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ABSTRACT: In this contribution, we describe a method to estimate polychoric corre-
lations when data are available in the form of fuzzy frequency tables. A simulation
study is used to assess the characteristics of the proposed approach. Fuzzy polychoric
correlations can be of particular utility, for instance, in studies involving covariance
structural analysis (e.g., CFA) and dimensionality reduction techniques (e.g., EFA).

KEYWORDS: fuzzy frequencies, polychoric correlations, fuzzy classification

1 Introduction

The latent linear correlation (LLC), also called polychoric correlation, is a
measure of linear association which is usually adopted when dealing with cat-
egorical variables or statistics such as frequency or contingency tables. Given
a set of J variables, LLC is computed pairwise for each pair ( j,k) of variables
by considering their joint frequencies N( j,k)

R×C = (n( j,k)
11 , . . . ,n( j,k)

rc , . . . ,n( j,k)
RC ) over

a R jk ×Cjk partition space of the variables’ domain. The general idea is to
adopt a bivariate Gaussian distribution with correlation ρ jk as a latent statis-
tical model underlying the observed frequency table N( j,k)

R×C, which maps the
R jk ×Cjk space to the real domain of the bivariate density via a threshold-
based approach. There are several contexts in which LLCs have been applied,
including covariance structural analysis (e.g., CFA) and dimensionality reduc-
tion techniques (e.g., PCA, EFA). In this contribution, we generalize the prob-
lem of estimating polychoric correlations from fuzzy frequency tables, which
are of particular utility when observed data are classified using fuzzy categories
as done, for example, in socio-economic studies, images/videos classification,
and content analysis. In all these cases, the R jk ×Cjk space of the variables’
domain constitutes a fuzzy partition and observed counts in N( j,k)

R×C are no longer
natural numbers. In order to deal with this issue, in this paper we describe a
novel way to compute fuzzy frequency tables and provide a way to estimate
ρ jk when observed frequencies are fuzzy. In what follows, we will set R = C
and J = 2 for the sake of simplicity.
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2 Fuzzy frequencies

A fuzzy subset Ã of a universal set A is defined by means of its characteris-
tic function ξ�A : A → [0,1]. Let A ⊂ R without loss of generality and con-
sider (X ,Y ) a pair of random variables taking values on A. Then A can
conveniently be partitioned into a collection of fuzzy subsets, namely C j =
{C̃1, . . . ,C̃r, . . . ,C̃R} and Ck = {C̃1, . . . ,C̃c, . . . ,C̃C}. The random realizations
x = (x1, . . . ,xI) and y = (y1, . . . ,yI) can partially or fully be classified into C j
or Ck. The evaluation of the amount of sample realizations over C̃ j or C̃k is
called cardinality. This is a natural number or crisp count (i.e., nrc ∈ N0)
when the observations fully belong to subsets of C̃ j or C̃k. On the oppo-
site case, it is a fuzzy natural number ñrc ∈ F(N), with F(N) being the set
of all generalized natural numbers (Bodjanova & Kalina, 2008). Let C̃rc be
an element of the fuzzy Cartesian product C̃ j ×̃ C̃k. Then a fuzzy count
ñrc is a fuzzy set with membership function ξ�nrc : N0 → [0,1] being com-
puted as follows: ξ�nrc(n) = min(νrc(n),µrc(n)), with νrc(n) = FGC(εεεrc) and
µrc(n)= FLC(εεεrc) ∀ n∈ {0,1, . . . , I}⊂N0. In this context, FGC(.) and FLC(.)
are the fuzzy counting functions as defined by Zadeh (1983) whereas εεεrc =
min(ξ�Cr

(x j),ξ�Cc
(yk)) contains the joint degrees of inclusion of the sample ob-

servations x and y w.r.t. the fuzzy categories. More details can be found in
Bodjanova & Kalina (2008). Finally, the fuzzy frequency table �NR×C can be
computed by applying the above calculus over r = 1, . . . ,R and c = 1, . . . ,C.

3 LLCs for fuzzy frequency tables

The latent statistical model underlying the sample realizations is bivariate Gaus-
sian (X∗,Y ∗) ∼ N (0,ρ) under the constraints that (X ∈ C̃r) ∧ (Y ∈ C̃c) iif
(X∗,Y ∗)∈ (τX

r−1,τX
r ]×(τY

c−1,τY
c ]⊂R2 for all r = 1, . . . ,R and c= 1, . . . ,C. The

thresholds τττX and τττY are defined so that τ0 =−∞ and τR = ∞ for both X and Y
variables. Note that (X∗,Y ∗) are unobserved pairs of latent variables. Follow-
ing Olsson (1979), the parameters θθθ = {ρ,τττX ,τττY} ∈ [−1,1]×RR−1 ×CC−1

can be estimated using a two step-approach. In particular, given the filtered
counts at the current iteration, thresholds are estimated using the cumulative
marginals of �NR×C (first step). Then, ρ is estimated by maximizing the log-
likelihood implied by the model conditioned on τ̂ττX and τ̂ττY (second step):

lnL(θθθ;N) ∝
R

∑
r=1

C

∑
c=1

nrc ln
� τX

r

τX
r−1

� τY
c

τY
c−1

φ(x,y;ρ) dxdy (1)
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with φ(x,y;ρ) being the bivariate Gaussian density centered at zero. In what
follows, we will focus on estimating ρ as estimation of thresholds follows
straightforwardly from Olsson (1979). As we observe fuzzy frequencies �NR×C,
we solve the maximization problem via the fuzzy EM algorithm proposed by
Denoeux (2011), which in this case requires the computation of the following
quantity:

