jabri et al., 2020), and that some cor-

relation exists between milk coagulation properties and 
cheese yield (Cecchinato and Bittante, 2016). In any 
case, coagulation traits represent a valuable techno-
logical information per se, but they do not seem to be 
very useful as predictors of cheese yield, although their 
accuracy of prediction based on FTIR spectra is often 
lower than that found for directly predicting cheese 
yield (Ferragina et al., 2013), and coagulation traits 
are less affected by dairy system, herds, and parity of 
cows than cheese yield and nutrient recovery (Bittante 
et al., 2015).

Effects of Herd Intensiveness and Cow Productivity 
Levels on Milk Yield and Composition

Before analyzing the effects of the level of intensive-
ness of the herds and the level of productivity of indi-
vidual cows, it is worth pointing out that their strati-
fication was based on dMEO—that is, the quantity of 
net energy secreted daily by each cow (CL) or as an 
average of all the cows in the herd (HL), after correct-
ing for all the factors included in the statistical model 
(year, calendar month, parity, lactation stage). The 
main reason for choosing dMEO is that it is probably 
the best indicator of the cow’s metabolic load during 
lactation, and also of the herd’s nutrient production 
level, because dMEO represents the major net energy 
requirement (net energy for lactation, NEL, MJ/d) of 
the individual cows and of the herd (NRC, 2001).

Stratifying the cows and herds on the basis of un-
corrected daily milk yield (kg/d) would have given 
an advantage to those cows and herds producing pro-
portionally more water and less fat and protein (and 
cheese). This would have resulted in the highest HL 
and CL classes being characterized by milk of a worse 
quality than the lowest classes. In contrast, dMEO is 
the quantity of fat, protein, and lactose secreted daily 
and expressed in terms of energy, and is calculated 
by multiplying the quantity of milk produced by the 
percentage contents of fat, protein, and lactose. In this 
case, we expect the highest HL and CL classes to be 
characterized by more milk of a better quality than 
the lowest classes. From the genetic point of view, it 
is well known that selecting only for increased milk 
yield is highly negatively correlated with milk quality, 
whereas selecting for increased daily production of fat 
and protein is moderately positively correlated with 
milk quality (Miglior et al., 2005).

The 6 plots in Figure 3 depict the factorial combina-
tions of 2 types of data stratification (HL and CL) by 
3 milk quality traits (fat, protein, and lactose). In each 
plot, the LSM of the 5 HL (or CL) classes of each breed 
for a given quality trait are plotted against their cor-
responding corrected daily milk yields. This makes it 
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possible to illustrate the effect of the HL or CL of the 
different breeds, taking into account their respective 
daily milk yields.

Taking the first plot (the effect of HL on fat con-
tent by herd breed), we have confirmation of the effect 
of herd breed (whose median value is approximately 
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Figure 3. Milk composition (LSM ± SE) by breed, herd intensiveness class, or cow productivity class, plotted against actual cow yield 
(kg/d).
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represented by the central class, HL-3, of each breed), 
previously reported in Table 4. Regarding the corrected 
milk yield, we can see along the x-axis that the AG 
herds are the lowest-producing herds, the SI and BS 
herds are intermediate and very similar to each other, 
and HO are the highest-producing herds. We can also 
see that the class of the highest-producing AG herds 
has an average daily milk yield similar to the class of 
the lowest-producing HO herds. Along the y-axis we 
can see a different, but not opposite, ranking for milk 
fat content: AG herds are still the lowest, followed by 
HO herds, then SI herds, then BS herds, the highest. 
Comparison of the averages of the 4 breeds (Table 4) 
shows that milk quantity and fat content are not cor-
related, either positively or negatively. The original 
characteristics and the selection history of the 4 breeds, 
and their uses in different dairy systems, are specific 
to each of them and result in them having different, 
uncorrelated characteristics.

Looking at the trend in fat content in the intensive-
ness HL (Figure 3), we can see first of all that it is 
positive in all 4 breeds: that is, within each breed, the 
dairy herds producing more milk energy per day per 
cow are producing more milk with more fat than the 
lower-producing herds. This improvement is not linear, 
because moving from HL-1 to HL-2 to HL-3 and to 
HL-4 a slight increase in fat content occurs in each 
case, but this increase is much larger when moving from 
HL-4 to HL-5 for all the breeds (Figure 3) and seems 
to be particularly large in herds with HO and SI cows, 
which could explain the relatively high F-value of the 
interaction “HL by breed” reported in Table 3.

Moving on to the effect of CL class on milk fat, we find 
that here, too, within breed and herd the improvement 
in cow productivity is accompanied by an improvement 
in fat content. In addition, the differences between the 
2 extreme classes (CL-E vs. CL-A) of each breed differ 
little from the differences in HL (HL-5 vs. HL-1), and 
the increase in milk fat content for each breed is, unlike 
HL, almost linear from the first to the fifth CL class.

In our previous study on multibreed herds (41 herds 
with 1,508 cows of 6 breeds), we stratified the herds 
into 2 classes (high and low intensiveness) using the 
same criterion as here—corrected dMEO—and there, 
too, we found a greater fat content in the milk from 
high-intensive herds (4.44%) than from low-intensive 
herds (4.20%; Stocco et al., 2017). We could, of course, 
attribute this result to the criteria used to stratify the 
herds and the cows. However, in another study (85 
herds with 1,264 BS cows) the herds were not stratified 
according to dMEO but were clustered into 4 different 
dairy systems, defined according to their facilities, feed-
ing regimen, milking technique, and use or nonuse of 
summer pasture, without including any information on 

the cows’ production levels. Compared with the tradi-
tional dairy system (prevalence of tiestalls, diet of hay 
with little compound feed, widespread transhumance 
to summer highland pasture), the modern dairy system 
(loose housing, total mixed rations with or without 
silages, milking parlor, no pasture) had a higher milk 
yield (28 vs. 21 kg/d, respectively), which was also ac-
companied here by an increased fat content (4.6 vs. 
4.2%).

