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Anthropogenic structures (e.g. weirs and dams) fragment river networks and

restrict the movement of migratory fish. Poor understanding of behavioural

response to hydrodynamic cues at structures currently limits the development

of effective barrier mitigation measures. This study aimed to assess the effect of

flow constriction and associated flow patterns on eel behaviour during down-

stream migration. In a field experiment, we tracked the movements of

40 tagged adult European eels (Anguilla anguilla) through the forebay of a

redundant hydropower intake under two manipulated hydrodynamic

treatments. Interrogation of fish trajectories in relation to measured and mod-

elled water velocities provided new insights into behaviour, fundamental for

developing passage technologies for this endangered species. Eels rarely fol-

lowed direct routes through the site. Initially, fish aligned with streamlines

near the channel banks and approached the intake semi-passively. A switch

to more energetically costly avoidance behaviours occurred on encountering

constricted flow, prior to physical contact with structures. Under high water

velocity gradients, fish then tended to escape rapidly back upstream, whereas

exploratory ‘search’ behaviour was common when acceleration was low. This

study highlights the importance of hydrodynamics in informing eel behav-

iour. This offers potential to develop behavioural guidance, improve fish

passage solutions and enhance traditional physical screening.
1. Introduction
Globally, freshwater ecosystems are the most anthropogenically impacted, in part

due to a loss of connectivity caused by infrastructure such as weirs, dams and other

impediments [1–3]. In-channel structures may inhibit or prevent the movement of

aquatic biota [4], causing population decline, or even extirpation [5]. For fish, phys-

ical barriers obstruct dispersal and migration between habitats required for

different ontogenetic stages, and thus disrupt the life cycle [6,7]. River infrastruc-

ture, such as hydropower and pumping facilities, can also cause direct injury

and mortality to fish that pass through them due to blade strike, cavitation and

grinding [8,9]. Further, migratory delay at structures may increase susceptibility

to predation, parasites and infectious diseases, and impose energetic costs [7,10].

Despite centuries of efforts to restore and maintain connectivity for fish (typi-

cally by providing fish passes), effective solutions remain elusive under many

scenarios [11–13]. The development of effective fish passage depends on funda-

mental knowledge of swimming capabilities, which has received much attention

[14], with a historical bias towards salmonids [15,16]. However, this must be com-

bined with an understanding of behavioural response to environmental stimuli

[4,17], both those that attract and repel fish [18]. This knowledge is currently lack-

ing for many species [12,18] and there is insufficient understanding of the
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transferability of salmonid research to other fish. As fish move

with the flow during their downstream migration, it is expected

that behavioural response will be more influential than swim-

ming capability, compared with upstream-moving migrants,

for which both components play an important role [18].

Fish gain information about their spatial location from

multiple stimuli [19]. The discriminability of a specific stimu-

lus and the subsequent response elicited is dependent on

both its absolute and relative magnitude in comparison

with background noise [20]. Further, discriminability differs

among species [9] and ontogenetic stage [7], and with

motivation [21], behavioural bias [20], prior experience,

learning and habituation [22]. In the complex environ-

ments encountered at river infrastructure, hydrodynamic

factors probably constitute the dominant cues that inform

fine-scale navigation and route selection [23,24].

On a broad scale, the high proportion of river flow diverted

through water intakes (such as at hydropower plants or

other abstraction points) presents a strong directional cue to

downstream-migrating fish that encounter them [15,25].

Fish react to localized changes in flow field characteristics,

including turbulence [26,27] and spatial velocity gradient [28],

using the lateral line to detect flow strength and direction

[29,30] and the otolith of the inner ear to detect whole-body

acceleration, deceleration and gravitation [31,32]. The rapid

acceleration of flow at constrictions such as at intake channels

and downstream fish passage facilities (hereafter referred to

as bypasses) can elicit rejection behaviour among down-

stream-migrating juvenile salmonids [33–35]. Hydrodynamics

may also explain observed rejection at river structures for

other species [36–38], although understanding is limited

for non-salmonids [12,39].

