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Abstract: We introduce a notion of geodesic curvature kζ for a smooth horizontal curve ζ in a three-

dimensional contact sub-Riemannian manifold, measuring how much a horizontal curve is far from being

a geodesic. We show that the geodesic curvature appears as the first corrective term in the Taylor expansion

of the sub-Riemannian distance between two points on a unit speed horizontal curve

d2
SR

(ζ (t), ζ (t + ε)) = ε2 −
k2ζ (t)
720

ε6 + o(ε6).

The sub-Riemannian distance is not smooth on the diagonal; hence the result contains the existence of such

an asymptotics. This can be seen as a higher-order differentiability property of the sub-Riemannian distance

along smooth horizontal curves. It generalizes the previously known results on the Heisenberg group.
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1 Introduction
It is a classical result inRiemanniangeometry that a smooth curve ζ : I → M onaRiemannianmanifold (M, g)
is a geodesic if and only if ∇g ̇ζ

̇ζ = 0, where ∇g denotes the Levi-Civita connection. Indeed, if a smooth curve

ζ : I → M is parametrized by length, the quantity κgζ = ‖∇
g
̇ζ
̇ζ ‖ is called the geodesic curvature of ζ and quan-

tifies how much the curve ζ is far from being a geodesic. More precisely, let us denote by d the Riemannian

distance on (M, g). A smooth curve ζ : I → M parametrized by arc length is a geodesic if and only if it satis-

fies d2(ζ (t), ζ (t + ε)) = ε2 for all t and for ε > 0 small enough. Indeed, one can prove the following asymptotic

expansion: for every t ∈ I, when ε → 0,

d2(ζ (t), ζ (t + ε)) = ε2 −
κgζ (t)

2

12

ε4 + o(ε4). (1.1)

This formula provides a purely metric interpretation of the geodesic curvature and actually could serve as

a definition of the latter.

It is natural to ask whether a similar result holds in the setting of sub-Riemannian geometry, where

a notion of geodesic curvature has been up to now only investigated, to our best knowledge, in the case

of the Heisenberg group. In [8, 13], a notion of geodesic curvature has been introduced in the context of

a sub-Riemannian Gauss–Bonnet-like theorem. In [11, 12], the authors find complete invariants for regular

curves (not only horizontal) in the Heisenberg groups. Finally, in [16], the second named author proves that
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a formula analogue to (1.1) holds in the sub-Riemannian Heisenberg group, using an explicit expression for

the sub-Riemannian distance. An interesting remark is that the correction one finds is at higher order with

respect to the Riemannian case.

The main goal of this paper is to prove the analogue of expansion (1.1) in 3D contact sub-Riemannian

geometry, stated in Theorem 3 below for smooth horizontal curves. We stress that the existence of such an

asymptotic is a priori not guaranteed since the sub-Riemannian distance is not smooth on the diagonal. Let

us mention that the study of higher-order asymptotics of the sub-Riemannian distance along geodesics have

been performed in [4] to extract a notion of “sectional curvature” of a sub-Riemannian manifold.

1.1 Statements of the results

LetM be a three-dimensional (3D) contact sub-Riemannianmanifold, and let ζ : I → M be a smooth horizon-

tal curve parametrized by arc length. In what follows, I always denotes an open interval containing zero.
We associate with every smooth horizontal curve ζ its characteristic deviation hζ : I → ℝ. In terms of the

Tanno (or Tanaka–Webster) connection ∇, we set hζ = g(∇ ̇ζ ̇ζ , J ̇ζ ), where J is the almost complex structure

defined on the distribution by the contact structure (we refer to Section 2 for precise definitions).

The characteristic deviation characterizes horizontal curves with given initial position and velocity.

Proposition 1. Let M be a 3D contact sub-Riemannian structure. If ζ
1
, ζ

2
: I → M are two smooth horizontal

curves parametrized by arc length such that
(i) ζ

1
(0) = ζ

2
(0) and ̇ζ

1
(0) = ̇ζ

2
(0),

(ii) hζ
1

(t) = hζ
2

(t) for every t ∈ I,
then ζ

1
(t) = ζ

2
(t) for every t ∈ I.

A particular case of three-dimensional contact sub-Riemannian structure M is given by isoperimetric prob-

lems over a two-dimensional Riemannian manifold N (cf. Section 3.4 for more details). In this case, every

horizontal curve ζ on M is the lift of a unique curve on the underlying Riemannian manifold N, and the

characteristic deviation is the geodesic curvature of πN(ζ), where πN : M → N is the projection. In this case,

Proposition 1 has a clear geometric interpretation.

The characteristic deviation is not the correct quantity describing whether a curve is a sub-Riemannian

geodesic or not. Recall that a horizontal curve ζ : I → M is a geodesic if short arcs of ζ realize the sub-

Riemannian distance between its endpoints. The geodesic curvature kζ : I→ℝ of a horizontal curve ζ : I→M
parametrized by length is defined by

kζ =
d

dt
g(∇ ̇ζ ̇ζ , J ̇ζ ) − g(T(X0, ̇ζ ), ̇ζ ),

where X
0
is the Reeb vector field associated with the contact structure, and T is the torsion associated to ∇

(we refer to Section 2 for precise definitions).

Proposition 2. LetM be a three-dimensional contact sub-Riemannian structure, and let ζ : I → M be a smooth
horizontal curve parametrized by arc length. Then ζ is a geodesic if and only if kζ (t) = 0 for every t ∈ I.

For a given geodesic ζ : I → M and every t ∈ I, one has d2(ζ (t), ζ (t + ε)) = ε2 for ε > 0 small enough. The

main result of this paper is to show that the geodesic curvature appears as a corrective term.

Theorem 3. Let M be a three-dimensional contact sub-Riemannian structure, and let ζ : I → M be a smooth
horizontal curve parametrized by arc length. Then, for every fixed t ∈ I, we have the expansion, for ε → 0,

d2
SR

(ζ (t), ζ (t + ε)) = ε2 −
k2ζ (t)
720

ε6 + o(ε6). (1.2)

Notice the qualitative behavior with respect to what happens in the Riemannian case in (1.1). Indeed, in the

Taylor expansion, the corrective term due to the curvature appears at order 6, while in the Riemannian case,

it appears at order 4 (cf. also [16] for the case of the Heisenberg group).
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Some preliminary investigations in the higher-dimensional contact case are discussed in [15], showing

that the fact that the first corrective term appearing in (1.2) is at order 6 is related to the distribution being

two-dimensional.

1.2 Strategy of the proof of Theorem 3

Fix p ∈ M, and consider the cut locus cut(p) ⊂ M, the set of points where the function d2
SR

(p, ⋅ ) is not smooth.

We have p ∈ cut(p), butM \ cut(p) is an open dense set inM. We refer to Section 5 for more details on the cut

locus. On M \ cut(p), the radial vector field Γ is well-defined as follows: for q ∈ M \ cut(p), the vector Γ(q) is
the tangent vector at q to the geodesic joining p and q in time 1.

Consider now ζ : I → M a smooth horizontal curve parametrized by arc length on an open interval I
containing0 and such that ζ (0) = p. For all t ∈ I such that ζ (t) ∉ cut(p), we can decompose the velocity vector

of ζ as follows:
ζ (t) = cos(θ(t))Γ(ζ(t)) + sin(θ(t))JΓ(ζ(t)), (1.3)

where θ takes values in S1 and is defined on a subset of I \ {0}.
We stress that the vector fields Γ and JΓ are singular at p; hence the regularity of the function t → θ(t)

at t = 0 is not guaranteed.
The proof consists in the following facts:

(a) ζ (t) ∉ cut(p) for all t ∈ I \ {0} (by restricting I if needed);
(b) the function θ : I \ {0}→ S1 can be extended to I continuously with θ(0) = 0;
(c) such a function θ : I → S1 is of class C2 in a neighborhood of 0.
With the C2 regularity of the function θ, it is not difficult to obtain a Taylor expansion of the distance along

the curve ζ in terms of the derivatives of θ. The final step is to recover the geometric invariant in terms of θ.

1.3 Structure of the paper

After some preliminaries in Section 2, in Sections 3 and 4,we introduce characteristic deviation and geodesic

curvature in 3D contact SR geometry. Sections 6 and 7 contain the main results of the paper. The appendix

contains some technical lemmas and a self-contained discussion on Jacobi fields.

2 Preliminaries
All along the paper, M denotes a three-dimensional smooth manifold. We endow M with a contact form ω,
which is a smooth differential 1-form such that ω ∧ dω ̸= 0.

We define the distribution ∆ := kerω. Notice that dω|
∆
is non-degenerate. The choice of a smoothmetric g

on ∆ defines a contact sub-Riemannian structure on M. We denote by ‖ ⋅ ‖ the norm on ∆ associated with the

metric g.
Notice that if f is a smooth non-vanishing scalar function f , then fω is also a contact formand ker(fω)= ∆.

Thus it is not restrictive to assume that ω is chosen in such a way that dω|
∆
= −vol

∆
, where vol is the volume

form associated with the metric g on ∆. We assume this normalization is fixed in what follows.¹

A Lipschitz curve ζ : I → M is said to be horizontal if ̇ζ (t) ∈ ∆ζ (t) for a.e. t ∈ I. The length of a horizontal
curve ζ : I → M is given by

ℓ
SR
(ζ) = ∫

I

‖ ̇ζ (s)‖ds.

1 The minus sign here is a convention. It is chosen in such a way that the Reeb vector field satisfies [X
1
, X

2
] = X

0
mod ∆ for any

directed orthonormal frame {X
1
, X

2
} of the distribution.
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The sub-Riemannian distance is then defined as follows:

d
SR
(x, y) = inf{ℓ

SR
(ζ) | ζ : I → M is the horizontal curve joining x and y}.

Since the distribution is contact, ∆ is bracket-generating, and every pair of points on a connected component

of M can be joined by a horizontal curve of finite length. For more detailed introduction to sub-Riemannian

geometry, we refer to [2].