Regarding the effect of HL class on milk protein, we 
again found a clear improvement in milk quality with 
increasing herd intensiveness of herd, and that this im-
provement was greater and much more linear than the 
effect of HL on fat content, especially in herds with BS 
and AG cows. The plot of the effect of CL class on milk 
protein content by breed (Figure 3) offers a completely 
different picture: here the trend is almost flat (slightly 
decreasing, except BS). This pattern is more consistent 
with expectations based on genetic classification: the 
cows with the highest breeding value for daily yield 
of fat and protein are not expected to differ largely 
from those with the lowest breeding values in terms 
of milk protein content. These results for milk protein 
content also confirm, on a much wider scale, previous 
results showing a favorable relationship between farm 
intensiveness and milk protein content in multibreed 
herds (3.59–3.80%; Stocco et al., 2017) and in BS herds 
(3.65–3.83%; Bittante et al., 2015).

Lactose content also had a favorable association with 
dMEO at both the farm and the individual cow levels. 
But the variation in lactose content was much smaller 
than the variation in fat and protein content (Figure 
3). In both HL and CL, this improvement seems to 
be slightly curvilinear, being greater from the lower to 
intermediate classes than from the intermediate to the 
higher classes in all breeds. In the previous studies, lac-
tose was either not reported (BS herds) or exhibited no 
variation according to the intensity level of the farms 
(multibreed herds).

Effects of Herd and Cow Productivity Levels  
on Cheese Yield Traits and Cheese- 
Making Efficiency

An increase in the intensiveness of dairy farms is as-
sociated with an almost linear increase in the yield of 
fresh cheese from milk of all breeds (Figure 4). The 
improvement was large, from about 1.05 percentage 
points for HO herds (+7% of the average) to 1.20 to 
1.25 for BS and SI herds (+8%), and 1.45 for AG herds 
(almost +10%). The improvement in cheese solids was 
obviously lower (less than half), and maintained the 
same ranking as the average breed values. It is worth 
noting that the improvement in cheese solids yield is 
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greater for AG, intermediate for BS and SI, and slightly 
smaller for HO herds. From this we can speculate that 
increasing intensiveness improves cheese-making ef-
ficiency in the case of AG herds and slightly reduces it 
in the case of HO herds. It is also worth noting that, 
in the study on multibreed farms using the individual 
model cheese-making procedure, both the laboratory-
measured cheese yields and the theoretical cheese yield 
calculated from a fat-protein formula were higher in the 
more-intensive than the less-intensive farms (Stocco et 
al., 2018). However, the improvement in the measured 
trait was less than expected based on milk composition, 
so that cheese-making efficiency was lower in the more-
intensive farms, reflecting the results found here for HO 
but not those for AG. Comparing the BS herds in the 
4 dairy farming systems, Cipolat-Gotet et al. (2020) 
found that the higher yields of fresh cheese from inten-
sive farms using total mixed rations were maintained 
during ripening. However, after correcting the cheese 

yields for milk composition, this higher yield from the 
more-intensive dairy systems was no longer significant, 
leaving only a modestly lower weight loss during ripen-
ing.

Regarding cow productivity levels, it is immediately 
clear that they have a positive, almost linear effect 
on the yields of both fresh cheese and cheese solids, 
but that CL is much less important than HL in all 4 
breeds (Figure 4). The improvement at the individual 
cow level is, in fact, about one-third of that at the 
herd level in the case of AG and about half in the case 
of BS, the other breeds being intermediate. The effect 
of CL on cheese solids yield is even lower, especially 
for AG and HO cows, and very similar to the sum of 
the effects on the fat (positive) and protein (slightly 
negative) contents of milk. There does not seem to be 
any variation in the cheese-making efficiency of milk 
from cows with different productivity potentials in all 
breeds.
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Figure 4. Cheese yield (LSM ± SE) by breed, herd intensiveness class, or cow production class, plotted against actual cow yield (kg/d). 
Cheese yield of fresh cheese is the weight of the fresh cheese after salting, expressed as a percentage of the weight of the milk processed; cheese 
yield of DM is the weight of the DM of the fresh cheese, expressed as a percentage of the weight of the milk processed.
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CONCLUSIONS

Fourier-transform infrared prediction of cheese yield 
seems able to capture information that goes beyond 
fat and protein content, explaining differences in milk 
nutrient recovery in different cows and herds, and selec-
tion on predictions could be more efficient than those 
based on milk fat and protein. The different cheese 
yields from different breeds can be explained only partly 
by milk fat and protein composition, and less produc-
tive breeds can partially compensate with a higher milk 
nutrient content and recovery in cheese. High-intensive 
herds produce much more milk, with a higher nutrient 
content and a higher cheese yield. Within individual 
herds, more productive cows have a much greater milk 
yield, a greater content of fat but not of protein, and a 
cheese yield differing little from expectations. Finally, 
the effects of herd intensiveness and cow productivity 
are similar but not identical in different breeds, the less 
productive ones having some advantage.
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