
Well-posedness for

thermo-electro-viscoelasticity of

Green-Naghdi type
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Abstract. We study the linear theory of thermo-electro-viscoelasticity
of Green-Naghdi type for the case of a one-dimensional body. For the corre-
sponding mathematical model, we prove a uniqueness theorem of the solu-
tion to the mixed boundary-initial-value problem by means of the Laplace
transform after rewriting the constitutive equations in an appropriate form.
Moreover, we derive a result of continuous dependence upon the supply
terms.

1 Introduction

Green & Naghdi [1, 2] in the early 90’s developed in a general context a
thermo-mechanical theory of deformable continua that is based on an en-
tropy balance law rather than an entropy inequality. A theory of thermoe-
lastic bodies based on such new entropy balance law has been derived. The
linearized form of this theory leads to three different models of heat conduc-
tion: type I, which adopts Fourier’s law, type II and type III, respectively.
They involve a new scalar variable α, which is called thermal displacement
and represents a kind of time primitive of the empirical temperature T . In
[1, p.180] we read “The temperature T (on the macroscopic scale) is gener-
ally regarded as representing (on the molecular scale) some ‘mean’ velocity
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magnitude or ‘mean’ (kinetic energy). With this in mind, we introduce a
scalar α = α(X, t) through an integral of the form”

α = α(X, t) =

∫ t

0
T (X, τ) dτ + α0(X), t > 0. (1)

. . . “In view of the above interpretation associated with T and the physical
dimension of the quantity defined by (1), the variable α may justifiably
be called thermal displacement magnitude or simply thermal displacement.
Alternatively, we may regard the scalar α (on the macroscopic scale) as
representing a ‘mean’ displacement magnitude on the molecular scale and
then”

T (X, t) = α̇(X, t).

The Green-Naghdi linear model of type III permits the transmission
of heat as thermal waves at finite speed [3, 4]. Moreover, the heat flux
vector is determined by the same potential function that determines the
stress [5]. The Green-Naghdi theories meet great research interest and have
been studied in a lot of papers (see, for instance, [5, 6, 7], [8], [9], [10] and
references therein).

Incidentally, in paper [11], on moving from the classic papers by Einstein
and Langevin on Brownian motion from the beginning of 900 (see quotations
therein), two consistent statistical interpretations are given for the thermal
displacement in a fluid, in terms of the mean value of the squared diffusive
displacement of a system of particles in Brownian motion suspended in that
fluid.

Later, in [12] the procedure designed by Green and Naghdi for thermoe-
lasticity is extended to simple thermo-electro-elastic bodies, both isotropic
and transversely isotropic, that are finitely deformable, heat conducting,
electrically polarizable, interacting with the electric field; again, the restric-
tions on the constitutive relations are obtained using an energy equation
that is suitable for the considered type of material. Then paper [13] extends
[12] to thermo-electro-mechanical simple materials (finitely deformable, heat
conducting, electrically polarizable, interacting with the electric field) that
have a fading memory.

In [14] Wilkes uses the local form of the Clausius-Duhem inequality to
obtain restrictions on the relaxation functions of thermoviscoelastic mate-
rials that have fading memory in the sense of Coleman and Noll [15]. For
the purpose, Wilkes uses the restrictions of the constitutive equations, the
dissipation inequality, and the minimality of the free energy in equilibrium
that are found and used by Coleman [16].
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In [17] the nonlinear theory [13] for thermo-electro-mechanical simple
materials with fading memory is used to set up a Green-Naghdi thermo-
electro viscoelastic theory by linearization using the Riesz representation
theorem. Of course, the presences of the electrical vector and of the thermal
displacement derivatives in the independent variables, imply the existence
of more relaxation functions than in [14]. Hence several restrictions on them
are found that extend the ones in [14] for thermoviscoelastic materials within
a theory that uses the Clausius-Duhem inequality. The restrictions are ob-
tained from the internal dissipation inequality, which is a consequence of the
dissipation inequality adopted here. Following [18], the last one is to assume
that the internal rate of supply of entropy per unit mass is non-negative in
every process. The theoretical frame is then completed with a proposal
of constitutive equations for the internal rate of entropy supply and heat
flux. The linearized (infinitesimal) theory of thermo-electro-viscoelasticity
is deduced as first-order approximation of the finite theory and the field
equations are explicitly deduced in the simplest case of a one-dimensional
body.

One-dimensional such bodies are considered in literature. In biomechan-
ics the study of a tissue constituent typically is evaluated from the uniax-
ial behavior. For instance, Zeng [19] considers the Cauchy problem of a
one-dimensional purely mechanical nonlinear viscoelastic model with fading
memory; Babaei et al. [20], to characterize the viscoelastic behavior of bi-
ological tissues, consider a one-dimensional purely mechanical viscoelastic
model.

The goal of this article is to study the mathematical model proposed
in [17] for thermo-electro-viscoelasticity of Green-Naghdi type in the linear
case. The approach of Ciarletta and Scalia [21] has proved useful here.

To be more specific, we prove the uniqueness of the solution by means
of the Laplace transform after rewriting the constitutive equations in an
appropriate form. Moreover, we derive a result of continuous dependence
upon the supply terms.

Uniqueness and continuous dependence results for thermoelasticity of
type III were for example proven in [22, 23]. Similar topics were analysed
in [24], [25], [26], [27].

The article is structured in four sections. After the introduction. we give
some preliminaries on the mathematical model that we study. Finally, there
are two sections that present separately the uniquenss and the continuous
dependence results.
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2 Preliminaries

Let B be a one-dimensional body composed of a thermo-electro-viscoelastic
material. We consider the natural homogeneous reference configuration, i.e.
the straight line segment B = [0, L] on an axis X with zero stress, at a
uniform temperature T0, and with a uniform electric potential φ0.

We consider a material which is viscoelastic with a fading memory. The
constitutive equations of the mathematical model are of integral type with
a genuine memory of the past history.

The infinitesimal kinetic process is described by the three scalar functions

U = U(X, t), α = α(X, t), φ = φ(X, t), 0 ≤ X ≤ L, t ∈ R, (2)

where U is the displacement that is defined as

U(X, t) = χ(X, t)−X, (3)

with χ(X, t) being the motion, α is the thermal displacement [1, 2], and φ
is the electric potential. In the following we will always assume that these
functions are of class C2 in B × R.

Following [17], for

γ = U,U,X , U̇ , α, α,X , α̇, φ, φ,X , φ̇, (4)

we will use the difference history up to time t,

γtd(u) = γ(t− u)− γ†(t− u) = (γ − γ†)(t− u), u ∈ [0,∞), (5)

where γ†(·) is the constant history up to time t, that is defined as

γ†(t− u) = γ(t), u ∈ [0,+∞). (6)

Hence γtd(0) = 0 and for the past difference history of the derivative γ̇td(·)
we have

γ̇td(u) = γ̇(t− u)− γ̇†(t− u) =
(
γ̇ − γ̇†

)
(t− u), (7)

where γ̇†(·) is the derivative of the constant history

γ̇†(t− u) = γ̇(t), u ∈ [0,∞). (8)

Unlike [17], here we will use the notation (γ − γ†)(·) rather than γtd(·).
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We present the local balance laws in the linear case for a thermo-electro-
viscoelastic process (2) associated with the body force f and heat supply
s 

ρÜ = d
dX σ̃ + ρf

ρ ˙̃η = ρs− d
dX p̃

d
dX D̃ = 0

, (9)

where ρ is the mass density, σ̃ is the uniaxial stress, η̃ is the specific entropy
per unit mass, p̃ is the entropy flux, and

D̃ = ε0W + P̃ (10)

is the electric displacement, where W = −φ,X is the electric field, P̃ is the
electric polarization and ε0 is the (constant) vacuum electric permittivity.
Note that s = r/θ = s(X, t) and f = f(X, t), where r is the external heat
supply.

The constitutive equations for the stress, electric polarization, and en-
tropy respectively write as [17, Eqs. (149)-(154)]

ρ−1σ̃ = Σ1U,X +

∫ ∞
0

ṁ3(u)(U − U †),X(t− u)du+

+

∫ ∞
0

(α̇− α̇†)(t− s)Ḃ2(s)ds+

∫ ∞
0

(α− α†),X(t− s)Ṁ1(s)ds−

−
∫ ∞
0

(φ− φ†),X(t− s)Ṁ3(s)ds,

(11)

ρ−1P̃ = Σ2φ,X +

∫ ∞
0

ṁ4(u)(φ− φ†),X(t− u)du−

−
∫ ∞
0

(α̇− α̇†)(t− s)Ḃ3(s)ds−
∫ ∞
0

(α− α†),X(t− s)Ṁ2(s)ds−

−
∫ ∞
0

Ṁ3(u)(U − U †),X(t− u)du,

(12)

ζ−10 η̃ = −Σ3(T − T0)−
∫ ∞
0

ṁ1(u)(α̇− α̇†)(t− u)du−

−
∫ ∞
0

Ḃ1(u)(α− α†),X(t− u)du−
∫ ∞
0

Ḃ2(u)(U − U †),X(t− u)du+

+

∫ ∞
0

Ḃ3(u)(φ− φ†),X(t− u)du.