Given a contact form ω on M, the Reeb vector field X
0
is defined as the unique vector field satisfying

ω(X
0
) = 1 and dω(X

0
, ⋅ ) = 0. Notice that X

0
is transverse to the distribution. We still denote by g the unique

extension of the sub-Riemannian metric to a Riemannian one such that X
0
is orthogonal to ∆ and of norm

one.

The map J : ∆ → ∆ is the linear endomorphism on ∆ that satisfies

g(X, JY) = dω(X, Y) (2.1)

for every horizontal vector fields X and Y. Notice that g(X, JX) = 0 for every X. Indeed, {X, JX} is a direct

orthonormal frame for ∆, for every unit vector X in ∆. Themap J can be extended to TM compatibly with (2.1)

by setting J(X
0
) = 0.

Given any orthonormal frame of the distribution {X
1
, X

2
}, the triple {X

0
, X

1
, X

2
} is a frame of TM. It is

easy to see that, due to our normalization choice, we have

[Xi , Xj] =
2

∑
k=0

ckijXk , (2.2)

where ckij are smooth functions satisfying c0
0i = 0 for every i = 0, 1, 2 and c

0

12

= 1.

Remark 4. Given three vector fields X, Y, Z, we set cZX,Y := g([X, Y], Z). Notice that this is compatible with the

above notation in the following sense: for i, j, k = 0, 1, 2, we have cXkXi ,Xj = c
k
ij.

3 The characteristic deviation
In this section, we introduce the characteristic deviation, and we prove that smooth horizontal curves with

given initial base point and velocity are uniquely characterized by their characteristic deviation, namely

Proposition 1.

We start by introducing the canonical connection on any 3D contact manifold, which is called Tanno

connection [18].

Definition 5. The Tanno connection ∇ is the only linear connection on M satisfying

(i) ∇ω = 0,
(ii) ∇X

0
= 0,

(iii) ∇g = 0,
(iv) T(X, Y) = dω(X, Y)X

0
for X, Y horizontal vector fields,

(v) T(X
0
, JX) = −JT(X

0
, X) for X any vector field,

where T denotes the torsion associated with the connection ∇.

Notice that, on 3D contact manifolds, one automatically has ∇X(JY) = J∇XY, i.e., the contact structure is CR.
Hence the Tanno connection ∇ coincides with the Tanaka–Webster connection in this case (we refer to [3] for

a discussion in a similar notation).

Remark 6. From the properties of the Tanno connection, it is easy to show that, for every horizontal vector

field X, one has g([X
0
, X], X) = −g([X

0
, JX], JX).

More precisely, one can show that τ(X) := T(X
0
, X) is horizontal for everyhorizontal X. Themap τ : ∆ → ∆

is symmetric with respect to the sub-Riemannian inner product and has zero trace.
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3.1 The characteristic deviation

Let us consider a smooth horizontal curve ζ : I → M parametrized by arc length. We say that a smooth vector

field T is an extension of the velocity field of ζ if, for every t ∈ I, T(ζ (t)) = ̇ζ (t).
Notice that, since the vector field T is horizontal and ∇ω = 0, then ∇TT is horizontal. Moreover, ∇TT is

orthogonal to T since g(T, ∇TT) = 1

2

Tg(T, T) = 0. This permits to introduce the following definition.

Definition 7. Let ζ : I → M be a smooth horizontal curve parametrized by arc length, and let T be a smooth

horizontal and normalized vector field extending the velocity field of ζ . We define the characteristic deviation
hζ : I → ℝ by

∇TT(ζ (t)) = hζ (t)JT(ζ (t)) for all t ∈ I. (3.1)

It follows from the definition that this quantity does not dependon the extension T. The choice of an extension
is indeed not even necessary to write down equation (3.1) since one can define ∇ ̇ζ (t) ̇ζ (t) = hζ (t)J ̇ζ (t) for all
t ∈ I. It will be convenient in what follows to use notation (3.1) to work with vector fields defined on M, and

remember that the characteristic deviation is independent on the extension.

Lemma 8. The characteristic deviation can be expressed as follows:

hζ (t) = gζ (t)([JT, T], T) = −cTT,JT(ζ (t)), (3.2)

where the last identity is understood in the sense of Remark 4.

Proof. Using the properties of the connection ∇, we can compute

−cTT,JT = −g([T, JT], T) = −g(∇TJT − ∇JTT, T) = −g(∇TJT, T) +
1

2

JTg(T, T) = g(JT, ∇TT),

where we used that the torsion of horizontal vector fields is vertical and the identities ∇TJT = J∇TT, J2 = −1
and JTg(T, T) = 0.

The characteristic deviation can be easily computed if one decomposes the tangent vector to ζ along an

orthonormal frame.

Lemma 9. Let ζ : I → M be a smooth horizontal curve parametrized by arc length, and let us write

T = cos(θ)X
1
+ sin(θ)X

2
(3.3)

with respect to some orthonormal frame X
1
, X

2
. Then, along ζ (t), we have the identity

hζ = ̇θ − c1
12

cos θ − c2
12

sin θ, (3.4)

where ckij are defined as in (2.2) and ̇θ denotes the derivative of θ along ζ .

The proof is a direct computation which makes use of the following observation: if X, Y are two smooth

horizontal normalized vector fields such that Y = cos(ψ)X + sin(ψ)JX for some smooth function ψ : M → S1,
then

[Y, JY] = [X, JX] − grad
SR
(ψ). (3.5)

Here we denote by gradψ the horizontal gradient, i.e., the horizontal vector field such that

dψ(X) = g(grad
SR
(ψ), X)

for any horizontal X. It is easy to check that grad
SR
(ψ) = (X

1
ψ)X

1
+ (X

2
ψ)X

2
for any orthonormal frame

X
1
, X

2
of the distribution.

Proof of Lemma 9. Using (3.3) and (3.5), we have that

[T, JT] = [X
1
, X

2
] − grad

SR
(θ) = (c1

12

X
1
+ c2

12

X
2
+ X

0
) − (X

1
θ)X

1
− (X

2
θ)X

2
;

hence, by definition of characteristic deviation (3.2), we have

hζ = −g([T, JT], T) = −(c1
12

cos θ + c2
12

sin θ) + (X
1
θ) cos θ + (X

2
θ) sin θ,

and formula (3.4) follows.
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3.2 Two directional invariants

We denote by SM the spherical horizontal bundle, i.e., the set of unit vectors in the distribution. Let us define

the two tensors η, ι : SM → ℝ by

η(X) = g(τ(X), X), ι(X) = g(τ(X), JX). (3.6)

Lemma 10. For θ ∈ S1 and X ∈ SM, set Xθ := cos(θ)X + sin(θ)JX. Then

η(Xθ) = cos(2θ)η(X) + sin(2θ)ι(X), ι(Xθ) = − sin(2θ)η(X) + cos(2θ)ι(X).

Proof. Since τ is traceless and is symmetric, we have, for every X horizontal,

g(τ(X), X) + g(τ(JX), JX) = 0, g(τ(X), JX) = g(τ(JX), X). (3.7)

Then, using bilinearity and (3.7), one has

η(Xθ) = g(τ(Xθ), Xθ) = cos2(θ)g(τ(X), X) + sin2(θ)g(τ(JX), JX) + cos θ sin θ(g(τ(X), JX) + g(τ(JX), X))
= cos(2θ)g(τ(X), X) + sin(2θ)g(τ(X), JX)
= cos(2θ)η(X) + sin(2θ)ι(X).

Similarly, one obtains ι(Xθ) = − sin(2θ)η(X) + cos(2θ)ι(X), proving the lemma.

Remark 11. From Lemma 10, one can see the following fact: the Reeb vector field X
0
is a Killing vector field

for the sub-Riemannian structure if and only if both (or equivalently, one among) η and ι vanishes for all
horizontal unit vectors. Indeed,

‖τ(X)‖2 = η(X)2 + ι(X)2. (3.8)

Moreover, we have ‖τ(X)‖ = χ(x) for all x in M, and X ∈ SxM, where χ(x) is the local invariant, as discussed
in [1] (see also [5]). In particular, the right-hand side of (3.8) is independent of the unit vector X and depends
only on the base point x. Moreover, we stress that |η(X)| ≤ χ(x) for every X unitary and based at x; hence η is
locally bounded on SM since χ is a smooth function in M.

Remark 12. Notice that one can rewrite (3.6) as

η(X) = g([X, X
0
], X), ι(X) = 1

2

(g([JX, X
0
], X) + g([X, X

0
], JX)). (3.9)

3.3 Existence and uniqueness: proof of Proposition 1

We now show that there exists a unique horizontal curve with assigned characteristic deviation, for a given

initial point and velocity. This will prove Proposition 1.

Proposition 13. Let M be a complete 3D sub-Riemannian contact structure. Given x ∈ M, a unit vector v ∈ ∆x
and a smooth function φ : I → ℝ, there exists a unique smooth horizontal curve ζ : I → M parametrized by arc
length such that ζ (0) = x, ̇ζ (0) = v and hζ (t) = φ(t) for all t ∈ I.

Proof. (i) Let ζ
1
, ζ

2
: I → M be two smooth horizontal curves parametrized by arc length such that ζi(0) = x,

̇ζ i(0) = v for i = 1, 2, and such that hζ
1

= φ = hζ
2

. It follows that ζ
1
, ζ

2
both satisfy the same differential equa-

tion ∇ ̇ζ ̇ζ = φ(t)J ̇ζ having the same initial conditions. Hence ζ
1
= ζ

2
.