The severe decline of the critically endangered European

eel (Anguilla anguilla) has in part been attributed to delayed

or blocked seaward migration of escaping adults (silver

eels) at river infrastructure [40]. Eels suffer high rates of

injury and mortality at pumps and hydropower turbines

(typically 15–38% per turbine encountered [41,42]), and are

susceptible to impingement at exclusion screens [37,43]. For

the few downstream passage solutions trialled for eels, effec-

tiveness is highly variable but generally low [44–46]. Adult

eels tend to follow routes of bulk flow [36,47], but on encoun-

tering structures display exploratory behaviour and make

multiple approaches before passing [46,48,49]. The resolution

at which both hydrodynamics and fish migratory paths

have been quantified in the field is generally insufficient to

determine the relative roles of localized variation in the

flow field and physical contact with structures in eliciting

specific behaviours [45,49,50]. In common with other diadro-

mous fish species, there has been a historical focus on

physical as opposed to behavioural exclusion or guidance

for eels. Flume-based studies report eel rejection behaviour

after contact with structures such as screens [51,52], leading

to the view that, compared with salmonids, adult eels are

less sensitive to changes in velocity [18]. This thigmotactic

propensity of eels increases the probability of impingement

and injury at screens, emphasizing the urgent need to find

alternative mitigation solutions.

Given the likely role of riverine barriers in the decline of

the European eel and our current lack of knowledge about

their response at structures, this study aimed to assess

the effect of flow fields on the behaviour of adults during

downstream migration. Using acoustic telemetry that enabled
near-continuous tracking of fish at sub-metre accuracy, com-

bined with three-dimensional hydrodynamic measurement

techniques and computational fluid dynamics (CFD) model-

ling, a field experiment was conducted to quantify eel

responses to manipulated flow fields under two treatments:

(1) unrestricted flow with low water acceleration (unrestricted

low, UL), and (2) constricted flow with high water accelera-

tion (constricted high, CH). We quantified: (i) behavioural

response to flow fields to investigate how hydrodynamics

influence eel behaviour, and (ii) the impact of flow fields on

swim path characteristics including eel route choice, resi-

dence time and track length as indicators of passage

efficiency and energetic cost.
2. Material and methods
(a) Site description and experimental set-up
The study was conducted in the forebay upstream of a redundant

hydropower (RHP) facility at Longham on the River Stour,

Dorset, UK (50843028.2600 N, 1844016.5700 W). The forebay channel

narrows from 17.0 to 12.2 m width, at which point flow is

diverted down an intake channel (7.6 m, width) oriented 908 to

the forebay (figure 1). The RHP originally housed two turbines

but ceased operating during the 1970s.

The intake channel was manipulated to generate two hydro-

dynamic treatments: (1) UL and (2) CH. A sloping bar rack

(7.6 m width, 558 angle, 58 mm vertical bar spacing) extended

the full depth of the water column at the RHP intake. In the UL

treatment, flow through the bar rack was relatively uniform

across the full width of the intake channel. In the CH treatment,

the flow was constricted by 66% by wooden boards placed

on the upstream face of the bar rack to leave a full-depth opening

in the centre channel. Undershot sluice gates 5 m downstream of

the bar rack were manipulated to ensure equal flow passed

under both treatments (6.28+0.2 m3 s21). Natural fluctuations

in water level were controlled by diverting flow via a radial weir

directly upstream of the study site.

Hydrodynamics in the two treatments were quantified using

water velocity and bathymetry measurements collected with a

raft-mounted downward-looking acoustic Doppler current profi-

ler (ADCP; RiverSurveyor ADP M9, SonTek, San Diego, CA,

USA), and used to inform and calibrate a two-dimensional CFD

model of water velocity within the study site. The ADCP was

pulled along tensioned guide wires at eight transect locations

(figure 1), repeated before each trial. Data were visually inspected

using RiverSurveyor LIVE v. 3.01 and exported to MATLAB

(R2010a, Mathworks, Natick, MA, USA) for removal of outliers

(after Dinehart & Burau [53]) and calculation of depth-averaged

velocities for each measured velocity profile. Data from the most

upstream transect were used to calculate total channel flow. Site

bathymetry (figure 1) was mapped using the ADCP with a

0.5 MHz vertical acoustic beam [53].

To compensate for limitations of ADCP flow mapping (e.g. lim-

ited spatial resolution and poor accuracy at domain boundaries),

a two-dimensional hydrodynamic model (TELEMAC-2D) [54]

was constructed using ADCP-derived empirical data. The flow

domain was discretized with a mesh of two-dimensional finite tri-

angular elements (0.005–0.25 m dependent on resolution required

to adequately capture gradients), and in each node the code solved

the depth-averaged free surface flow equations (de Saint-Venant

equations) to obtain water depth and depth-averaged velocity

components. Boundary conditions were assigned to the nodes at

the domain border. A fixed flow rate and water elevation were

allocated at the domain entrance and exit, respectively, and the

remaining boundary was assumed to be impermeable solid

banks. After calibration using ADCP measurements with control
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parameters (e.g. bed roughness coefficient) adjusted as necessary,

the model reproduced the flow field reasonably well in terms of

both depth-averaged mean velocities and flow depth. The simu-

lated depth-averaged velocity fields provide confidence on the

effectiveness of the chosen treatments (figure 2).