(13)

We denote by θ0 the absolute temperature, ζ = T ′(θ), ζ0 = T ′(θ0), κ0 =
κ(θ0), with T = α̇ being the empirical temperature (”thermal displacement
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rate”). We consider that a mass density ρ = ρ(X) is given in the reference
configuration. Moreover, for the internal rate of entropy supply and heat
flux, we have

ρξ̃ =
κ0
θ0

(α̇,X)2 , (14)

q̃ = −ζ0θ0ρ

(
∂ψ̃

∂β
+ ρ−1κ0α̇,X

)
, (15)

p̃ =
1

θ0
q̃, (16)

where

∂ψ̃

∂β
=
∂Σ̃

∂β
+

∫ ∞
0

ṁ2(u)(α− α†),X(t− u)du+

∫ ∞
0

(α̇− α̇†)(t− s)Ḃ1(s)ds+

+

∫ ∞
0

Ṁ1(u)(U − U †),X(t− u)du−
∫ ∞
0

Ṁ2(u)(φ− φ†),X(t− u)du.

(17)
From (10) we have

ρ−1D̃ =
(
Σ2 − ρ−1ε0

)
φ,X +

∫ ∞
0

ṁ4(u)(φ− φ†),X(t− u)du−

−
∫ ∞
0

(α̇− α̇†)(t− s)Ḃ3(s)ds−
∫ ∞
0

(α− α†),X(t− s)Ṁ2(s)ds−

−
∫ ∞
0

Ṁ3(u)(U − U †),X(t− u)du.

(18)

In Eqs. (11)-(18) the classical notations are adopted for the relaxation
functions ṁ3, Ḃ2, etc. To be precise, we have

ṁ3(u) =
∂m3(0, u)

∂u
, Ḃ2(s) =

∂B2(s, 0)

∂s
, etc. (19)

Throughout in the following we will assume that the relaxation functions
mi,Mj , Bj (i = 1, 2, 3, j = 1, 2, 3) are continuously differentiable as many
times as will be required in their manipulations of the proofs. Moreover,
they satisfy the inequalities [17, p. 25]

mi(s, u) > 0, ṁi(s) < 0,∀s, u, i = 1, . . . , 4. (20)

A simple choice of the relaxation functions that satisfy all the conditions
above is made in Sect. 15.2 of [17].
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3 Uniqueness

Note that Σ1U,X represents the ”instantaneous elastic response” of the ma-
terial that is due to the deformation U,X . It is added to the response due
to the past history of the kinetic process (U,α, φ). In the sequel, we assume
that the response functionals are purely viscoelastic, i.e. they do not have
instantaneous elastic responses. Hence we put Σ1 = 0, Σ2 = 0, Σ3 = 0,
∂Σ̃/∂β = 0.

Proposition 1 We assume that
i) the relaxation functions have zero limit for s→ +∞, i.e. m3(0,∞) =

0, B2(∞, 0) = 0, M1(∞, 0) = 0, M3(∞, 0) = 0, m4(0,∞) = 0, B3(∞, 0) =
0, M2(∞, 0) = 0, m1(0,∞) = 0, B1(0,∞) = 0, m2(0,∞) = 0,

ii)

Σ1 = 0,Σ2 = 0,Σ3 = 0,
∂Σ̃

∂β
= 0. (21)

Then the constitutive equations (11)-(17) and (18) are equivalent to

ρ−1σ̃ =

∫ t

−∞
m3(0, t− u′)U̇,X(u′)du′ +

∫ t

−∞
α̈(s′)B2(t− s′, 0)ds′+

+

∫ t

−∞
α̇,X(s′)M1(t− s′, 0)ds′ −

∫ t

−∞
φ̇,X(s′)M3(t− s′, 0)ds′,

(22)

ρ−1P̃ =

∫ t

−∞
m4(0, t− u′)φ̇,X(u′)du′ −

∫ t

−∞
α̈(s′)B3(t− s′, 0)ds′−

−
∫ t

−∞
α̇,X(s′)M2(t− s′, 0)ds′ −

∫ t

−∞
M3(0, t− u′)U̇,X(u′)du′,

(23)

ζ−10 η̃ = −
∫ t

−∞
m1(0, t− u′)α̈(u′)du′ −

∫ t

−∞
B1(0, t− u′)α̇,X(u′)du′−

−
∫ t

−∞
B2(0, t− u′)U̇,X(u′)du′ +

∫ t

−∞
B3(0, t− u′)φ̇,X(u′)du′,

(24)

∂ψ̃

∂β
=

∫ t

−∞
m2(0, t− u′)α̇,X(u′)du′ +

∫ t

−∞
α̈(s′)B1(t− s′, 0)ds′+

+

∫ t

−∞
M1(0, t− u′)U̇,X(u′)du′ −

∫ t

−∞
M2(0, t− u′)φ̇,X(u′)du′.

(25)
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Proof. Step 1. With the specific notations (5) to (8) and (19), by the
constitutive equation (11) for σ̃ we obtain

ρ−1σ̃ =

∫ ∞
0

∂m3(0, u)

∂u
(U − U †),X(t− u)du+

+

∫ ∞
0

(α̇− α̇†)(t− s)∂B2(s, 0)

∂s
ds+

∫ ∞
0

(α− α†),X(t− s)∂M1(s, 0)

∂s
ds−

−
∫ ∞
0

(φ− φ†),X(t− s)∂M3(s, 0)

∂s
ds.

(26)
We apply integration by parts and we obtain

ρ−1σ̃ = m3(0,∞)(U − U †),X(t−∞)+

+

∫ ∞
0

m3(0, u)U̇,X(t− u)du+ (α̇− α̇†)(t−∞)B2(∞, 0)+

+

∫ ∞
0

α̈(t− s)B2(s, 0)ds+ (α− α†),X(t−∞)M1(∞, 0)+

+

∫ ∞
0

α̇,X(t− s)M1(s, 0)ds− (φ− φ†),X(t−∞)M3(∞, 0)−

−
∫ ∞
0

φ̇,X(t− s)M3(s, 0)ds.

(27)

To be more precise, we have the following computations∫ ∞
0

∂m3(0, u)

∂u
[U,X(t− u)− U,X(t)] du =

= m3(0, u) [U,X(t− u)− U,X(t)] |u=∞u=0 −

−
∫ ∞
0

m3(0, u)
∂

∂u
[U,X(t− u)− U,X(t)] du.

(28)

Then we consider that ∂
∂uU,X(t) = 0 and ∂

∂uU,X(t− u) = − ∂
∂tU,X(t− u)

and we denote ∂
∂tU,X(t − u) = U̇,X(t − u). Hence, the expression above is

further equal to

m3(0,∞) [U,X(t−∞)− U,X(t)] +

∫ ∞
0

m3(0, u)U̇,X(t− u)du. (29)
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After we make the change of variable t − u = u′ and t − s = s′ in (27),
we obtain

ρ−1σ̃ = R+

∫ t

−∞
m3(0, t− u′)U̇,X(u′)du′ +

∫ t

−∞
α̈(s′)B2(t− s′, 0)ds′+

+

∫ t

−∞
α̇,X(s′)M1(t− s′, 0)ds′ −

∫ t

−∞
φ̇,X(s′)M3(t− s′, 0)ds′,

(30)
where

R = m3(0,∞)(U − U †),X(t−∞) + (α̇− α̇†)(t−∞)B2(∞, 0)+

+ (α− α†),X(t−∞)M1(∞, 0)− (φ− φ†),X(t−∞)M3(∞, 0).
(31)

Hypotheses (i)-(v) imply R = 0, hence Eq. (22) holds true. Conversely,
hypotheses (i)-(v) yield R = 0 in (31), and thus the steps from (30) to (26),
that is (11), can be traversed backwards.

Step 2. With the specific notations, we obtain by the constitutive equa-
tions for P̃ (12)

ρ−1P̃ =

∫ ∞
0

∂m4(0, u)

∂u
[φ,X(t− u)− φ,X(t)]du−

−
∫ ∞
0

[α̇(t− s)− α̇(t)]
∂B3(s, 0)

∂s
ds−

−
∫ ∞
0

[α,X(t− s)− α,X(t)]
∂M2(s, 0)

∂s
ds−

−
∫ ∞
0

∂M3(0, u)

∂u
[U,X(t− u)− U,X(t)]du.

(32)

We apply integration by parts and we obtain

ρ−1P̃ = m4(0,∞)[φ,X(t−∞)− φ,X(t)]+

+

∫ ∞
0

m4(0, u)φ̇,X(t− u)du− [α̇(t−∞)− α̇(t)]B3(∞, 0)−

−
∫ ∞
0

α̈(t− s)B3(s, 0)ds− [α,X(t−∞)− α,X(t)]M2(∞, 0)−

−
∫ ∞
0

α̇,X(t− s)M2(s, 0)ds−M3(0,∞)[U,X(t−∞)− U,X(t)]−

−
∫ ∞
0

M3(0, u)U̇,X(t− u)du.