Eθθθ�
�
lnL(θθθ;N)|�N

�
∝

R

∑
r=1

C

∑
c=1

Eθθθ� [Nrc|ñrc] ln
� τY

r

τX
r−1

� τY
c

τY
c−1

φ(x,y;ρ) dxdy (2)

given a candidate estimate θθθ�. The quantity Nrc|ñr,c is a random variable con-
ditioned on a fuzzy event:

Eθθθ� [Nrc|ñrc] = ∑
n∈N0

ξ�nrc(n) fNrc(n;πrc(θθθ))
∑n∈N0 ξ�nrc(n) fNrc(n;πrc(θθθ))

n (3)

where fNrc(n;πrc(θθθ)) = Bin(n;πrc(θθθ)), with πrc(θθθ) =
� τY

r
τX

r−1

� τY
c

τY
c−1

φ(x,y;ρ) dxdy.

Note that n̂rc = Eθθθ� [Nrc|ñrc] denotes the reconstructed rc-th count. The fuzzy
EM algorithm proceeds by alternating between the computation of Eq. (3) and
the maximization of Eq. (1) once n̂rc has been obtained.

4 Simulation study

The aim of this Monte Carlo study is twofold. First, we will evaluate the
performances of fuzzy-EM estimator for ρ jk when fuzzy frequency data are
available. Second, we will assess whether the standard maximum likelihood
estimator for polychoric correlations performs as good as the proposed method
if applied on max-based and mean-based defuzzified data. The case J = 2 was
considered for the sake of simplicity.

Design. The design involved two factors, namely (i) I ∈ {150,250,500},
and (ii) ρ ∈ {0.15,0.50,0.85}, which were varied in a complete factorial de-
sign. For each combination, B = 5000 samples were generated.

Data generation. For each condition of the simulation design, data were
generated according to a two-step procedure. First, a crisp frequency table
NR×C was computed using the approximation nrc = I · πrc (r = 1, . . . ,R; c =
1, . . . ,C), with τττX = τττY = (−2,−1,0,1,2). Second, each element of NR×C
was fuzzified via the following probability-possibility transformation: ξξξñrc

=

fGd(n;αrc,βrc)
�

max fGd(n;αrc,βrc), αrc = 1+m1βs1 , βs1 = 1+ (m1 +m2
1 +
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4s2
1)

1
2 /2s2

1, βrc =(m1+m2
1+4s2

1)
1
2
�

2s2
1, m1 ∼Gammad(αm1 ,βm1) where αm1 =

1+ nrcβm1 , βm1 = (nrc + n2
rc + 4s2

1)
1
2
�

2s2
1, s1 ∼ Gammad(αs1 ,βs1), αs1 = 1+

m0βs1 , βs1 = (m0 +m2
0 +4s2

0)
1
2
�

2s2
0, m0 = 1 and s0 = 0.15. Note that fGd is the

density of the discrete Gamma random variable Gammad.
Outcome measures. For each condition of the simulation design, sample

results were evaluated using bias of estimates and root mean square error.
Results. Table 1 shows the results of the study. As expected, fEM outper-

formed standard ML applied on both max-based and mean-based defuzzified
data in terms of bias and root mean square errors. This is mainly due to the fact
that ρfEM estimator weights the observed fuzzy data ξ�nrc with the probabilistic
model for the unobserved nrc.

fEM dML (max) dML (mean)

bias rmse bias rmse bias rmse

ρ = 0.15
I = 150 0.0358 0.0881 -0.0105 0.1142 -0.0402 0.0846
I = 250 0.0043 0.0514 -0.0284 0.0817 -0.0403 0.0683
I = 500 0.0099 0.0297 0.0020 0.0416 -0.0082 0.0335

ρ = 0.50
I = 150 0.0103 0.0747 -0.0933 0.1545 -0.1797 0.1956
I = 250 -0.0363 0.0626 -0.1216 0.1488 -0.1706 0.1800
I = 500 -0.0006 0.0264 -0.0457 0.0689 -0.0828 0.0903

ρ = 0.85
I = 150 0.0013 0.0441 -0.2150 0.2525 -0.3274 0.3354
I = 250 -0.0028 0.0269 -0.1707 0.1967 -0.2580 0.2642
I = 500 -0.0009 0.0145 -0.1034 0.1211 -0.1630 0.1672

Table 1. Monte Carlo study: Estimating ρ via fuzzy-EM (fEM) and standard ML (dML) on
max-based and mean-based defuzzified frequency tables.
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