Flow accelerations were estimated from the depth-averaged

velocities obtained from the hydrodynamic model in which the

velocity vector was defined as U(u, v), where u and v are the vel-

ocity components along x and y (geographical east and north),

respectively. The module of the total acceleration at each point

was estimated as

a(x, y) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x þ a2
y

q
,

where ax ¼ u(@u/@x) þ v(@u/@y) and ay ¼ u(@v/@x) þ v(@v/@y)

are the components of the acceleration a along x and y, respectively.

(b) Fish telemetry
Actively migrating adult eels (n ¼ 40) were tracked using acoustic

and passive integrated transponder (PIT) telemetry. Eight hydro-

phones (300 kHz) around the perimeter of the study site and a

receiver (HTI, Model 290, Hydroacoustic Technology Inc., Seattle,

WA, USA) logged all acoustic tag detections. Due to the shallow

water depths, it was not possible to accurately determine tag pos-

ition in the z-dimension. PIT telemetry was used to quantify swim

depth at two swim-over antennae and receiver stations (Model LF-

HDX-RFID Oregon, Portland, OR, USA), which covered the full

channel width in the forebay (14 m length, 0.5 m width) and

intake channel (7.5 m length, 0.5 m width) (figure 1).

On the night preceding each trial, actively migrating silver

eels were captured at a rack trap downstream of the RHP facility.

Fish were maintained in within-river perforated plastic holding

barrels (220 l) for a maximum of 8 h before being individually

anaesthetized (benzocaine 0.2 g l21), weighed (wet weight, W,

g) and measured (total length, TL, mm). The length of the left
pectoral fin (mm) and maximum vertical and horizontal left

eye diameter (mm) were used to determine the degree of

sexual maturation or ‘silvering’. The first five eels considered

migratory (following methods of Pankhurst [55] and Durif

et al. [56]) were selected for tagging each night. An acoustic

(HTI model 795G, 11 mm diameter, 25 mm length, 4.5 g mass

in air, 300 kHz, 0.7–1.3 s transmission rate) and PIT (Texas

Instruments, HDX, 3.65 mm diameter, 32 mm length, 0.8 g

mass in air) tag were surgically implanted into the peritoneal

cavity of each individual following methods similar to Baras &

Jeandrain [57] and carried out under a UK Home Office licence.

Tagged eels ranged from 639 to 921 mm TL, 566 to 1207 g W,

with mean Ocular Index 9.1 (range 7.5–13.5) and mean Fin

Index 4.9 (range 4.3–5.8).

After recovery, eels were transferred to a perforated holding

barrel 3 m upstream of the site and held for 10–12 h. The barrel

was tethered in the channel centre to reduce bias in route choice

and the lid removed at 20.00 (in darkness) from the bank using a

rope and pulley system to minimize disturbance and to enable

the eels to leave volitionally.

Five eels were released and tracked through the site per trial

(four replicates, yielding 20 eels per treatment). Test treatments

were alternated to reduce temporal bias (eight trial nights over

a 16 night period). Range-testing using known tag locations

demonstrated a minimum accuracy and precision of less than

0.5 m within the hydrophone array. Tag detection at both PIT

antennae was consistent (98% and more than 99% at antennae

1 and 2, respectively) for depths of less than 0.2 m.
(c) Data analysis
Acoustic tag detections were processed using MARKTAG v. 5 and

ACOUSTICTAG v. 5 (Hydroacoustic Technology Inc.), and PIT data

were examined for detections when eel tracks intersected

antenna locations.
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To determine whether treatment induced a behavioural

response, tracks were overlaid on maps of flow streamlines in

MATLAB. A theoretical boundary was imposed at the point

where streamlines began to distort upstream of the bend leading

to the intake channel (flow distortion boundary). The distance

between two adjacent streamlines was set to 1 m (at the

entrance), which is comparable with the uncertainty of the tele-

metry positioning. Tracks were visually assessed and a set of

numerical rules devised to determine when trajectories deviated

from the streamlines. These deviations, termed ‘behavioural

switch points’, were defined as the first point at which a down-

stream-moving fish exhibited a turn angle of 90–1808 (i.e.

deviated from the predominate flow direction) and proceeded

in the new direction for a minimum of 3 m. Mann–Whitney

U-tests were used to test for a treatment effect on water velocity

and acceleration at the point of behavioural switch.