(33)

We do a change of variable and by the assumptions Σ2 = 0, m4(0,∞) =
0, B3(∞, 0) = 0, M2(∞, 0) = 0 and M3(0,∞) = 0, we obtain (23).
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Step 3. With the specific notations, we obtain by the constitutive equa-
tions for η̃ (13)

ζ−10 η̃ = −
∫ ∞
0

∂m1(0, u)

∂u
[α̇(t− u)− α̇(t)]du−

−
∫ ∞
0

∂B1(0, u)

∂u
[α,X(t− u)− α,X(t)]du−

−
∫ ∞
0

∂B2(0, u)

∂u
[U,X(t− u)− U,X(t)]du+

+

∫ ∞
0

∂B3(0, u)

∂u
[φ,X(t− u)− φ,X(t)]du.

(34)

We apply integration by parts and we obtain

ζ−10 η̃ = −m1(0,∞)[α̇(t−∞)− α̇(t)]−

−
∫ ∞
0

m1(0, u)α̈(t− u)du−B1(0,∞)[α,X(t−∞)− α,X(t)]−

−
∫ ∞
0

B1(0, u)α̇,X(t− u)du−B2(0,∞)[U,X(t−∞)− U,X(t)]−

−
∫ ∞
0

B2(0, u)U̇,X(t− u)du+B3(0,∞)[φ,X(t−∞)− φ,X(t)]+

+

∫ ∞
0

B3(0, u)φ̇,X(t− u)du.

(35)

We do a change of variable and by the assumptions m1(0,∞) = 0,
B1(0,∞) = 0, B2(0,∞) = 0 and B3(0,∞) = 0, we obtain (24).

Step 4. We have the constitutive equations for ψ̃.
With the specific notations, we obtain

∂ψ̃

∂β
=

∫ ∞
0

∂m2(0, u)

∂u
[α,X(t− u)− α,X(t)] du+

+

∫ ∞
0

[α̇(t− s)− α̇(t)]
∂B1(s, 0)

∂s
ds+

+

∫ ∞
0

∂M1(0, u)

∂u
[U,X(t− u)− U,X(t)] du−

−
∫ ∞
0

∂M2(0, u)

∂u
[φ,X(t− u)− φ,X(t)] du.

(36)
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We do an integration by parts and we obtain

∂ψ̃

∂β
= m2(0,∞) [α,X(t−∞)− α,X(t)] +

+

∫ ∞
0

m2(0, u)α̇,X(t− u)du+ [α̇(t−∞)− α̇(t)]B1(∞, 0)+

+

∫ ∞
0

α̈(t− s)B1(s, 0)ds+M1(0,∞) [U,X(t−∞)− U,X(t)] +

+

∫ ∞
0

M1(0, u)U̇,X(t− u)du−M2(0,∞) [φ,X(t−∞)− φ,X(t)]−

−
∫ ∞
0

M2(0, u)φ̇,X(t− u)du.

(37)

We do a change of variable and by the assumptions m2(0,∞) = 0,
B1(∞, 0) = 0, M1(0,∞) = 0 and M2(0,∞) = 0, we obtain (25).

In the sequel, we define a convolution product of the form

(f ∗ g)(X, t) =

∫ t

0
f(X, t− τ)g(X, τ)dτ. (38)

Lemma 1 Under the assumptions of Proposition 1, the constitutive equa-
tions can be written in the form

ρ−1σ̃ = ρ−1σ̃ +
d

dt
(m3 ∗ U,X +B2 ∗ α̇+M1 ∗ α,X +M3 ∗ φ,X) , (39)

ρ−1P̃ = ρ−1P̃ +
d

dt
(m4 ∗ φ,X −B3 ∗ α̇−M2 ∗ α,X −M3 ∗ U,X) , (40)

ζ−10 η̃ = ζ−10 η̃ +
d

dt
(−m1 ∗ α̇−B1 ∗ α,X −B2 ∗ U,X +B3 ∗ φ,X) , (41)

∂ψ̃

∂β
= ψ̃

,β
+
d

dt
(m2 ∗ α,X +B1 ∗ α̇+M1 ∗ U,X −M2 ∗ φ,X) , (42)

where

ρ−1σ̃ =

∫ 0

−∞
[ṁ3(t− s)U,X(s) + Ḃ2(t− s)α̇(s)+

+ Ṁ1(t− s)α,X(s)− Ṁ3(t− s)φ,X(s)]ds,

(43)

ρ−1P̃ =

∫ 0

−∞
[ṁ4(t− s)φ,X(s)− Ḃ3(t− s)α̇(s)−

− Ṁ2(t− s)α,X(s)− Ṁ3(t− s)U,X(s)]ds,

(44)
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ζ−10 η̃ =

∫ 0

−∞
[−ṁ1(t− s)α̇(s)− Ḃ1(t− s)α,X(s)−

− Ḃ2(t− s)U,X(s) + Ḃ3(t− s)φ,X(s)]ds,

(45)

ψ̃
,β

=

∫ 0

−∞
[ṁ2(t− s)α,X(s) + Ḃ1(t− s)α̇(s)+

+ Ṁ1(t− s)U,X(s)− Ṁ2(t− s)φ,X(s)]ds.

(46)

Proof. We only show this equivalence for the first term in (22). The
other terms follow similarly.

We have∫ t

−∞
m3(0, t− s)U̇,X(s)ds =

∫ t

−∞
m3(0, t− s)

d

ds
U,X(s)ds =

=

∫ t

−∞

[
d

ds

(
m3(0, t− s)U,X(s)

)
− d

ds
m3(0, t− s)U,X(s)

]
ds =

= m3(0, t− s)U,X(s)|s=ts=−∞ +

∫ t

−∞

d

dt
m3(0, t− s)U,X(s)ds =

= m3(0, 0)U,X(t)−m3(0,∞)U,X(−∞) +

∫ 0

−∞

d

dt
m3(0, t− s)U,X(s)ds+

+

∫ t

0

d

dt
m3(0, t− s)U,X(s)ds.

(47)
We already assumed that

m3(0,∞) = 0. (48)

Moreover, we have

d

dt
(m3 ∗ U,X) =

d

dt

∫ t

0
m3(t− s)U,X(s)ds =

= m3(0)U,X(t) +

∫ t

0

d

dt
m3(t− s)U,X(s)ds.

(49)

This proves that∫ t

−∞
m3(t− s)U̇,X(s)ds =

∫ 0

−∞

d

dt
m3(t− s)U,X(s)ds+

d

dt
(m3 ∗ U,X). (50)

For convenience, we suppressed the argument X in the relations above.
In the following, we consider two solutions of the problem (9), namely(

U (1), φ(1), α(1)
)
,
(
U (2), φ(2), α(2)

)
. Then we consider their difference U =
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U (1) −U (2), φ = φ(1) − φ(2), α = α(1) − α(2). This new solution corresponds
to null initial and boundary conditions and to null external body forces and
heat supply. Then the linear local balance laws write as

ρÜ = d
dX σ̃

ρ ˙̃η = − d
dX p̃

d
dX D̃ = 0

. (51)

In the sequel, we impose some initial and boundary conditions. We
consider that Si, with i = 1, 2, · · · , 6 are subsets of ∂B such that S1 ∩ S2 =
S3 ∩ S4 = S5 ∩ S6 = ∅ and S1 ∪ S2 = S3 ∪ S4 = S5 ∪ S6 = ∂B. Then we
assume

U = Ū on S1 × I, σ̃n = σ̄ on S2 × I,
φ = φ̄ on S3 × I, D̃n = D̄ on S4 × I,
α = ᾱ on S5 × I, p̃n = p̄ on S6 × I,

(52)

where Ū , σ̄, φ̄, D̄, ᾱ, p̄ are prescribed functions, which are null in the case of
the difference solution and I = [0,∞).

As far as the initial conditions are concerned, we consider that

U(X, 0) = a1(X), U̇(X, 0) = a2(X),

α(X, 0) = a3(X), α̇(X, 0) = a4(X),

φ(X, 0) = a5(X), X ∈ B,
(53)

where ai = 0, i = 1, 2, · · · , 5. Unlike U and α, in (53)3 there is no expression
for φ̇ because here we use the quasi-static approximation [29], in which
Maxwell equations write as W = −φ,X , dD̃/dX = 0 and do not involve
time derivatives. Moreover, we impose a null history initial condition. To
be more precise, we assume that

U(X, t) = 0, α(X, t) = 0, α̇(X, t) = 0, φ(X, t) = 0 (54)

on B̄ × (−∞, 0).
We present a uniqueness theorem for the solution to the mixed boundary-

initial-value problem that adopts the approach of M. Ciarletta and A. Scalia
on the linear theory of viscoelasticity for materials with voids [21].