(ii) Fix x ∈ M, a unit vector v ∈ TxM and a smooth function φ : I → ℝ. Since M is complete, there exists

ζ : I → M, a smooth solution to the Cauchy problem ∇ ̇ζ ̇ζ = φ(t)J ̇ζ , ζ (0) = x, ̇ζ (0) = v. We are left to show that

ζ is horizontal and has unit speed. By definition of the Tanno connection, ∇ω = 0; hence

d

dt
ω( ̇ζ (t)) = ω(∇ ̇ζ (t) ̇ζ ) = ω(φ(t)J ̇ζ (t)) = 0,
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which implies that
̇ζ (t) is horizontal for any t ∈ I. Moreover, ∇g = 0; hence

d

dt
g( ̇ζ (t), ̇ζ (t)) = 2g(∇ ̇ζ (t) ̇ζ , ̇ζ (t)) = 2g(φ(t)J ̇ζ (t), ̇ζ (t)) = 0,

which means that
̇ζ (t) is a unit vector for every t ∈ I since it has norm 1 for t = 0.

We end this section by showing that, for a sub-Riemannian problem that is defined by a so-called isoperi-

metric problem on a Riemannian surface N (cf. [7] for the terminology), the characteristic deviation of a hor-

izontal curve is the geodesic curvature of its projection.

3.4 Isoperimetric problems

Let (N, gN) be a two-dimensional Riemannian manifold, and let A be a 1-form on N. For x, y ∈ N, let

Ω

N
x,y = {α : [0, T]→ N | α ∈ C∞, α(0) = x, α(T) = y}.

The isoperimetric problem on M associated with the 1-form A is the following:

inf{ℓ(α)

α ∈ ΩNx,y ,∫

α

A = c}, (3.10)

where c is a real constant and x, y are points on N. If one chooses A in such a way that dA = volN , then one
recovers the classical problem of minimizing the length of a curve spanning a fixed area.

One can introduce the sub-Riemannian structure on M = N ×ℝ by lifting a curve α on N to a curve

ζ (t) = (α(t), z(t)), where z(t) = ∫t
0

A( ̇α(s))ds. The lifted curves ζ are then tangent to the distribution defined

as ∆ = kerω, whereω = dz − A. Notice thatω is contact if and only if dA is never vanishing onN. If π : M → N
denotes the canonical projection, then π∗ restricts to an isomorphism between ∆ and TN. Denoting by

g = π∗gN the pull-back of the metric of N on the distribution ∆, problem (3.10) rewrites as

inf{ℓ
SR
(ζ) | ζ horizontal, ζ (0) = (x, 0), ζ (T) = (y, c)}.

Proposition 14. Let ζ : [0, T]→ M be the smooth horizontal lift of a smooth curve α : [0, T]→ N. Then
hζ (t) = κNα (t), where κNα is the Riemannian geodesic curvature of α on N.

Proof. Fix an orthonormal basis X
1
, X

2
for the distribution, andwrite

̇ζ = cos(θ)X
1
+ sin(θ)X

2
. Then it is easy

to see that ̇α = cos(θ)Y
1
+ sin(θ)Y

2
, where Yi := π∗Xi is an orthonormal basis for theRiemannianmetric onN.

Then it is a standard computation to show that κNα = ̇θ − c112 cos θ − c
2

12

sin θ is the geodesic curvature of α
on N. The proof is completed by Lemma 9.

3.5 Normal coordinates

We express the characteristic deviation in a particular adapted set of coordinates called normal coordinates,

as introduced in [14].

Proposition 15. If p is a point inM, there exist a neighborhoodU of p and coordinates (x, y, z) onU, and smooth
functions u, v : U → ℝ that satisfy

u(0, 0, z) = v(0, 0, z) = ∂v
∂x
(0, 0, z) = ∂v

∂y
(0, 0, z) = 0,

such that the two vector fields

X
1
= (

∂
∂x
−
y
2

∂
∂z)
+ uy(y ∂∂x

− x ∂
∂y)
− v y

2

∂
∂z

,

X
2
= (

∂
∂y
+
x
2

∂
∂z)
− ux(y ∂∂x

− x ∂
∂y)
+ v x

2

∂
∂z

define an orthonormal frame of the distribution around p = (0, 0, 0).
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It can be easily checked from the definition of Reeb vector field X
0
that, in normal coordinates,

[X
1
, X

2
](0) = X

0
(0) =

∂
∂z

. (3.11)

In normal coordinates, the characteristic deviation of a horizontal curve parametrized by arc length leav-

ing from the origin is computed explicitly.

Proposition 16. Let us consider (x, y, z) a system of normal coordinates around p ∈ M. If ζ : I → M is a smooth
horizontal curve such that ζ (0) = p and parametrized by arc length with ζ (t) = (x(t), y(t), z(t)),

̇z(0) = ̈z(0) = 0, z(3)(0) =
hζ (0)
2

.

In particular, we have
hζ (0) = limt→0

12z(t)
(x2(t) + y2(t))3/2

.

Proof. Let us consider T a smooth horizontal unit vector field extending the velocity field of ζ and such that
T = cos(ψ)X

1
+ sin(ψ)X

2
. We have, using (3.11),

hζ (0) = −g([T, JT](ζ (0)), T(ζ (0))) = −g([X1, X2](ζ (0)) − gradSR(ψ)(ζ (0)), T(ζ (0))) =
d

dt
t=0

ψ(ζ (t)). (3.12)

Moreover, denoting ψ(t) := ψ(ζ (t)) (and similarly for u(t), v(t)), we have, for t ∈ I,

ẋ(t) = cos(ψ(t))(1 + u(t)y(t)2) − sin(ψ(t))u(t)x(t)y(t),
ẏ(t) = sin(ψ(t))(1 + u(t)x(t)2) − cos(ψ(t))u(t)x(t)y(t),

̇z(t) = (− cos(ψ(t)) y(t)
2

+ sin(ψ(t)) x(t)
2

)(1 + v(t)).

By Taylor expansion, one has

x(t) = cos(ψ(0))t + o(t), y(t) = sin(ψ(0))t + o(t). (3.13)

After some computations, using (3.12) and the properties of the function v, one has

̇z(0) = ̈z(0) = 0, z(3)(0) = 1
2

d

dt
t=0

ψ(ζ (t)) =
hζ (0)
2

,

which combined with (3.13) implies the conclusion.

4 The geodesic curvature
In this section, we prove Proposition 2, which states that the geodesic curvature kζ along a horizontal curve ζ
is identically zero if and only if the curve is a geodesic.

Let us start by introducing the geodesic curvature of a smooth horizontal curve.

Definition 17. Let ζ : I → M be a smooth horizontal curve parametrized by arc length. The geodesic curvature
of ζ is the smooth function kζ : I → ℝ defined by

kζ (t) :=
d

dt
hζ (t) − η( ̇ζ (t)).

Here hζ is the characteristic deviation and η is the directional invariant introduced in Proposition 10. Notice
that, in the language of tensors, kζ can be rewritten as

kζ =
d

dt
g(∇ ̇ζ ̇ζ , J ̇ζ ) − g(τ( ̇ζ ), ̇ζ ).

Proposition 2, stated in a different but equivalent form, already appeared in the literature; see [17, Propo-

sition 15] (see also [10, Lemma 1.1]).

Here we give a self-contained proof following our notation, based on the Pontryaginmaximumprinciple,

which states that, on a contact manifold, all geodesics are projections of solutions of a Hamiltonian system.
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4.1 Hamiltonian description

In what follows, we denote by π : T∗M → M the canonical projection. Given a smooth vector field X ∈ Γ(TM)
on M, we denote by

hX : T∗M → ℝ, hX(ξ ) = ⟨ξ, X(q)⟩, (4.1)

the linear function on fibers associated with X, where q = π(λ). Given an orthonormal frame X
1
, X

2
of the

distribution and the Reeb field X
0
, we consider the associated functions hXi for i = 0, 1, 2, and we define the

sub-Riemannian Hamiltonian H : T∗M → ℝ as follows:

H = 1
2

(h2X
1

+ h2X
2

). (4.2)

One can show that H actually does not depend on the choice of the frame X
1
, X

2
.

The cotangent bundle T∗M is canonically endowed with its canonical symplectic structure σ, which in

turn defines the Hamiltonian vector field H⃗ through the identity σ( ⋅ , H⃗) = dH. In standard coordinates (p, x)
on T∗M, we have

H⃗ = ∂H
∂p

∂
∂x
−
∂H
∂x

∂
∂p

.

We introduce a frame on the cotangent bundle T∗M that is adapted to the choice of an orthonormal frame

on M. Every vector field X on M can be lifted to a vector field X on T∗M by requiring

π∗X = X and XhXj = 0 for all j. (4.3)

We introduce then the frame of T(T∗M) defined by

(X
0
, X

1
, X

2
,

∂
∂hX

0

,

∂
∂hX

1

,

∂
∂hX

2

).

Notice that

∂
∂hXi

denotes the vertical vector field on T∗M satisfying

π∗(
∂
∂hXi
) = 0 and

∂
∂hXi

hXj = δi,j . (4.4)

We stress that this frame does depend on a choice of orthonormal frame of the distribution. Similarly, we can

lift a function f : M → ℝ to the function f = f ∘ π : T∗M → ℝ. In particular, cki,j means cki,j ∘ π.
The sub-Riemannian Hamiltonian vector field is expressed in the lifted frame as

H⃗ =
2

∑
i=1
hXiXi +

2

∑
i=1

2

∑
j,k=0

cki,jhXihXk
∂
∂hXj

. (4.5)

Remark 18. (i) The flow of the Hamiltonian vector field H⃗ is the geodesic flow in the following sense:

a horizontal curve ζ : I → M is a geodesic parametrized by constant speed if and only if there exists a lift

ζ : I → T∗M such that π ∘ ζ = ζ and ζ (t) = H⃗(ζ (t)) for every t ∈ I. This result is classical; a proof can be

found, for instance, in [2, Chapter 4, Theorem 4.25].

(ii) Geodesics parametrized by arc length inM are projections of integral lines of H⃗ contained inH−1(1/2).
Indeed, one can check by combining (4.2) and (4.5) that H is constant along its Hamiltonian flow, and

‖π∗H⃗(ζ (t))‖2 = 2H(ζ (t)).