We say that a function f(X, t) has a Laplace transform f̂(X, t) with
respect to t if there exists a real number s0 such that for all real s greater
than s0 the integrals

f̂(X, s) =

∫ ∞
0

e−stf(X, t)dt (55)

13



converge uniformly on B̄.
In the sequel, unless otherwise specified, we suppress the argument X.
We present an inequality that will be useful in proving the uniqueness

result.

Lemma 2 Let A > 0, C > 0. The inequality

Cx2 +Ay2 ≥ −Bxy, (56)

holds true for each (x, y) ∈ R× R if and only if

B2 ≤ 4AC.

Proof. Putting y = mx in (56), we obtain the inequality

Cx2 +Am2x2 ≥ −Bmx2, (57)

that is equivalent to
C +Am2 ≥ −Bm. (58)

Now in the Cartesian plane (m,n) the parabola n = Am2+C with A,C > 0
is not below the straight line n = −Bm for each m ∈ R when they do not
intersect or are tangents to each other. And this is true if and only if the
equation

Am2 +Bm+ C = 0

has at most one solution, that is, if and only if

∆ = B2 − 4AC ≤ 0.

In such a case, the inequality (57) holds for each m ∈ R and each x ∈ R,
hence for each (x, y) ∈ R× R since y = mx.

Now we can state the uniqueness result.

Theorem 1 (Uniqueness) We make the following assumptions
(H1) the body is homogeneous;
(H2) the density ρ is strictly positive;
(H3) the constitutive coefficients possess Laplace transforms;
(H4) ε0 > 0, k0 > 0, θ0 > 0, ζ0 = T ′(θ0) > 0;
(H5) the relaxation functions satisfy(

B̂3

)2
≤ ˆ̇m1

ˆ̇m4, (m̂3)
2 ≤ 8m̂2M̂1.

Then there is at most one solution to the mixed boundary-initial-value
problem which has a Laplace transform with respect to time.

14



Proof. We assume that the process s = (U,α, φ, σ̃, η̃, p̃, D̃) is associated
to zero data. By applying the Laplace transform to the linear local balance
laws (51), we obtain 

ρs2Û = ̂̃σ,X
ρsˆ̃η = − ˆ̃p,X
ˆ̃D,X = 0

(59)

by using the null initial conditions (53). By applying the Laplace transform
(55) to the constitutive equations (39)-(42) and by (54), it follows that

ρ−1 ˆ̃σ = s
(
m̂3Û,X + B̂2

ˆ̇α+ M̂1α̂,X − M̂3φ̂,X

)
, (60)

ρ−1 ˆ̃P = −s
(
M̂3Û,X + B̂3

ˆ̇α+ M̂2α̂,X − m̂4φ̂,X

)
, (61)

ζ−10
ˆ̃η = −s

(
B̂2Û,X + m̂1

ˆ̇α+ B̂1α̂,X − B̂3φ̂,X

)
, (62)

∂̂ψ̃

∂β
= s

(
M̂1Û,X + B̂1

ˆ̇α+ m̂2α̂,X − M̂2φ̂,X

)
(63)

and

ˆ̃D = ε0Ŵ + ˆ̃P = −ε0φ̂,X − ρs
(
M̂3Û,X + B̂3

ˆ̇α+ M̂2α̂,X − m̂4φ̂,X

)
, (64)

ˆ̃p = θ−10
ˆ̃q = −ζ0ρ

 ∂̂ψ̃
∂β

+ ρ−1κ0 ˆ̇α,X

 . (65)

The zero boundary conditions (52) lead to

ˆ̃σÛn = 0, ˆ̃Dφ̂n = 0, ˆ̃pα̂n = 0 on ∂B × I. (66)

Let us consider the function

E = E1 − E3 − E2
1

ζ0
, (67)

where
E1 = ˆ̃σÛ,X , (68)

E2 = ˆ̃pα̂,X , (69)

E3 = ˆ̃Dφ̂,X (70)
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and ˆ̃p = 1
θ0

ˆ̃q in the linear case. By the constitutive equations (60)-(65), we
obtain

E = ρs
(
m̂3Û,X Û,X + B̂2

ˆ̇αÛ,X + M̂1α̂,X Û,X − M̂3φ̂,X Û,X

)
+ ε0φ̂,X φ̂,X + ρs

(
−m̂4φ̂,X φ̂,X + B̂3

ˆ̇αφ̂,X + M̂2α̂,X φ̂,X + M̂3Û,X φ̂,X

)
+ ρs

(
m̂2α̂,X α̂,X + B̂1

ˆ̇αα̂,X + M̂1Û,X α̂,X − M̂2φ̂,X α̂,X

)
+ κ0 ˆ̇α,X α̂,X .

(71)
Moreover, from (67)-(70) in the linear local balance laws (59), we obtain

E =
(

ˆ̃σÛ
)
,X
− ˆ̃σ,X Û −

(
ˆ̃Dφ̂
)
,X

+ ˆ̃D,X φ̂−
(

ˆ̃pα̂
)
,X

1

ζ0
+ ˆ̃p,X α̂

1

ζ0
=

=
(

ˆ̃σÛ
)
,X
−
(

ˆ̃Dφ̂
)
,X
−
(

ˆ̃pα̂
)
,X

1

ζ0
− ρs2Û Û − ρsˆ̃ηα̂

1

ζ0
.

(72)

We equate the two expressions (71) and (72)2 of E and we replace

−ρsˆ̃ηα̂ 1
ζ0

by ρs2
(
m̂1

ˆ̇αα̂+ B̂1α̂α̂,X + B̂2Û,X α̂− B̂3α̂φ̂,X

)
from (62). Note

that sα̂ = ˆ̇α. By integration on B and using the divergence theorem and
the boundary conditions (66), we obtain∫

B

[
ρs
(
m̂3Û,X Û,X + 2M̂1α̂,X Û,X + m̂2α̂,X α̂,X − m̂4φ̂,X φ̂,X+

+2B̂3
ˆ̇αφ̂,X − m̂1

ˆ̇α ˆ̇α
)

+ ρs2Û Û + ε0φ̂,X φ̂,X + κ0sα̂,X α̂,X

]
dv = 0.

(73)

We rewrite the integral as∫
B
ρs
(
m̂3Û,X Û,X + 2M̂1α̂,X Û,X + m̂2α̂,X α̂,X

)
dv+

+

∫
B
ρ
(
s22B̂3α̂φ̂,X − ˆ̇m4φ̂,X φ̂,X − s2 ˆ̇m1α̂α̂

)
dv+

+

∫
B

(
ρs2Û Û + ε0φ̂,X φ̂,X + κ0sα̂,X α̂,X

)
dv = 0.

(74)

Note that ˆ̇m1 < 0, ˆ̇m4 < 0. Hence, the last two terms in the second
integrand are positive and the latter writes as

2ρs2B̂3α̂φ̂,X − ρ ˆ̇m4φ̂,X φ̂,X − ρs2 ˆ̇m1α̂α̂ ≥ 0, (75)

that is,
(−s2 ˆ̇m1)|α̂|2 + (− ˆ̇m4)|φ̂,X |2 ≥ −2s2B̂3α̂φ̂,X . (76)
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For C := −s2 ˆ̇m1 ≥ 0, A := − ˆ̇m4 ≥ 0, B := 2s2B̂3, x := α̂, y := φ̂,X , it
writes as

Cx2 +Ay2 ≥ −Bxy, (77)

and by (H5) in Lemma 2, the inequality (75) holds true in every process

since C2 ≤ 4AB ⇔
(
B̂3

)2
≤ ˆ̇m4

ˆ̇m1.

The same reasoning can be used to show that also the integrand of the
first integral in (74) is nonnegative, putting C := m̂3, A := m̂2, B := 2M̂1,
x := Û,X , y := α̂,X since, now, C2 ≤ 4AB ⇔ (m̂3)

2 ≤ 8m̂2M̂1. Of course,
the integrand of the third integral in (74) is nonnegative.

Since the sum of the three nonnegative integrals in (74) is zero, each of
them is zero. In particular, the third integral jointly with its integrand are
zero.

Then we can conclude that there exists a number s1 > 0 such that if
s > s1, we have Û = 0, φ̂,X = 0 and α̂,X = 0 on B̄ × [s1,∞). By the
smoothness of U, φ, α, this implies (cf. [21, p. 154]) that U = 0, φ,X = 0,
α,X = 0 on B̄ × [0,∞). Since we impose null boundary conditions, we have
φ = 0 and α = 0 on B̄ × [0,∞).

4 Continuous dependence

In this section, we present a continuous dependence result based on the
approach of M. Ciarletta and A. Scalia from [21].

Now, we present two lemmas that will be useful in proving the continuous
dependence result.