4.2 Proof of Proposition 2

To prove Proposition 2, we have to show that a smooth horizontal curve ζ : I → M is a projection of a solution

of the Hamiltonian system defined by H if and only if κζ = 0 along the curve.
Assume that ζ is a lift of ζ and that ζ satisfies the Hamiltonian equation

ζ (t) = H⃗(ζ (t)). (4.6)
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Using expression (4.5) and projecting along the orthonormal frame X
1
= T, X

2
= JT, we have

ζ (t) = hT(ζ (t))T(ζ (t)) + hJT(ζ (t))JT(ζ (t)).

By the definition of T, one has
hT(ζ (t)) = 1 and hJT(ζ (t)) = 0, (4.7)

and combining this with (4.5) and (4.6), we find (recall cX0T,JT = 1)

ζ (t) = T(ζ (t)) − cTX
0
,T(ζ (t))

∂
∂hX

0

+ (cTT,JT(ζ (t)) + hX0 (ζ (t)))
∂
∂hJT

.

From the latter, we deduce

{{{
{{{
{

d

dt
hX

0

(ζ (t)) = −cTX
0
,T(ζ (t)) = η(ζ

(t)),

0 =
d

dt
hJT(ζ (t)) = cTT,JT(ζ (t)) + hX0 (ζ (t)) = −hζ (t) + hX0 (ζ (t)),

(4.8)

which implies

κζ (t) =
d

dt
hζ (t) − η(ζ (t)) = 0.

The converse is proved in a similar way by building a lift satisfying (4.7)–(4.8).

Remark 19. It follows from the proof that if ζ is a geodesic, then the characteristic deviation coincides with
the evaluation of hX

0

along its lift, namely hζ (t) = hX
0

(ζ (t)). Recall that the coordinate function hX
0

definedon

T∗M does not depend on the choice of an orthonormal frame (X
1
, X

2
) of the distribution and can be regarded

as a vertical component of the covector.

5 About distance and cut locus
In this section, we recall some results on the cut locus of sub-Riemannian distance, which are needed later

to prove regularity of the distance function along a smooth horizontal curve. We also refer to [2, Chapter 11]

for more details.

In what follows, we fix p a privileged point in M, that will be the origin of our smooth horizontal curve.

The sub-Riemannian distance from p is denoted by δp : M → ℝ+, δp(q) = dSR(p, q). We work on a compact

neighborhood of p in such a way that we can assume without loss of generality that the sub-Riemannian

structure is complete.

We denote by Σp the set of smooth points of δp. The following result is proved in [6] (see also [2, Chap-

ter 11]).

Theorem 20. Let p ∈ M, and denote by δp the sub-Riemannian distance from p.
(a) The set Σp of smooth points of δp is open and dense in M.
(b) We have q ∈ Σp if and only if there exists a unique arc length geodesic joining p and q that is not abnormal

and not conjugate.
(c) If q ∈ Σp and γ is the lift on T∗M of the unique arc length geodesic γ joining p to q (in time δp(q)), then

dqδp = γ(δp(q)).

Notice that, since we consider contact sub-Riemannian structures, there are no nontrivial abnormal length-

minimizers, and one can prove that M \ Σp has measure zero; cf. [2, Chapter 11].

For any q ∈ Σp, we denote by γq the unique arc length geodesic reaching q in time δp(q). In what follows,
we drop p from the notation of the distance δp.

Definition 21. For every q in Σp, we define the radial vector field Γ by Γ : Σp → TM, Γ(q) = grad
SR
δ(q), and

the radial deviation ϱ by ϱ : Σp → ℝ, ϱ(q) = hγq (δ(q)).
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We stress that the radial deviation ϱ(q) represents the characteristic deviation of the geodesic with unit speed
joining p and q.

The following lemma contains some information on Γ and ϱ at smooth points.

Lemma 22. On Σp, the vector field Γ is smooth and satisfies
(i) Γδ = 1, JΓδ = 0.
Moreover, the function ϱ is smooth on Σp and satisfies the identities
(ii) ϱ = X

0
δ,

(iii) Γϱ = η(Γ),
(iv) JΓϱ = cΓJΓ,X

0

= 2ι(Γ) − c JΓ
Γ,X

0

.

Proof. (i) We have Γδ = g(Γ, grad
SR
δ) = ‖Γ‖2 = 1. Similarly, JΓδ = g(JΓ, Γ) = 0 on Σp. The smoothness of Γ is

a consequence of the smoothness of δ on Σp.

(ii) Over Σp, where the field Γ and the function δ are smooth, we can write

0 = Γ(JΓδ) − JΓ(Γδ) (thanks to (i))

= [Γ, JΓ]δ = cΓ
Γ,JΓΓδ + c

JΓ
Γ,JΓJΓδ + c

X
0

Γ,JΓX0δ

= −ϱ + X
0
δ (by (i)),

where, in the last line, we used that ϱ = −cΓ
Γ,JΓ, claim (i) and cX0

Γ,JΓ = 1.
(iii) Let us compute

Γϱ = Γ(X
0
δ) (thanks to (ii))

= Γ(X
0
δ) − X

0
(Γδ) = [Γ, X

0
]δ = cΓ

Γ,X
0

Γδ + cJΓ
Γ,X

0

JΓδ + cX0
Γ,X

0

X
0
δ = cΓ

Γ,X
0

= η(Γ),

where we used claim (i), cX0
Γ,X

0

X
0
= 0 and (3.9) for η.

(iv). Similarly to (iii), let us write

JΓϱ = JΓ(X
0
δ) = JΓ(X

0
δ) − X

0
(JΓδ)

= [JΓ, X
0
]δ = cΓJΓ,X

0

Γδ + cJΓJΓ,X
0

JΓδ + cX0JΓ,X
0

X
0
δ = cΓJΓ,X

0

,

where we used claim (i) and cX0JΓ,X
0

X
0
= 0. This corresponds to the first part of the second identity. The second

part of the identity is a consequence of (3.9).

5.1 On the cut locus

Recall that, given a geodesic γ : [0, T]→ M parametrized by arc length, we define the cut time as follows:

t
cut
(γ) = sup{t > 0 | ℓ

SR
(γ|[0,t] ) = dSR(γ(0), γ(t))}.

The cut point along γ is the point γ(t
cut
(γ)), and the cut locus from a point p is the set cut(p) of all cut points

of arc length geodesic starting from p.
For a 3D contact sub-Riemannian manifold, one has M \ cut(p) = Σp. The cut locus is strictly related to

the singularities of the exponential map.

Definition 23. We define the exponential map

exp : SpM ×ℝ ×ℝ+ → M

as follows: given (v, h, t) ∈ SpM ×ℝ ×ℝ, we define exp(v, h, t) as the value at time t > 0 of the geodesic with
initial vector v and constant characteristic deviation h.

Recall that SpM is the set of unit horizontal vectors at p. Usually, the exponential map is defined on the set

of covectors T∗pM, or on S∗pM ×ℝ where S∗pM = T∗pM ∩ H−1(1/2), with H the sub-Riemannian Hamiltonian.

Here we prefer to parametrize by a unit horizontal vector and its characteristic deviation, which is constant.

It is well known that the exponential map is smooth. We refer to [2, Chapter 8] for a comprehensive

discussion on these results.



12 | D. Barilari and M. Kohli, Geodesic curvature in 3D sub-Riemannian geometry

6 Expansion of the distance
In this section, we fix ζ : I → M a smooth horizontal curve parametrized by arc length such that ζ (0) = p. We

define θ : I \ {0}→ S1 as the function such that (1.3) holds. We suppose that ζ : I → M satisfies the following

assumption:

ζ (t) ∉ cut(ζ (0)) for t ̸= 0 small. (H)

As we will prove in Section 6.1, these assumptions are always satisfied for a sufficiently short arc of a smooth

horizontal curve parametrized by arc length.

We stress that the vector fields Γ and JΓ are singular at ζ (0); hence the regularity of the function t → θ(t) at
t = 0 is not guaranteed. Assuming the C2 regularity of the function, it is not difficult to obtain a Taylor expan-

sion of the distance along the curve ζ in terms of the derivatives of θ. More precisely, we have the following
result.

Proposition 24. Let ζ : I → M be a smooth horizontal curve parametrized by arc length satisfying (H). Assume
that the function θ defined by (1.3) can be extended to a C2 function such that θ(0) = θ(0) = 0. Then

d2
SR

(ζ (t), ζ (0)) = t2 − θ
(0)2

20

t6 + o(t6). (6.1)

Proof. Fix p = γ(0). We have d
SR
(ζ (t), ζ (0)) = δ(ζ (t)) and

δ(ζ (t)) =
t

∫
0

g(grad
SR
δ(ζ (s)), ζ (s))ds

=
t

∫
0

cos(θ(s))ds =
t

∫
0

cos(
θ(0)
2

s2 + o(s2))ds

= t − θ
(0)2

40

t5 + o(t5).

The goal of the following sections is to show that the assumptions of Proposition 24 are satisfied for any

smooth horizontal curve ζ parametrized by arc length. Moreover, we recover the geometric meaning of the

nontrivial coefficient appearing in (6.1).

We first relate the characteristic deviation and the geodesic curvature with θ.