Lemma 3 Under the assumptions in Section 2, along any kinetic process
(2), the following relations hold true:

φ̇,X(t)

∫ ∞
0

ṁ4(u)φ,X
t
d(u)du = −1

2

∂

∂u

∫ ∞
0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du

+
1

2

∫ ∞
0

m̈4(u)φ,X
t
d(u)φ,X

t
d(u)du− 1

2

∂

∂t

∫ ∞
0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du,

(78)

U̇,X(t)

∫ ∞
0

ṁ3(u)U,X
t
d(u)du = −1

2

∂

∂u

∫ ∞
0

ṁ3(u)U,X
t
d(u)U,X

t
d(u)du

+
1

2

∫ ∞
0

m̈3(u)U,X
t
d(u)U,X

t
d(u)du− 1

2

∂

∂t

∫ ∞
0

ṁ3(u)U,X
t
d(u)U,X

t
d(u)du,

(79)
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α̇,X(t)

∫ ∞
0

ṁ2(u)α,X
t
d(u)du = −1

2

∂

∂u

∫ ∞
0

ṁ2(u)α,X
t
d(u)α,X

t
d(u)du

+
1

2

∫ ∞
0

m̈2(u)α,X
t
d(u)α,X

t
d(u)du− 1

2

∂

∂t

∫ ∞
0

ṁ2(u)α,X
t
d(u)α,X

t
d(u)du,

(80)∫ ∞
0

Ṁ1(s)
[
U̇,X(t)α,X

t
d(s) + α̇,X(t)U,X

t
d(s)

]
ds =

= − ∂

∂s

∫ ∞
0

Ṁ1(s)α,X
t
d(s)U,X

t
d(s)ds+

∫ ∞
0

M̈1(s)α,X
t
d(s)U,X

t
d(s)ds

− ∂

∂t

∫ ∞
0

Ṁ1(s)α,X
t
d(s)U,X

t
d(s)ds.

(81)

Proof. In each step, we prove one of the relations from the statement
of the lemma.

Step 1. We prove (78) by considering the term

φ̇,X(t)

∫ ∞
0

ṁ4(u)φ,X
t
d(u)du. (82)

First, we compute

∂

∂t

∫ ∞
0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du = 2

∫ ∞
0

ṁ4(u)φ,X
t
d(u)

∂

∂t
φ,X

t
d(u)du.

(83)
On the other hand, we have

∂

∂u

∫ ∞
0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du

=

∫ ∞
0

[
m̈4(u)φ,X

t
d(u)φ,X

t
d(u) + 2ṁ4(u)φ,X

t
d(u)

∂

∂u
φ,X

t
d(u)

]
du.

(84)

Since
φ,X

t
d(u) = φ,X(t− u)− φ,X(t), (85)

we obtain
∂

∂t
φ,X

t
d(u) +

∂

∂u
φ,X

t
d(u) = − ∂

∂t
φ,X(t). (86)

By using the relation (86), we replace ∂
∂uφ,X

t
d(u) in the relation (84). Hence,

we obtain

∂

∂u

∫ ∞
0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du =

∫ ∞
0

[
m̈4(u)φ,X

t
d(u)φ,X

t
d(u)−

−2ṁ4(u)φ,X
t
d(u)

∂

∂t
φ,X(t)− 2ṁ4(u)φ,X

t
d(u)

∂

∂t
φ,X

t
d(u)

]
du.

(87)
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Then we replace the last term with the expression from (83). We obtain

∂

∂u

∫ ∞
0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du =

∫ ∞
0

m̈4(u)φ,X
t
d(u)φ,X

t
d(u)du−

− 2

∫ ∞
0

ṁ4(u)φ,X
t
d(u)

∂

∂t
φ,X(t)du− ∂

∂t

∫ ∞
0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du.

(88)
Hence, from (83) and (88) we have(

∂

∂t
+

∂

∂u

)∫ ∞
0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du = −2φ̇,X(t)

∫ ∞
0

ṁ4(u)φ,X
t
d(u)du+

+

∫ ∞
0

m̈4(u)φ,X
t
d(u)φ,X

t
d(u)du,

that is, (78) holds true.
Steps 2, 3. The proofs for (79), (80) are similar to Step 1.
Step 4. We prove (81). First we compute

∂

∂t

∫ ∞
0

Ṁ1(s)α,X
t
d(s)U,X

t
d(s)ds

=

∫ ∞
0

Ṁ1(s)

[
∂

∂t
α,X

t
d(s)U,X

t
d(s) + α,X

t
d(s)

∂

∂t
U,X

t
d(s)

]
ds.

(89)

On the other hand, we obtain

∂

∂s

∫ ∞
0

Ṁ1(s)α,X
t
d(s)U,X

t
d(s)ds

=

∫ ∞
0

[
M̈1(s)α,X

t
d(s)U,X

t
d(s) + Ṁ1(s)

∂

∂s
α,X

t
d(s)U,X

t
d(s)+

+Ṁ1(s)α,X
t
d(s)

∂

∂s
U,X

t
d(s)

]
ds.

(90)

Replacing in (90) the expression

∂

∂s
ψ,X

t
d(s) = − ∂

∂t
ψ,X(t)− ∂

∂t
ψ,X

t
d(s) (91)

for ψ = U,α, we obtain

∂

∂s

∫ ∞
0

Ṁ1(s)α,X
t
d(s)U,X

t
d(s)ds =

∫ ∞
0

M̈1(s)α,X
t
d(s)U,X

t
d(s)ds−

−
∫ ∞
0

Ṁ1(s)
∂

∂t
α,X(t)U,X

t
d(s)ds−

∫ ∞
0

Ṁ1(s)
∂

∂t
α,X

t
d(s)U,X

t
d(s)ds−

−
∫ ∞
0

Ṁ1(s)α,X
t
d(s)

∂

∂t
U,X(t)ds−

∫ ∞
0

Ṁ1(s)α,X
t
d(s)

∂

∂t
U,X

t
d(s)ds.

(92)
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Hence, by (89) and (92) we have(
∂

∂s
+
∂

∂t

)∫ ∞
0

Ṁ1(s)α,X
t
d(s)U,X

t
d(s)ds =

∫ ∞
0

M̈1(s)α,X
t
d(s)U,X

t
d(s)ds−

−
∫ ∞
0

Ṁ1(s)
[
α̇,X(t)U,X

t
d(s) + α,X

t
d(t)U̇,X(t)

]
ds,

that is, (81).

Lemma 4 Under the assumptions in Section 2, along any kinetic process,
the following relations hold true:

− ρU̇,X
∫ ∞
0

φ,X
t
d(s)Ṁ3(s)ds+ ρφ̇,X

∫ ∞
0

Ṁ3(u)U,X
t
d(u)du =

=
∂

∂s
ρ

∫ ∞
0

Ṁ3(s)φ,X
t
d(s)U,X

t
d(s)ds− ρ

∫ ∞
0

M̈3(s)φ,X
t
d(s)U,X

t
d(s)ds+

+
∂

∂t
ρ

∫ ∞
0

Ṁ3(s)φ,X
t
d(s)U,X

t
d(s)ds−

− 2ρ

∫ ∞
0

Ṁ3(s)

(
∂

∂s
+
∂

∂t

)
φ,X

t
d(s)U,X

t
d(s)ds,

(93)

− ρα̇,X
∫ ∞
0

φ,X
t
d(s)Ṁ2(s)ds+ ρφ̇,X

∫ ∞
0

Ṁ2(u)α,X
t
d(u)du =

=
∂

∂s
ρ

∫ ∞
0

Ṁ2(s)φ,X
t
d(s)α,X

t
d(s)ds− ρ

∫ ∞
0

M̈2(s)φ,X
t
d(s)α,X

t
d(s)ds+

+
∂

∂t
ρ

∫ ∞
0

Ṁ2(s)φ,X
t
d(s)α,X

t
d(s)ds−

− 2ρ

∫ ∞
0

Ṁ2(s)

(
∂

∂s
+
∂

∂t

)
φ,X

t
d(s)α,X

t
d(s)ds,

(94)
∂

∂t

(∫ ∞
0

Ḃ1(u)α,X
t
d(u)du

)
ρα̇(t)− ρα̇,X(t)

∫ ∞
0

α̇td(u)Ḃ1(u)du =

= ρ

∫ ∞
0

Ḃ1(u) [α̇(t)]2
∂

∂X

[
∂
∂tα

t
d(u)

α̇(t)

]
du,

(95)
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∂

∂t

(∫ ∞
0

Ḃ2(u)U,X
t
d(u)du

)
ρα̇(t)− ρU̇,X

∫ ∞
0

α̇td(u)Ḃ2(u)du =

= ρ
∂

∂u

∫ ∞
0

Ḃ2(u)U,X
t
d(u)

∂

∂t
αtd(u)du−

− ρ
∫ ∞
0

B̈2(u)U,X
t
d(u)

∂

∂t
αtd(u)du− ρ ∂

∂t

∫ ∞
0

Ḃ2(u)U,X
t
d(u)

∂

∂u
αtd(u)du,

(96)
∂

∂t

(∫ ∞
0

ṁ1(u)α̇td(u)du

)
ρα̇(t) = −1

2
ρ
∂

∂t

∫ ∞
0

ṁ1(u)α̇(t)α̇(t)du+

+
1

2
ρ
∂

∂t

∫ ∞
0

ṁ1(u)
∂

∂u
αtd(u)