Proposition 25. Let ζ : I → M be a smooth horizontal curve parametrized by arc length. For any t ̸= 0, we have

hζ (t) = θζ (t) + cos(θ(t))ϱ(ζ (t)) − sin(θ(t))c
JΓ
Γ,JΓ(ζ (t)). (6.2)

Moreover,

kζ (t) = −η(ζ (t)) + θ(t) − θ(t)(sin(θ(t))ϱ(ζ (t)) + cos(θ(t))c JΓ
Γ,JΓ(ζ (t)))

+ cos2(θ(t))(cos(2θ(t))η(ζ (t)) + sin(2θ(t))ι(ζ (t)))

+ sin(2θ(t))(− sin(2θ(t))η(ζ (t)) + cos(2θ(t))ι(ζ (t)) − 1
2

c JΓ
Γ,X

0

)

−
sin(2θ(t))

2

(Γc JΓ
Γ,JΓ)(ζ (t)) − sin

2(θ(t))(JΓc JΓ
Γ,JΓ)(ζ (t)). (6.3)

Proof. By Lemma 9, using the frame {X
1
, X

2
} = {Γ, JΓ}, we have, for any t ̸= 0,

hζ (t) = θ(t) − cos(θ(t))cΓ
Γ,JΓ(ζ (t)) − sin(θ(t))c

JΓ
Γ,JΓ(ζ (t))

= θ(t) + cos(θ(t))ϱ(ζ (t)) − sin(θ(t))c JΓ
Γ,JΓ(ζ (t)).

This proves (6.2). To obtain (6.3), we start from Definition 17,

kζ = −η(ζ (t)) + hζ (t) = −η(ζ
(t)) + θ(t) − θζ (t)(sin(θ(t))ϱ(ζ (t)) + cos(θ(t))c

JΓ
Γ,JΓ(ζ (t)))

+ cos(θ(t))(dϱ)(ζ (t)) − sin(θ(t))(dc JΓ
Γ,JΓ)(ζ

(t)). (6.4)



D. Barilari and M. Kohli, Geodesic curvature in 3D sub-Riemannian geometry | 13

We now focus on the two terms (dc JΓ
Γ,JΓ)(ζ

(t)) and (dϱ)(ζ (t)). We replace the vector ζ (t) by its expression in
the frame (Γ, JΓ) in terms of θ. We obtain

(dc JΓ
Γ,JΓ)(ζ

(t)) = cos(θ(t))(Γc JΓ
Γ,JΓ)(ζ (t)) + sin(θ(t))(JΓc

JΓ
Γ,JΓ)(ζ (t)); (6.5)

hence

− sin(θ(t))(dc JΓ
Γ,JΓ)(ζ

(t)) = −sin(2θ(t))
2

(Γc JΓ
Γ,JΓ)(ζ (t)) − sin

2(θ(t))(JΓc JΓ
Γ,JΓ)(ζ (t)).

Moreover,

(dϱ)(ζ (t)) = cos(θ(t))(Γϱ)(ζ (t)) + sin(θ(t))(JΓϱ)(ζ (t))
= cos(θ(t))η(Γ(ζ (t))) + sin(θ(t))(2ι(Γ(ζ (t))) − c JΓ

Γ,X
0

(ζ (t))),

where we used Lemma 22. Using (1.3) and Lemma 10, we deduce that

cos(θ(t))(dϱ)(ζ (t)) = cos2(θ(t))(cos(2θ(t))η(ζ (t)) + sin(2θ(t))ι(ζ (t)))

+ sin(2θ(t))(− sin(2θ(t))η(ζ (t)) + cos(2θ(t))ι(ζ (t)) − 1
2

c JΓ
Γ,X

0

),

and the proof is completed by combining the last identity with (6.4) and (6.5).

6.1 Continuity of the radial deviation coordinate

Let us start by rewriting identity (6.2) as follows:

θζ (t) = hζ (t) − cos(θ(t))ϱ(ζ (t)) + sin(θ(t))c
JΓ
Γ,JΓ(ζ (t)).

We prove here the continuity of the radial deviation coordinate along a smooth horizontal curve parame-

trized by arc length leaving from p. More precisely,

lim

t→0
(hζ (t) − ϱ(ζ (t))) = 0. (6.6)

We need the following lemma, whose proof follows from the standard Taylor–Lagrange formula.

Lemma 26. Let F : ℝd ×ℝ→ ℝ be a C∞ function such that, for any x inℝd,

F(x, 0) = ∂F
∂y
(x, 0) = ⋅ ⋅ ⋅ = ∂

n−1F
∂yn−1
(x, 0) = 0.

Then the functionℝd ×ℝ→ ℝ defined by (x, y) → F(x,y)
yn is of class C∞.

To prove (6.6), we use normal coordinates. We need the following lemma (cf. also with Proposition 16).

Lemma 27. In normal coordinates (x, y, z) around p, the map

Ψ : SpM ×ℝ ×ℝ→ ℝ, Ψ(v, h, t) = 12z(exp(v, h, t))
(x2(exp(v, h, t)) + y2(exp(v, h, t)))3/2,

is smooth, and Ψ(v, h, 0) = h.

Proof. The exponential map is smooth. Thanks to Proposition 16 combined with Lemma 26, we have that

Ψ
1
: SpM ×ℝ ×ℝ→ ℝ, Ψ

1
(v, h, t) = 12z(exp(v, h, t))

t3
,

is smooth, and Ψ
1
(v, h, 0) = h. Moreover, for any (v, h) ∈ SpM ×ℝ, we have that t → exp(v, h, t) is parame-

trized by arc length, equal to p at t = 0. By the expression of the orthonormal frame of the distribution in

normal coordinates around p given in Proposition 15, we deduce that, for (v, h) fixed,

lim

t→0

1

t (
x2(exp(v, h, t)) + y2(exp(v, h, t)))1/2 = 1.

Therefore, by using once more Lemma 26, we obtain that

Ψ
2
: SpM ×ℝ ×ℝ→ ℝ, Ψ

2
(v, h, t) =

(x2(exp(v, h, t)) + y2(exp(v, h, t)))1/2

t
,

is smooth, and Ψ
2
(v, h, 0) = 1, which concludes the proof.
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6.2 Horizontal curves do not intersect the cut locus for small times

We prove now that the characteristic deviation of geodesics joining ζ (0) with ζ (t) converge to the character-
istic deviation of ζ when t → 0.

As a byproduct, we also prove that every horizontal curve does not intersect the cut locus for small times,

namely satisfies assumption (H).

Proposition 28. Let ζ : I → M be a smooth horizontal curve parametrized by arc length. Then we have
(i) ζ (t) ∉ cut(ζ (0)) for t ̸= 0 small enough,
(ii) limt→0 ϱ(ζ (t)) = hζ (0).

Proof. For t ∈ I \ {0}, let us denote γt the length-minimizing geodesic joining p and ζ (t) in time δ(ζ (t)). For t
small enough, these minimizers are all contained in a closed ball B. Write

|ϱ(ζ (t)) − hζ (0)| ≤ |ϱ(ζ (t)) − hγt (0)| + |hγt (0) − hζ (0)|. (6.7)

Since, by definition of ϱ, we have that ϱ(ζ (t)) = hγt (δ(ζ (t))), the first term in (6.7) tends to zero when t → 0

as

|hγt (δ(ζ (t))) − hγt (0)| ≤
δ(ζ (t))

∫
0


d

ds
hγt (s)

ds ≤ sup

B
|η|δ(ζ (t))→ 0,

where we used that, along a geodesic,

d

ds hγ(s) = η(γ
(s)) thanks to the geodesic equation and δ(ζ (t))→ 0 for

t → 0 by continuity of δ. It is sufficient then to prove that

lim

t→0
hγt (0) = hζ (0) =: h0. (6.8)

Let us now assume that (6.8) is not true. Without loss of generality, we can assume that there exist ε > 0 and
a sequence tn → 0 such that

hγn (0) ≥ h0 + 3ε, (6.9)

where we denoted for simplicity by γn the curve γtn .
Let us now fix normal coordinates near p and set Φ(x, y, z) = 12z/(x2 + y2)3/2. Define the super- and

sub-level set

Φ

+
λ
1

= {Φ ≥ λ
1
}, Φ

−
λ
2

= {Φ ≤ λ
2
}, Φλ

1
,λ

2

= {λ
1
≤ Φ ≤ λ

2
}.

By definition of characteristic deviation and Proposition 16, one has ζ (tn) ∈ Φ−h
0
+ε for n large enough. On the

other hand, thanks to (6.9), for s small enough, one has γn(s) ∈ Φ+h
0
+3ε.

Since γn reaches the point ζ (tn) (at time δ(ζ (tn))), this means that, for n large enough, γn passes from the

set Φ

+
h
0
+3ε to the set Φ

−
h
0
+ε. We are now going to show that this gives a contradiction. We need the following.

Claim. There exists τ
0
> 0 such that, for every v ∈ SpM, the curve t → exp(v, h

0
+ 2ε, t) is optimal and belongs

to Φh
0
+ε,h

0
+3ε on 0 < t ≤ τ0.

Assume that the claim is proved, and let us conclude the proof. On one hand, γt is the length-minimizing geo-

desic joining p and ζ (t) in time δ(ζ (t)); hence γt(s) ∉ cut(p) for s < δ(ζ (t)). On the other hand, for t sufficiently

small, γt passes from the set Φ

+
h
0
+3ε to the set Φ

−
h
0
+ε, hence by continuity must cross the set

S
2ε := exp(SpM × {h0 + 2ε} × [0, τ0]). (6.10)

This implies δ(ζ (tn)) ≥ τ0 for every n large enough,which is clearly a contradiction since δ(ζ (tn))→ 0. Notice

that S
2ε is contained in Φh

0
+ε,h

0
+3ε for τ0 small enough.

The proof is concluded by the existence of τ
0
> 0 in the claim. This is a consequence of the continuity of

the cut time with respect to initial conditions in absence of abnormal minimizers (cf. [2, Proposition 8.76]),

and the compactness of the set of initial data in (6.10).
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6.3 Asymptotics of Lie brackets

Now we give a statement about the asymptotics of the coefficients of the Lie brackets of the elements of the

frame (Γ, JΓ) along a horizontal curve parametrized by arc length leaving from p.

Proposition 29. Let ζ : I → M be a smooth horizontal curve parametrized by arc length such that ζ (0) = p.
Then, for t → 0,
(a) δ(ζ (t))c JΓ

Γ,JΓ(ζ (t))→ −4,
(b) δ2(ζ (t))c JΓ

Γ,X
0

(ζ (t))→ −6,
(c) δ2(ζ (t))Γc JΓ

Γ,JΓ(ζ (t))→ 4,
(d) δ2(ζ (t))JΓc JΓ

Γ,JΓ(ζ (t)) = O(1).

The proof of Proposition 29 relies on properties of sub-Riemannian Jacobi fields. We give a self-contained

proof in Appendix A.

7 Regularity along a smooth horizontal curve: proof of Theorem 3
We now go back to the regularity properties of the function θ, which satisfies

ζ (t) = cos(θ(t))Γ(ζ(t)) + sin(θ(t))JΓ(ζ(t)).

We first prove a technical lemma.

Lemma 30. For every ε > 0, there exists ̄t ∈ (0, ε) such that cos(θ( ̄t)) ≥ 0.

Proof. Assume by contradiction that there exists ε
0
> 0 such that cos(θ(t)) < 0 for every t in (0, ε

0
). By com-

bining Lemma 22 and definition (1.3), for t ∈ (0, ε
0
),

d

dt
δ(ζ (t)) = cos(θ(t)) < 0.

Since δ(ζ (0)) = 0 (recall ζ (0) = p) and δ is continuous, for t positive and small enough, one has δ(ζ (t)) < 0,
which is a contradiction.

7.1 First order

The goal of this section is to prove that the function θ can be extended continuously at zero in such a way

that θ(0) = 0, i.e., we have to show the existence of the limit limt→0 θ(t) = 0. Geometrically, this is saying that

the tangent vector at zero of the geodesics joining ζ (t) to ζ (0) converges to ζ (0) when t → 0.

We define the following quantity for every t > 0:

M(t) := sup

s∈]0,t]
|hζ (s) − cos(θ(s))ϱ(ζ (s))|.

Notice that M(t) is bounded for t → 0 thanks to Proposition 28.

Lemma 31. Let ζ : I → M be a smooth horizontal curve parametrized by arc length such that ζ (0) = p. Then,
for any t ̸= 0 small enough,

|sin(θ(t))| ≤ t M(t)
3

.

Proof. Let us prove the lemma by contradiction. Let t
0
> 0 (which can be chosen arbitrarily small) be such

that

|sin(θ(t
0
))| > t

0

M(t
0
)

3

=: M.
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We decompose the circle S1 into three disjoint sets (depending on t
0
),

Z
1
= {θ ∈ S1 : |sin θ| > M},

Z
2
= Zc

1

∩ {θ ∈ S1 : cos θ > 0},
Z
3
= Zc

1

∩ {θ ∈ S1 : cos θ < 0},

where Ac denotes the complementary of a subset A of the circle. By Proposition 29, we can assume that, for

t ≤ t
0
, we have

δ(ζ (t))c JΓ
Γ,JΓ(ζ (t)) < −3. (7.1)

Assume for a moment that θ(ζ (t)) ∈ Z
1
for every 0 ≤ t ≤ t

0
. Then

|sin(θ(t))c JΓ
Γ,JΓ(ζ (t))| =


sin(θ(t))
δ(ζ (t))

δ(ζ (t))c JΓ
Γ,JΓ(ζ (t))


>

3

sin(θ(t))
δ(ζ (t))


(by (7.1))

≥
t
0

δ(ζ (t))
M(t

0
) ≥ M(t

0
), (7.2)

wherewe used that 0 ≤ δ(ζ (t)) ≤ t ≤ t
0
(thanks to the fact that ζ is arc length parametrized). Thanks to Propo-

sition 25, we have

θζ (t) = hζ (t) − cos(θ(t))ϱ(ζ (t)) + sin(θ(t))c
JΓ
Γ,JΓ(ζ (t)). (7.3)

This implies that, if θ(ζ (t)) ∈ Z
1
for every 0 ≤ t ≤ t

0
, then θζ (t) ̸= 0 and has the same sign as the quantity

sin(θ(t))c JΓ
Γ,JΓ(ζ (t)). By (7.1), this means that θζ (t) and sin(θ(t)) have opposite signs, which means that

d

dt
cos(θ(t)) = − sin(θ(t))θζ (t) > 0.

Let us now go back to the proof. Our assumption says that θ(t
0
) ∈ Z

1
. By the previous considerations on

the orientation of the time-dependent vector field associated to the differential equation (7.3) on the set Z
1
,

there are two cases:

(i) there exists 0 ≤ ̄t ≤ t
0
such that θ( ̄t) ∈ Z

3
;

(ii) for all 0 ≤ t ≤ t
0
, we have θ(t) ∈ Z

1
.

In case (i), we have that θ( ̄t) ∈ Z
3
for every 0 ≤ t ≤ ̄t. By definition of Z

3
, this implies that, for all 0 ≤ t ≤ ̄t,

one has cos(θ(t)) < 0, which is impossible, thanks to Lemma 30.

In case (ii), we have that t → cos(θ(t)) is increasing on (0, t
0
]; hence cos(θ(t))→ α for t → 0. Notice that,

by construction, α ̸= ±1; hence there exists sin(θ(t))→ β, with β ̸= 0.
Let us then rewrite (7.3) as

θ(t) − θ(t
0
) =

t
0

∫
t

hζ (s) − cos(θ(s))ϱ(ζ (s))ds +
t
0

∫
t

sin(θ(s))c JΓ
Γ,JΓ(ζ (s))ds

According to Proposition 28, the first integrand is bounded for s small, but the second one explodes for small

times since (cf. (7.2))

|sin(θ(s))c JΓ
Γ,JΓ(ζ (s))| ≥


3

sin(θ(s))
δ(ζ (s))


≥

3

sin(θ(s))
s


and sin(θ(s)) converges to a non-zero limit β for s → 0. In both cases, we find a contradiction, and the state-

ment is proved.

Next we are ready to prove the regularity up to order one.

Proposition 32. The function θ : I → S1, extended continuously by θ(0) = 0, is of class C1, and θ(0) = 0.

Proof. We study what happens for positive times. The result for negative times can be obtained similarly by

reversing time. By Lemma 31, for t > 0 small enough,

|sin(θ(t))| ≤ t M(t)
3

. (7.4)
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SinceM(t) is bounded for t → 0 by Proposition 28, (7.4) implies, when t → 0, sin(θ(t))→ 0. We deduce that

cos(θ(t))→ α for t → 0, with α = ±1. Applying Lemma 30, we have α = 1. Hence, when t → 0,

θ(t)→ 0. (7.5)

Let us then extend θ by continuity defining θ(0) = 0, and let us prove that θ is indeed C1. Notice that this
implies

δ(ζ (t)) =
t

∫
0

cos(θ(s))ds. (7.6)

Combining Proposition 28 and (7.5), one obtains that M(t)→ 0 for t → 0. Hence, for t → 0,


sin(θ(t))

t

≤
M(t)
3

→ 0, (7.7)

which means that the function θ is differentiable at time zero and that θ(0) = 0.
To show that θ is C1, we rewrite the differential equation satisfied by θ as

θζ (t) = (hζ (t) − cos(θ(t))ϱ(ζ (t))) +
sin(θ(t))

t
t

δ(ζ (t))
δ(ζ (t))c JΓ

Γ,JΓ(ζ (t)).

By applying Propositions 28–29 and by using (7.5), (7.6) and (7.7), we deduce that, for t → 0, one has

θ(t)→ 0 = θ(0); hence θ is C1.

Notice that, along the lines of the proof, we obtained the following well-known fact about the metric speed

of a horizontal curve.

Corollary 33. For a smooth horizontal curve ζ : I → M with unit speed, we have

lim

t→0

d
SR
(ζ (t), ζ (0))
|t|

= 1.

7.2 Second order

To prove second-order regularity for θ, we need to reformulate the identity characterizing kζ given in Propo-
sition 25.

Lemma 34. For every t ̸= 0, we have

kζ (t) = θ(t) +
4θ(t)
t
+
2θ(t)
t2
+ r(t), (7.8)

where r(t)→ 0 for t → 0.

Proof. For the sake of simplicity, we focus on t > 0. We recall that, from Proposition 25, the curvature kζ (t)
can be expressed as

kζ (t) = −η(ζ (t)) + θ(t) − θζ (t)(sin(θ(t))ϱ(ζ (t)) + cos(θ(t))c
JΓ
Γ,JΓ(ζ (t)))

+ cos2(θ(t))(cos(2θ(t))η(ζ (t)) + sin(2θ(t))ι(ζ (t)))

+ sin(2θ(t))(− sin(2θ(t))η(ζ (t)) + cos(2θ(t))ι(ζ (t)) − 1
2

c JΓ
Γ,X

0

)

−
sin(2θ(t))

2

(Γc JΓ
Γ,JΓ)(ζ (t)) − sin

2(θ(t))(JΓc JΓ
Γ,JΓ)(ζ (t)).

Let us rewrite the three quantities

−θ(t) cos(θ(t))c JΓ
Γ,JΓ(ζ (t)),

−
sin(2θ(t))

2

(c JΓ
Γ,X

0

(θ(t)) + (Γc JΓ
Γ,JΓ)(ζ (t))),

− sin2(θ(t))(JΓc JΓ
Γ,JΓ)(ζ (t))
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as follows, respectively:

4θ(t)
t
+
θ(t)
t (
−t

δ(ζ (t))
cos(θ(t))δ(ζ (t))c JΓ

Γ,JΓ(ζ (t)) − 4),

2θ(t)
t2
+
θ(t)
t2
(
−t2

δ2(ζ (t))
sin(2θ(t))
2θ(t)

δ2(ζ (t))(c JΓ
Γ,X

0

+ (Γc JΓ
Γ,JΓ))(ζ (t)) − 2),

−(
sin(θ(t))

t )
2 t2

δ2(ζ (t))
δ2(ζ (t))(JΓc JΓ

Γ,JΓ)(ζ (t)).