∂

∂u
αtd(u)du+

1

2
ρ
∂

∂u

∫ ∞
0

ṁ1(u)
∂

∂t
αtd(u)

∂

∂t
αtd(u)du−

− 1

2
ρ

∫ ∞
0

m̈1(u)
∂

∂t
αtd(u)

∂

∂t
αtd(u)du,

(97)

− ∂

∂t

(∫ ∞
0

Ḃ3(u)φ,X
t
d(u)du

)
ρα̇(t)− ρφ̇,X(t)

∫ ∞
0

α̇td(u)Ḃ3(u)du =

= ρ
∂

∂u

∫ ∞
0

Ḃ3(u)φ,X
t
d(u)

∂

∂t
αtd(u)du− ρ

∫ ∞
0

B̈3(u)φ,X
t
d(u)

∂

∂t
αtd(u)du+

+ ρ
∂

∂t

∫ ∞
0

Ḃ3(u)φ,X
t
d(u)

∂

∂u
αtd(u)du+ 2ρ

∂

∂t

∫ ∞
0

Ḃ3(u)φ,X
t
d(u)

∂

∂t
αtd(u)du−

− 2ρ

∫ ∞
0

Ḃ3(u)φ,X
t
d(u)

∂

∂t

(
∂

∂u
+
∂

∂t

)
αtd(u)du.

(98)

Proof. Step 1. Proof of (93). Recall that

∂

∂t
φ,X(t) = − ∂

∂t
φ,X

t
d(s)−

∂

∂s
φ,X

t
d(s), (99)

− ∂

∂t
U,X(t) =

∂

∂s
U,X

t
d(s) +

∂

∂t
U,X

t
d(s). (100)
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Therefore, we obtain

− ρU̇,X
∫ ∞
0

φ,X
t
d(s)Ṁ3(s)ds+ ρφ̇,X

∫ ∞
0

Ṁ3(u)U,X
t
d(u)du =

= ρ

∫ ∞
0

Ṁ3(s)

{[
− ∂

∂t
φ,X

t
d(s)−

∂

∂s
φ,X

t
d(s)

]
U,X

t
d(s)+

+

[
∂

∂s
U,X

t
d(s) +

∂

∂t
U,X

t
d(s)

]
φ,X

t
d(s)

}
ds =

= ρ

∫ ∞
0

Ṁ3(s)

[
∂

∂s
U,X

t
d(s)φ,X

t
d(s)−

∂

∂s
φ,X

t
d(s)U,X

t
d(s)+

+
∂

∂t
U,X

t
d(s)φ,X

t
d(s)−

∂

∂t
φ,X

t
d(s)U,X

t
d(s)

]
ds =

= ρ

∫ ∞
0

Ṁ3(s)
[
φ,X

t
d(s)

]2{ ∂

∂s

[
U,X

t
d(s)

φ,X
t
d(s)

]
+
∂

∂t

[
U,X

t
d(s)

φ,X
t
d(s)

]}
ds.

(101)

Note that

ρ

∫ ∞
0

Ṁ3(s)
[
φ,X

t
d(s)

]2 ∂

∂s

[
U,X

t
d(s)

φ,X
t
d(s)

]
ds =

=
∂

∂s
ρ

∫ ∞
0

Ṁ3(s)φ,X
t
d(s)U,X

t
d(s)ds− ρ

∫ ∞
0

M̈3(s)φ,X
t
d(s)U,X

t
d(s)ds−

− ρ
∫ ∞
0

Ṁ3(s)2
∂

∂s
φ,X

t
d(s)U,X

t
d(s)ds

(102)
and

ρ

∫ ∞
0

Ṁ3(s)
[
φ,X

t
d(s)

]2 ∂
∂t

[
U,X

t
d(s)

φ,X
t
d(s)

]
ds =

=
∂

∂t
ρ

∫ ∞
0

Ṁ3(s)φ,X
t
d(s)U,X

t
d(s)ds− ρ

∫ ∞
0

Ṁ3(s)2
∂

∂t
φ,X

t
d(s)U,X

t
d(s)ds.

(103)
By plugging relations (102) and (103) into (101), we obtain (93).

Step 2. Eq. (94) follows from the previous one with u replaced by α
and M3 replaced by M2.

Step 3. Proof of (95). Let us write the left-hand side in the form

ρ

∫ ∞
0

Ḃ1(u)

{
∂

∂X

[
∂

∂t
αtd(u)

]
α̇(t)− ∂

∂X
α̇(t)

∂

∂t
αtd(u)

}
du (104)

and recall the differentiation rule of a quotient of functions.
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Step 4. Proof of (96). Recall that

∂

∂t
α(t) = − ∂

∂u
αtd(u)− ∂

∂t
αtd(u), (105)

∂

∂t
U,X(t) = − ∂

∂u
U,X

t
d(u)− ∂

∂t
U,X

t
d(u). (106)

Then for the left-hand side of (96) we have

S :=
∂

∂t

(∫ ∞
0

Ḃ2(u)U,X
t
d(u)du

)
ρα̇(t)− ρU̇,X

∫ ∞
0

α̇td(u)Ḃ2(u)du

= ρ

∫ ∞
0

Ḃ2(u)

[
− ∂

∂u
αtd(u)− ∂

∂t
αtd(u)

]
∂

∂t
U,X

t
d(u)du

− ρ
∫ ∞
0

Ḃ2(u)

[
− ∂

∂u
U,X

t
d(u)− ∂

∂t
U,X

t
d(u)

]
α̇td(u)du.

(107)

By replacing α̇td(u) in the last integral by

α̇td(u) =
∂α

∂t
(t− u)− ∂α

∂t
(t) (108)

we obtain

S = ρ

∫ ∞
0

Ḃ2(u)

[
− ∂

∂u
αtd(u)

∂

∂t
U,X

t
d(u) +

∂

∂u
U,X

t
d(u)

∂

∂t
αtd(u)

]
du

= ρ

∫ ∞
0

Ḃ2(u)
∂

∂u

(
U,X

t
d(u)

∂

∂t
αtd(u)

)
du

− ρ
∫ ∞
0

Ḃ2(u)
∂

∂t

(
U,X

t
d(u)

∂

∂u
αtd(u)

)
du

= ρ

∫ ∞
0

∂

∂u

(
Ḃ2(u)U,X

t
d(u)

∂

∂t
αtd(u)

)
du

− ρ
∫ ∞
0

B̈2(u)U,X
t
d(u)

∂

∂t
αtd(u)du− ρ ∂

∂t

∫ ∞
0

Ḃ2(u)U,X
t
d(u)

∂

∂u
αtd(u)du.

(109)
Step 5. Proof of (97). Note that by (105) we have

∂

∂t
α̇td(u) = − ∂

∂t
α̇(t)− ∂

∂u
α̇td(u) (110)

and the left-hand side of (97) writes as

∂

∂t

(∫ ∞
0

ṁ1(u)α̇td(u)du

)
ρα̇(t) = ρ

∫ ∞
0

ṁ1(u)
∂

∂t

(
α̇td(u)

)
α̇(t)du =

= −ρ
∫ ∞
0

ṁ1(u)α̇(t)α̈(t)du− ρ
∫ ∞
0

ṁ1(u)α̇(t)
∂

∂u
α̇td(u)du.

(111)
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Now, recalling (105), we compute the last integral

− ρ
∫ ∞
0

ṁ1(u)α̇(t)
∂

∂u
α̇td(u)du =

= ρ

∫ ∞
0

ṁ1(u)
∂

∂u
αtd(u)

∂

∂u
α̇td(u)du+ ρ

∫ ∞
0

ṁ1(u)
∂

∂t
αtd(u)

∂

∂u
α̇td(u)du

=
1

2
ρ
∂

∂t

∫ ∞
0

ṁ1(u)
∂

∂u
αtd(u)

∂

∂u
αtd(u)du+

1

2
ρ
∂

∂u

∫ ∞
0

ṁ1(u)
∂

∂t
αtd(u)

∂

∂t
αtd(u)du

− 1

2
ρ

∫ ∞
0

m̈1(u)
∂

∂t
αtd(u)

∂

∂t
αtd(u)du.