Using Taylor expansion, together with the asymptotics of Propositions 29 and 32, we obtain (7.8) with r(t)
which tends to zero when t → 0.

Proposition 35. The function θ : I → S1, extended continuously by θ(0) = 0, is of class C2, with θ(0) = 0 and
θ(0) = kζ (0)/6.

Proof. Let us define f : I \ {0}→ ℝ by

f (t) := θ(t) + 2 θ(t)
t
−
kζ (0)t
3

. (7.9)

According to Proposition 32, f (t)→ 0 for t → 0. We can rewrite (7.8) as follows:

lim

t→0
(f (t) + 2 f (t)t )

= 0.

Thanks to Lemma 36, this implies that f is of class C1 on I and f (0) = 0. Differentiating (7.9), this means that

lim

t→0
(θ(t) + 2 θ

(t)
t
− 2

θ(t)
t2
−
kζ (0)
3

) = 0. (7.10)

But ifwe sum (7.10)with (7.8) (recall also Proposition32),wededuce that the function g : I \ {0}→ ℝdefined
by

g(t) = θ(t) −
kζ (0)
6

t

satisfies the relations

lim

t→0
g(t) = 0, lim

t→0
(g(t) + 3 g(t)t )

= 0.

Applying now Lemma 36 to g, we have that g is of class C1 on I and g(0) = 0. This proves that θ is C2 on I
and that θ(0) = kζ (0)/6, as required.

In the previous proof, we used twice the following lemma.

Lemma 36. Let φ : I \ {0}→ ℝ be a C1 function such that, for some α > 0,

lim

t→0
φ(t) = 0, lim

t→0
(φ(t) + αφ(t)t )

= 0. (7.11)

Then φ is of class C1 on I, and φ(0) = 0.

Proof. It is sufficient to prove that

lim

t→0

φ(t)
t
= 0. (7.12)

Indeed, this implies that φ is differentiable at zero and φ(0) = 0. Moreover, from (7.11), limt→0 φ(t) = 0,
i.e., φ is of class C1 on I. If (7.12) is not true, then there exists t

0
̸= 0 arbitrarily small such that


αφ(t0)

t
0


> ε. (7.13)

We can assume t
0
> 0, the case t

0
< 0 being similar. By the second identity in (7.11), we can choose t

0
such

that, for 0 < t ≤ t
0
,


φ(t) + αφ(t)

t

≤ ε. (7.14)
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By combining (7.13) and (7.14), we obtain that φ(t
0
)/t

0
and φ(t

0
) have opposite signs, which implies, since

t
0
> 0, that (φ2)(t

0
) ≤ 0. As a consequence,

d

dt
t=t

0


αφ(t)

t

≤ 0.

Therefore, (7.13) holds for every t ∈ (0, t
0
], and (φ2)(t) ≤ 0 for every t ∈ (0, t

0
]. But limt→0 φ(t) = 0; hence

φ vanishes identically. This is in contradiction with (7.13).

7.3 Proof of Theorem 3

Thanks to Proposition 35, the assumptions of Proposition 24 are satisfied with the additional property that

θ(0) =
kζ (0)
6

.

A Jacobi fields and asymptotics of the Lie brackets
In what follows, we discuss asymptotics of sub-Riemannian Jacobi fields. In this appendix, we give a self-

contained presentation to prove Proposition 29, but we refer to [4] (see also [9] for a survey) for more general

results, which contain in particular Lemma 40 presented below.

We denote S∗pM := H−1(1/2) ∩ T∗pM, and we set

S := S∗pM⋃{dqδ | q ∈ Σp},

where we recall dqδ denotes the differential of δ at q. We can interpretS as the union of the integral lines of

the Hamiltonian flow that are the lifts to T∗M of geodesics leaving from p that are parametrized by arc length

and that have not yet reached their cut time.

Proposition 37. Let Φt
H⃗ denote the flow of H⃗. The map

F : S→ F(S) ⊂ S∗pM ×ℝ, F(λ) = (Φδ(π(λ))
−H⃗ (λ), δ(π(λ))),

is a diffeomorphism whose inverse is F−1 : F(S)→ S, F−1(ξ, δ) = Φδ
H⃗(ξ ).

We can see (ξ, δ) as coordinates on the setS. The function δ is thereby transported from its initial domain Σp
toS since δ = δ ∘ π. In the coordinates (ξ, δ),

∂
∂δ
= H⃗, π∗ ∘ H⃗ = Γ ∘ π, (A.1)

where π∗ denotes the differential of π : TM → M.

Remark 38. As a consequence of definitions (4.3) and (4.4), for every orthonormal frame of the distribution

{X
1
, X

2
} and i, j, k = 0, 1, 2, we have [Xi , Xj] = [Xi , Xj], which in turn implies

cXkXi ,Xj = c
Xk
Xi ,Xj , [

∂
∂hXi

, Xj] = [
∂
∂hXi

,

∂
∂hXj
] = 0.

We can now introduce Jacobi fields.²

Definition 39. A vector field J defined along an integral line γ : I → T∗M of the Hamiltonian field is said to

be a Jacobi field if the Lie derivative LH⃗J = 0 along γ.

2 This is a vector field on T∗M, along the lift of a geodesic. To recover the classical notion of Jacobi field onM, one should consider

the projection J = π∗(J) onto M.
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We need the following result.

Lemma 40. Let us consider {X
1
, X

2
} an orthonormal frame of the distribution. There exist two smooth vector

fields J⊥ : S→ TS and J0 : S→ TS,

Ji = αiX
1
+ βiX

2
+ σiX

0
+ ji

1

∂
∂hX

1

+ ji
2

∂
∂hX

2

+ ji
0

∂
∂hX

0

, i ∈ {⊥, 0}, (A.2)

that satisfy for i ∈ {⊥, 0} the following conditions:
(i) Ji is a Jacobi field, i.e., [Ji , H⃗] = 0;
(ii) for every ξ ∈ S∗pM, we have π∗(Ji(ξ )) = 0 (Ji is vertical at zero) and

σ⊥ ∘ F−1(ξ, δ) ∼ δ
2

2

and σ0 ∘ F−1(ξ, δ) ∼ − δ
3

6

.

Moreover, the functions σi are smooth and are independent of the choice of {X
1
, X

2
}.

Proof. By combining the expression of H⃗ given by (4.5) and that of Ji, we can reformulate the condition

[Ji , H⃗] = 0 by decomposing it on the frame

(X
0
, X

1
, X

2
,

∂
∂hX

0

,

∂
∂hX

1

,

∂
∂hX

2

).

The corresponding system of differential equation is given by

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

H⃗σi = hX
2

αi − hX
1

βi ,

H⃗αi = (hX
2

αi − hX
1

βi)c1
1,2

+ hX
1

σiη(X
1
) + hX

2

σic1
0,2

+ ji
1

,

H⃗βi = (hX
2

αi − hX
1

βi)c2
1,2

+ hX
2

σiη(X
2
) + hX

1

σic2
0,1

+ ji
2

,

H⃗ji
1

= −∑
k
(hX

2

hXk (αiX1 + βiX2 + σiX0)ck1,2 + c
k
1,2

(ji
2

hXk + hX2 jik)),

H⃗ji
2

= −∑
k
(hX

1

hXk (αiX1 + βiX2 + σiX0)ck2,1 + c
k
2,1

(ji
1

hXk + hX1 jik)),

H⃗ji
0

= ∑
k,ℓ ̸=0
(hXℓhXk (αiX1 + βiX2 + σiX0)ck0,ℓ + ck0,j(jiℓhXk + hXℓ jik)).

(A.3)

In order to define the vector fields J⊥ and J0, it is then sufficient to define their values on S∗pM, the values

on the whole space F(S) then following from the differential equation (A.3). We define, on S∗pM,

J⊥|S∗pM = hX2 ∂
∂hX

1

− hX
1

∂
∂hX

2

, J0|S∗pM = ∂
∂hX

0

.

We now use (A.3) to establish the asymptotics of σ0 and σ⊥ by computing the derivatives and evaluating

at zero. We find out that, for any ξ in S∗pM,

σi(ξ ) = 0,

H⃗(σi)(ξ ) = hX
2

(ξ )αi(ξ ) − hX
1

(ξ )βi(ξ ) = 0,

H⃗2(σi)(ξ ) = hX
2

(ξ )H⃗(αi)(ξ ) − hX
1

(ξ )H⃗(βi)(ξ ) = hX
2

(ξ )ji
1

(ξ ) − hX
1

(ξ )ji
2

(ξ ),

where we used αi(ξ ) = βi(ξ ) = σi(ξ ) = 0 at S∗pM. Using ξ ∈ H−1(1/2), we have

H⃗2(σ⊥)(ξ ) = h2X
2

(ξ ) + h2X
1

(ξ ) = 1, H⃗2(σ0)(ξ ) = 0.

Furthermore, using again ξ ∈ H−1(1/2),

H⃗3(σ0)(ξ ) = hX
2

(ξ )H⃗(ji
1

)(ξ ) − hX
1

(ξ )H⃗(ji
2

)(ξ ) = −h2X
2

(ξ ) − h2X
1

(ξ ) = −1.

Now, thanks to the first identity in (A.1),

H⃗n(σi)(ξ ) = ∂n

∂δn
δ=0

σi ∘ F−1(ξ, δ),

which proves the asymptotics in (ii). The fact that the functions σi are smooth and independent of the choice

of (X
1
, X

2
) is due to the identity σi = ω ∘ dπ(Ji).
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Lemma 41. We haveS \ S∗pM ⊂ h−1Γ (1) ∩ h
−1
JΓ (0).

Proof. Let us consider any covector inS \ S∗pM. It can bewritten as dδq for a certain q in Σp by definition ofS.

Now, if we choose (Γ, JΓ) as a frame of the distribution, by using (4.1), we can write, thanks to Lemma 22,

h
Γ
(dδq) = dδq(Γ) = 1, hJΓ(dδq) = dδq(JΓ) = 0.

We are now able to compute the asymptotics of the Lie brackets of the elements of the frame (Γ, JΓ, X
0
).

Proposition 42. The quantities δc JΓ
Γ,JΓ and δ

2c JΓ
Γ,X

0

(a priori defined onS \ S∗pM) can be smoothly extended toS
and are respectively equal to −4 and −6 over S∗pM.

Proof. Let us write the vector fields J0 and J⊥ introduced in Lemma 40 over S \ T∗pM with respect to the

orthonormal frame Γ, JΓ,

Ji = αiΓ + βiJΓ + σiX
0
+ ji

1

∂
∂h

Γ

+ ji
2

∂
∂hJΓ
+ ji

0

∂
∂hX

0

.

SinceS \ T∗pM is contained in h−1
Γ

(1) ∩ h−1JΓ (0) (by Lemma 41), we have ji
1

= ji
2

= 0, and the first and the third
equation of (A.3) can be combined as 0 = H⃗2σi + c JΓ

Γ,JΓH⃗σ
i + c JΓX

0
,Γ

σi. Since this last equation is satisfied by σ0

and σ⊥, we find out that

(
−H⃗2σ⊥

− H⃗
2σ0
δ
) = (

H⃗σ⊥
δ

σ⊥
δ2

H⃗σ0
δ2

σ0
δ3
)(

δc JΓ
Γ,JΓ

δ2c JΓX
0
,Γ

) . (A.4)

The matrix of this system as well as its left-hand side are smooth over S when δ goes to zero by applying

Lemma 26 to the asymptotics given in Lemma 40 (we use the first identity in (A.1)), and

(
−H⃗2σ⊥

− H⃗
2σ0
δ
)→ (
−1
1

) , (
H⃗σ⊥
δ

σ⊥
δ2

H⃗σ0
δ2

σ0
δ3
)→ (

1

1

2

−1
2

−1
6

) .

Inverting (A.4), we obtain that the functions δc JΓ
Γ,JΓ and δ

2c JΓX
0
,Γ

that were a priori defined on S \ S∗pM can

in fact be smoothly extended to the domainS. Taking then the limit as δ goes to zero, we find the values of
δc JΓ

Γ,JΓ and δ
2c JΓX

0
,Γ

on the set δ−1(0) = S∗pM.

We obtain similar results for δ2H⃗ c JΓ
Γ,JΓ and δ

2JΓc JΓ
Γ,JΓ.

Proposition 43. The function δ2H⃗ c JΓ
Γ,JΓ, a priori defined on S \ S∗pM, can be extended to a smooth function

onS, and its evaluation is equal to 4 on S∗pM.

Proof. We know from Proposition 42 that δc JΓ
Γ,JΓ can be extended to a smooth function on S that is equal

to −4 on δ−1(0). Since H⃗ is also smooth, we can write

δH⃗(δc JΓ
Γ,JΓ) = δ(H⃗δ)c

JΓ
Γ,JΓ + δ

2(H⃗ c JΓ
Γ,JΓ).

So, recalling that H⃗δ, we have that

δ2(H⃗ c JΓ
Γ,JΓ) = δH⃗(δc

JΓ
Γ,JΓ) − δc

JΓ
Γ,JΓ

has a smooth extension onS that is equal to 4 on δ−1(0) = S∗pM.

Proposition 44. The function δ2JΓc JΓ
Γ,JΓ that is a priori defined onS \ S

∗
pM canbe extended to a smooth function

on the domainS.

Proof. Let us consider the fields J0 and J⊥ overS that we introduced in Lemma 40. We start by proving the

following claim: for every ξ inS, the vector V(ξ ) defined by (A.5) is colinear to JΓ.

V(ξ ) := dπ(σ⊥(ξ )J0(ξ ) − σ0(ξ )J⊥(ξ )). (A.5)

First notice that V(ξ ) belongs to the distribution since its component along the Reeb vector field X
0
is zero

thanks to (A.2). Let us then prove that it is orthogonal to the gradient of δ. Indeed, for i ∈ {0,⊥}, by definition
of Jacobi field, one has 0 = [H⃗, Ji]δ = H⃗Jiδ − Ji(H⃗δ) = H⃗Jiδ, wherewe used that H⃗δ = 1. So Jiδ is constant on
the integral lines of H⃗. But, on S∗pM, the function Jiδ is equal to zero. Therefore, Jiδ = 0 onS. Thus dπ(Ji(ξ ))
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belongs to the kernel of dδ. The vector V(ξ ) is a linear combination of vectors in the kernel of dδ; hence it is
also in the kernel of dδ. By Lemma 22, this means that V(ξ ) is colinear to JΓ, and the claim is proved.

Let us define b : S→ ℝ such that, for any ξ inS,

V(ξ ) = b(ξ )JΓ(π(ξ )) (A.6)

in such a way that, for all ξ inS \ T∗pM,

dπ(σ
⊥(ξ )J0(ξ ) − σ0(ξ )J⊥(ξ )

b(ξ ) ) = JΓ(π(ξ )).

Since c JΓ
Γ,JΓ is constant on the fiber of T

∗M, we can replace JΓ in the expressionwith a vector field that projects
over JΓ. Then we have

δ2JΓc JΓ
Γ,JΓ = δ

2(
σ⊥J0c JΓ

Γ,JΓ − σ
0J⊥c JΓ

Γ,JΓ
b ). (A.7)

To prove that the right-hand side of (A.7) is smooth, we write the fields Ji overS \ T∗pM as

Ji = αiΓ + βiJΓ + σiX
0
+ ji

1

∂
∂h

Γ

+ ji
2

∂
∂hJΓ
+ ji

0

∂
∂hX

0

.

Combining with (A.5) and (A.6), we obtain that, for any ξ in S \ T∗pM, b(ξ ) = σ⊥(ξ )β0(ξ ) − σ0(ξ )β⊥(ξ ).
Now, thanks to Lemma 41, h

Γ
= 1 and hJΓ = 0 onS \ T∗pM, so the first equation of (A.3) becomes H⃗σi = −βi.

As a consequence, for every ξ inS \ T∗pM, b(ξ ) = σ0(ξ )H⃗σ⊥(ξ ) − σ⊥(ξ )H⃗σ0(ξ ). Hence

δ2JΓc JΓ
Γ,JΓ = δ

2(
σ⊥J0c JΓ

Γ,JΓ − σ
0J⊥c JΓ

Γ,JΓ
b ) = δ(

σ⊥J0(δc JΓ
Γ,JΓ) − σ

0J⊥(δc JΓ
Γ,JΓ)

σ0H⃗σ⊥ − σ⊥H⃗σ0
),

where we used that Jiδ = 0 for i ∈ {0,⊥}. By applying Proposition 42, δc JΓ
Γ,JΓ can be extended to a smooth

function defined onS, and its value on S∗pM is constant. Therefore, the functions Ji(δc JΓ
Γ,JΓ) can be extended

to smooth functions on S that vanish at every point of S∗pM. We combine this with the smoothness and the

asymptotics of the functions σi that come from Lemma 40, and thanks to Lemma 26, the function δ2JΓc JΓ
Γ,JΓ

can be extended to a smooth function onS.

A.1 Proof of Proposition 29

Let us start by proving the first identity.We consider the lift of ζ defined by ζ : I \ {0}→ S, where ζ (t) = dδζ (t).
Recall that δ = δ ∘ π and that cki,j = c

k
i,j ∘ π. Therefore,

δ(ζ (t))c JΓ
Γ,JΓ(ζ (t)) = δ(ζ (t))c

JΓ
Γ,JΓ(ζ (t)). (A.8)

Recall moreover that ζ (t) = dδζ (t) is the evaluation at time δ(ζ (t)) of the integral line of the Hamiltonian

flow γζ (t) that is a lift of theminimizinggeodesic γζ (t) parametrizedbyarc length joining p to ζ (t). In particular,
by Proposition 37,

ζ (t) = F−1(γζ (t)(0), δ(ζ (t))). (A.9)

Combining Remark 19 with (6.8) (cf. proof of Proposition 28), one has

hX
0

(γζ (t)(0))
t→0
→ hζ (0). (A.10)

Since γζ (t) is parametrized by arc length, then γζ (t) is contained in H−1(1/2), which implies, for (X
1
, X

2
) any

choice of orthonormal frame of the distribution,

h2X
1

(γζ (t)(0)) + h2X
2

(γζ (t)(0)) = 1. (A.11)

By combining (A.9), (A.10), (A.11), we obtain that, for t small enough (recall δ(ζ (t))→ 0), ζ (t) belongs to
a compact subset K ofS. Thanks to Proposition 42, the function δc JΓ

Γ,JΓ is uniformly continuous on K. Now,
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since δ(ζ (t)) = δ(ζ (t))→ 0 for t → 0, and as δc JΓ
Γ,JΓ is equal to −4 on δ−1(0) = S∗pM, we deduce, from the

uniform continuity,

lim

t→0
δ(ζ (t))c JΓ

Γ,JΓ(ζ (t)) = −4,

which proves, thanks to (A.8), the first claim.

The other asymptotics follow from similar arguments, where we use Propositions 43 and 44 instead of

Proposition 42 and where we replace (A.8) by the relations

δ2(ζ (t))c JΓ
Γ,X

0

(ζ (t)) = δ2(ζ (t))c JΓ
Γ,X

0

(ζ (t)),

δ2(ζ (t))Γc JΓ
Γ,JΓ(ζ (t)) = δ

2(ζ (t))H⃗ c JΓ
Γ,JΓ(ζ (t)),

δ2(ζ (t))JΓc JΓ
Γ,JΓ(ζ (t)) = δ

2(ζ (t))JΓc JΓ
Γ,JΓ(ζ (t)),

which are proved as (A.8), using that Γ ∘ π = dπ ∘ H⃗ (cf. (A.1)) and JΓ ∘ π = dπ ∘ JΓ.
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