(112)
Step 6. Proof of (98). Employing (105) several times in the left-hand side
of (98), we have

− ∂

∂t

(∫ ∞
0

Ḃ3(u)φ,X
t
d(u)du

)
ρα̇(t)− ρφ̇,X(t)

∫ ∞
0

α̇td(u)Ḃ3(u)du

= −ρ
∫ ∞
0

Ḃ3(u)

{
∂

∂t
φ,X

t
d(u)

[
− ∂

∂u
αtd(u)− ∂

∂t
αtd(u)

]
+

[
− ∂

∂u
φ,X

t
d(u)− ∂

∂t
φ,X

t
d(u)

]
α̇td(u)

}
du

(113)

= ρ

∫ ∞
0

Ḃ3(u)

[
∂

∂t
φ,X

t
d(u)

∂

∂u
αtd(u) +

∂

∂u
φ,X

t
d(u)

∂

∂t
αtd(u)

+2
∂

∂t
φ,X

t
d(u)

∂

∂t
αtd(u)

]
du = ρ

∫ ∞
0

Ḃ3(u)

[
∂

∂u

(
φ,X

t
d(u)

∂

∂t
αtd(u)

)
+
∂

∂t

(
φ,X

t
d(u)

∂

∂u
αtd(u)

)
+ 2

∂

∂t

(
φ,X

t
d(u)

∂

∂t
αtd(u)

)
−2φ,X

t
d(u)

(
∂2

∂t∂u
αtd(u) +

∂2

∂t2
αtd(u)

)]
du.

(114)

After writing the derivatives in a suitable way, we derive the final result.
This finishes the proof.

In the sequel, we use the notations below that will be useful in proving
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the continuous dependence result

W (t, u) = −ṁ4(u)φ,X
t
d(u)φ,X

t
d(u) + ṁ3(u)U,X

t
d(u)U,X

t
d(u)+

+ ṁ2(u)α,X
t
d(u)α,X

t
d(u) + 2Ṁ1(u)α,X

t
d(u)U,X

t
d(u)−

− 2Ṁ3(u)φ,X
t
d(u)U,X

t
d(u)− 2Ṁ2(u)φ,X

t
d(u)α,X

t
d(u)−

− 2Ḃ2(u)U,X
t
d(u)

∂

∂u
αtd(u) + ṁ1(u)

∂

∂u
αtd(u)

∂

∂u
αtd(u)−

− ṁ1(u)α̇(t)α̇(t) + 2Ḃ3(u)φ,X
t
d(u)

∂

∂u
αtd(u)+

+ 4Ḃ3(u)φ,X
t
d(u)

∂

∂t
αtd(u),

(115)

M(t, u) = −m̈4(u)φ,X
t
d(u)φ,X

t
d(u) + m̈3(u)U,X

t
d(u)U,X

t
d(u)+

+ m̈2(u)α,X
t
d(u)α,X

t
d(u) + 2M̈1(u)α,X

t
d(u)U,X

t
d(u)−

− 2M̈3(u)φ,X
t
d(u)U,X

t
d(u)− 2M̈2(u)φ,X

t
d(u)α,X

t
d(u)+

+ 2B̈2(u)U,X
t
d(u)

∂

∂t
αtd(u) + m̈1(u)

∂

∂t
αtd(u)

∂

∂t
αtd(u)+

+ 2B̈3(u)φ,X
t
d(u)

∂

∂t
αtd(u),

(116)

Q(t, u) = 2Ṁ3(u)

(
∂

∂u
+
∂

∂t

)
φ,X

t
d(u)U,X

t
d(u)+

+ 2Ṁ2(u)

(
∂

∂u
+
∂

∂t

)
φ,X

t
d(u)α,X

t
d(u)−

− 2Ḃ3(u)φ,X
t
d(u)

∂

∂t

(
∂

∂u
+
∂

∂t

)
αtd(u)+

+ Ḃ1(u) [α̇(t)]2
∂

∂X

[
∂
∂tα

t
d(u)

α̇(t)

]
,

(117)

U(t) =

∫
B

[
ρU̇(t)U̇(t) + ε0φ,X(t)φ,X(t) + κ0

∫ t

0
(α̇,X(τ))2dτ

]
dv. (118)

Using the notations introduced above, we derive the following result.

Theorem 2 Under the assumptions in Section 2 and in Theorem 1, along
any kinetic process (2) associated with the body force f and heat supply s,
we have

U̇ =

∫
∂B

(
σ̃U̇n− D̃φ̇n− p̃α̇n 1

ζ0

)
+

∫
B
ρ

(
fU̇ + sα̇

1

ζ0

)
−

− 1

2
ρ

∫ ∞
0

∫
B
Mdvds+

1

2
ρ
d

dt

(∫ ∞
0

∫
B
Wdvds

)
+ ρ

∫ ∞
0

∫
B
Qdvds.

(119)
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Proof. Along a thermo-electro-viscoelastic process associated with the
body force f and heat supply s, we have

σ̃U̇,X − D̃φ̇,X − p̃α̇,X
1

ζ0
=

=
(
σ̃U̇
)
,X
− σ̃,X U̇ −

(
D̃φ̇
)
,X

+ D̃,X φ̇− (p̃α̇),X
1

ζ0
+ (p̃,X α̇)

1

ζ0
=

=
(
σ̃U̇
)
,X
−
(
D̃φ̇
)
,X
− (p̃α̇),X

1

ζ0
− ρÜU̇ + ρfU̇ − ρ ˙̃η

1

ζ0
α̇+ ρsα̇

1

ζ0
.

(120)
The latter equality follows from the local balance laws (9). Note that by the
constitutive equation (13) for η̃ we deduce that we can rewrite the following
term on the right-hand side

ρ ˙̃η
1

ζ0
α̇ =

{
− ∂

∂t
[Σ3(T − T0)]−

∂

∂t

∫ ∞
0

ṁ1(u)α̇td(u)du−

− ∂

∂t

∫ ∞
0

Ḃ1(u)α,X
t
d(u)du− ∂

∂t

∫ ∞
0

Ḃ2(u)U,X
t
d(u)du+

+
∂

∂t

∫ ∞
0

Ḃ3(u)φ,X
t
d(u)du

}
ρα̇.

(121)

By replacing the constitutive equations (11) for σ̃, (12) for P̃ and (17)

for ∂ψ̃
∂β , we obtain

σ̃U̇,X − D̃φ̇,X − p̃α̇,X
1

ζ0
=

= ρU̇,X

[
Σ1U,X +

∫ ∞
0

ṁ3(u)U,X
t
d(u)du+

∫ ∞
0

α̇td(s)Ḃ2(s)ds+

+

∫ ∞
0

α,X
t
d(s)Ṁ1(s)ds−

∫ ∞
0

φ,X
t
d(s)Ṁ3(s)ds

]
− ρφ̇,X

[
(Σ2−

− ρ−1ε0)φ,X +

∫ ∞
0

ṁ4(u)φ,X
t
d(u)du−

∫ ∞
0

α̇td(s)Ḃ3(s)ds−

−
∫ ∞
0

α,X
t
d(s)Ṁ2(s)ds−

∫ ∞
0

Ṁ3(u)U,X
t
d(u)du

]
+ ρα̇,X

[
∂Σ̃

∂β
+

+

∫ ∞
0

ṁ2(u)α,X
t
d(u)du+

∫ ∞
0

α̇td(s)Ḃ1(s)ds+

∫ ∞
0

Ṁ1(u)U,X
t
d(u)du−

−
∫ ∞
0

Ṁ2(u)φ,X
t
d(u)du

]
+ κ0(α̇,X)2.

(122)
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By equating the two expressions (120) and (122) and by considering the
relation (121), we obtain

ρU̇,X

[
Σ1U,X +

∫ ∞
0

ṁ3(u)U,X
t
d(u)du+

∫ ∞
0

α̇td(s)Ḃ2(s)ds+

+

∫ ∞
0

α,X
t
d(s)Ṁ1(s)ds−

∫ ∞
0

φ,X
t
d(s)Ṁ3(s)ds

]
− ρφ̇,X

[
(Σ2−

− ρ−1ε0)φ,X +

∫ ∞
0

ṁ4(u)φ,X
t
d(u)du−

∫ ∞
0

α̇td(s)Ḃ3(s)ds−

−
∫ ∞
0

α,X
t
d(s)Ṁ2(s)ds−

∫ ∞
0

Ṁ3(u)U,X
t
d(u)du

]
+ ρα̇,X

[
∂Σ̃

∂β
+

+

∫ ∞
0

ṁ2(u)α,X
t
d(u)du+

∫ ∞
0

α̇td(s)Ḃ1(s)ds+

∫ ∞
0

Ṁ1(u)U,X
t
d(u)du−

−
∫ ∞
0

Ṁ2(u)φ,X
t
d(u)du

]
+ κ0(α̇,X)2 =

=
(
σ̃U̇
)
,X
−
(
D̃φ̇
)
,X
− (p̃α̇),X

1

ζ0
− ρÜU̇ + ρfU̇ + ρsα̇

1

ζ0
−

−
{
− ∂

∂t
[Σ3(T − T0)]−

∂

∂t

∫ ∞
0

ṁ1(u)α̇td(u)du−

− ∂

∂t

∫ ∞
0

Ḃ1(u)α,X
t
d(u)du− ∂

∂t

∫ ∞
0

Ḃ2(u)U,X
t
d(u)du+

+
∂

∂t

∫ ∞
0

Ḃ3(u)φ,X
t
d(u)du

}
ρα̇.

(123)
Note that the expression

−ρα̇,X
∂Σ̃

∂β
+ ρφ̇,XΣ2 − ρU̇,XΣ1U,X +

∂

∂t
Σ3(T − T0)ρα̇ (124)

is zero since by (21) we do not have instantaneous elastic responses.
Finally, by using the results from Lemma 3 and Lemma 4, we obtain the
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following result∫
B

[
ρÜU̇ + ε0φ̇,Xφ,X + κ0 (α̇,X)

2
]
dv =

=

∫
∂B

(
σ̃U̇n− D̃φ̇n− p̃α̇n 1

ζ0

)
da+

∫
B

(
ρfU̇ + ρsα̇

1

ζ0

)
dv+

+

∫
B

−ρ
[
−1

2

∂

∂u

∫ ∞

0

ṁ3(u)U,X
t
d(u)U,X

t
d(u)du+

+
1

2

∫ ∞

0

m̈3(u)U,X
t
d(u)U,X

t
d(u)du− 1

2

∂

∂t

∫ ∞

0

ṁ3(u)U,X
t
d(u)U,X

t
d(u)du

]
−

− ρ
[
− ∂

∂s

∫ ∞

0

Ṁ1(s)α,X
t
d(s)U,X

t
d(s)ds+

∫ ∞

0

M̈1(s)α,X
t
d(s)U,X

t
d(s)ds−

− ∂

∂t

∫ ∞

0

Ṁ1(s)α,X
t
d(s)U,X

t
d(s)ds

]
+ ρ

[
−1

2

∂

∂u

∫ ∞

0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du+

+
1

2

∫ ∞

0

m̈4(u)φ,X
t
d(u)φ,X

t
d(u)du− 1

2

∂

∂t

∫ ∞

0

ṁ4(u)φ,X
t
d(u)φ,X

t
d(u)du

]
+

+ ρ

[
− ∂

∂s

∫ ∞

0

Ṁ3(s)φ,X
t
d(s)U,X

t
d(s)ds+

∫ ∞

0

M̈3(s)φ,X
t
d(s)U,X

t
d(s)ds−

− ∂

∂t

∫ ∞

0

Ṁ3(s)φ,X
t
d(s)U,X

t
d(s)ds+ 2

∫ ∞

0

Ṁ3(s)

(
∂

∂s
+
∂

∂t

)
φ,X

t
d(s)U,X

t
d(s)ds

]
+

+ ρ

[
− ∂

∂s

∫ ∞

0

Ṁ2(s)φ,X
t
d(s)α,X

t
d(s)ds+

∫ ∞

0

M̈2(s)φ,X
t
d(s)α,X

t
d(s)ds−

− ∂

∂t

∫ ∞

0

Ṁ2(s)φ,X
t
d(s)α,X

t
d(s)ds+ 2

∫ ∞

0

Ṁ2(s)

(
∂

∂s
+
∂

∂t

)
φ,X

t
d(s)α,X

t
d(s)ds

]
−

− ρ
[
−1

2

∂

∂u

∫ ∞

0

ṁ2(u)α,X
t
d(u)α,X

t
d(u)du+

1

2

∫ ∞

0

m̈2(u)α,X
t
d(u)α,X

t
d(u)du−

− 1

2

∂

∂t

∫ ∞

0

ṁ2(u)α,X
t
d(u)α,X

t
d(u)du

]
+ ρ

∫ ∞

0

Ḃ1(u) [α̇(t)]
2 ∂

∂X

[
∂
∂tα

t
d(u)

α̇(t)

]
du+

(125)
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+ ρ

[
∂

∂u

∫ ∞

0

(
Ḃ2(u)U,X

t
d(u)

∂

∂t
αt
d(u)

)
du−

∫ ∞

0

B̈2(u)U,X
t
d(u)

∂

∂t
αt
d(u)du−

− ∂

∂t

∫ ∞

0

Ḃ2(u)U,X
t
d(u)

∂

∂u
αt
d(u)du

]
− 1

2
ρ
∂

∂t

∫ ∞

0

ṁ1(u)α̇(t)α̇(t)du+

+
1

2
ρ
∂

∂t

∫ ∞

0

ṁ1(u)
∂

∂u
αt
d(u)

∂

∂u
αt
d(u)du+

1

2
ρ
∂

∂u

∫ ∞

0

ṁ1(u)
∂

∂t
αt
d(u)

∂

∂t
αt
d(u)du−

− 1

2
ρ

∫ ∞

0

m̈1(u)
∂

∂t
αt
d(u)

∂

∂t
αt
d(u)du+ ρ

∂

∂u

∫ ∞

0

Ḃ3(u)φ,X
t
d(u)

∂

∂t
αt
d(u)du−

− ρ
∫ ∞

0

B̈3(u)φ,X
t
d(u)

∂

∂t
αt
d(u)du+ ρ

∂

∂t

∫ ∞

0

Ḃ3(u)φ,X
t
d(u)

∂

∂u
αt
d(u)du+

+ 2ρ
∂

∂t

∫ ∞

0

Ḃ3(u)φ,X
t
d(u)

∂

∂t
αt
d(u)du− 2ρ

∫ ∞

0

Ḃ3(u)φ,X
t
d(u)

∂

∂t

(
∂

∂u
+
∂

∂t

)
αt
d(u)du.

(126)

We group the terms with the first order derivative of the relaxation func-
tions to form W. Then we group the terms with the second order derivative
of the relaxation functions to form M. All the other terms are included in
Q.

Let r(1) and r(2) be two solutions which are associated to the same initial
and boundary conditions and to the supply terms (f (1), f (2)) and (s(1), s(2)),
respectively. We consider the differences r = r(1) − r(2), f = f (1) − f (2),
s = s(1) − s(2). Hence, r is a solution that can be associated to the supply
terms (f, s) and to zero initial and boundary conditions. Moreover, we make
the following assumptions

C1) there exist positive constants M̃1, M̃2, M̃3, M̃4, M̃5 and t1 > 0 such
that∫ t1

0

∫
B
f2dvdt ≤ M̃2

1 ,

∫ t1

0

∫
B
s2dvdt ≤ M̃2

2 ,∫ t1

0

∫
B
U̇2dvdt ≤ M̃2

3 ,

∫ t1

0

∫
B
φ̇2dvdt ≤ M̃2

4 ,

∫ t1

0

∫
B
α̇2dvdt ≤ M̃2

5 ;

(127)
C2) the inequality∫ t

0

∫ ∞
0

∫
B
Mdvdsdt−

∫ ∞
0

∫
B
Wdvds−

∫ t

0

∫ ∞
0

∫
B
Qdvdsdt ≥ 0 (128)

holds for all t ∈ [0, t1) along any kinetic process (2).
In the sequel, we prove a result of continuous dependence upon the sup-

ply terms.
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Theorem 3 Under the assumptions of Theorem 2, let the hypotheses C1)
and C2) hold true. Moreover, we consider that r̃ is a solution of the initial
boundary value problem associated to zero initial and boundary conditions
and to the supply terms (f, s). Therefore, we have

U(t) ≤ M̃3

(∫ t1

0

∫
B
f2dvdt

) 1
2

+ M̃5

(∫ t1

0

∫
B
s2dvdt

) 1
2

, (129)

for t ∈ [0, t1).

Proof. First, we consider the null boundary conditions in the relation

(119) from Theorem 2. It follows that
∫
∂B

(
σ̃U̇n− D̃φ̇n− p̃α̇n 1

ζ0

)
= 0.

Then we integrate the relation (119) from 0 to t and consider the null initial
conditions. This means that U(0) = 0. Therefore, we obtain

U(t) =

∫ t

0

∫
B
ρ

(
fU̇ + sα̇

1

ζ0

)
dvdt− 1

2
ρ

∫ t

0

∫ ∞
0

∫
B
Mdvdsdt+

+
1

2
ρ
d

dt

(∫ t

0

∫ ∞
0

∫
B
Wdvdsdt

)
+ ρ

∫ t

0

∫ ∞
0

∫
B
Qdvdsdt.

(130)

Finally, we use the Schwarz inequality for the two terms in the first
integral and the hypothesis C2) for the last three integrals in order to obtain
the desired result.

5 Conclusions

We have shown theorems on uniqueness and continuous data dependence
that are appropriate to the boundary value problems for a linear thermo-
electro-viscoelastic body B of dimension one.

Many authors assume that to perform an experiment corresponds to
posing an initial-boundary-value problem and that the outcome of an ex-
periment is given by the solution of it (cf. e.g. [30]).

Experiments are a tool to test the material parameters of a theoretical
model. This topic is studied for hyperelasticity, e.g., in [31], whose line
of thought is as follows: to validate a model for a continuous media many
experiments have to be numerically simulated; then the informations about
the material parameters implemented in the model can be adjusted in order
to recover the experimental data.

Here the material parameters are relaxation functions. In [17] some sim-
ple solutions of the field equations for B are shown. A future development
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of the present work may be to find some class of less simple solutions, in-
terpreted as experiments, to choose and test physically reliable relaxation
functions.

Disclosure statement The authors declare that for the present article,
there is no conflict of interest.
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