Based on assessment of trajectories immediately after a behav-

ioural switch, individuals were assigned to one of two categories:
Rejection: when downstream-moving fish abruptly switched from
negative to positive rheotaxis and moved in a counter streamwise
direction for a distance greater than 3 m.

Exploratory behaviour: when downstream-moving fish switched from
negative rheotaxis to exhibit lateral movements of greater than 3 m
length perpendicular to streamwise flow and encompassing more
than two turns.
To quantify the effect of behaviours on the speed and efficiency of

migration through the site, the following metrics were calculated

for each fish: residence time (duration between first and last detec-

tion before passage through the bar rack), mean speed over ground
(m s21) and track length (m). Movement metrics among treatment

groups were compared using t-test and Mann–Whitney U-test

where the assumptions of parametric analysis were not met.

Where trajectories were aligned with streamlines, the velocity of

fish over ground (m s21) was calculated using the difference in

fish position every 5 s compared with mean water velocity in the
streamline (m s21). As the study focus was primarily on fish behav-

iour during movement through the site, near stationary points

(values below 0.02 ms21) were eliminated from the dataset.

Trajectory analyses were carried out using a combination of

ARCMAP (v. 10, ESRI, Redlands, CA, USA), GEOSPATIAL MODELLING

ENVIRONMENT v. 6.0 [58] and MATLAB. R v. 3.0.0 [59] was used

for all statistical analyses.
3. Results
Of the 40 fish released under the two treatments, three swam

upstream shortly after release and did not re-enter the study

area; these were omitted. The remaining 37 individuals

passed through the RHP intake. There was no indication from

swim tracks that eels were impinged on the bar rack during

passage (i.e. were not stationary at this structure) under either

treatment. Residence time was highly variable and ranged

from 2.9 to 58.7 min (median, 10.25 min) across all fish, with

no treatment effect (Mann–Whitney U ¼ 1.0, p ¼ 0.33).

Upstream of the flow distortion boundary, the majority

of fish (73%, 27 out of 37) under both treatments followed

trajectories reasonably well aligned with streamlines. The

preferred routes were along both sides of the channel

(figure 3). The mean ratio of eel ground speed to water vel-

ocity in streamlines was 0.78 (+0.49 s.d.) in this upstream

part of the domain.

As downstream-moving individuals approached the 908
bend at the entrance to the intake channel, trajectories generally

became more erratic and switches in behaviour were apparent

for 35 out of the 37 eels that reached this point. The two fish that

did not exhibit a behavioural switch (both in UL treatment) fol-

lowed relatively direct routes through the site. The majority of

fish that responded did so in the intake channel (80% and 95%

http://rspb.royalsocietypublishing.org/
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for UL and CH treatments, respectively). Four switches

occurred more than 2 m from the intake channel so were

deemed not to be influenced by hydrodynamic treatment

and were therefore excluded from further analysis.

In the CH treatment, switch points were distributed

throughout the intake channel and area immediately upstream,

whereas under the UL treatment they tended to be con-

centrated within a narrow band across the channel width

(figure 4). Mean depth-averaged flow velocities at the points

of behavioural switch ranged from 0.034 to 0.72 and from

0.14 to 0.67 m s21 for UL and CH treatments, respectively.

The median depth-averaged water velocity at the point of

switch was higher in the UL compared with the CH treatment

(0.67 and 0.57 m s21, respectively; Mann–Whitney U ¼ 2.68,

p ¼ 0.006). Velocity acceleration at the point of switch ranged

from 0.001 to 0.051 and from 0.002 to 0.083 for UL and CH

treatments, respectively, and did not vary among treatments

(Mann–Whitney U ¼ 1.28, p ¼ 0.21).

Overall, rejection dominated behaviour immediately fol-

lowing a switch, apparent in 71% of fish. Treatment

influenced post-switch behaviour as all fish exhibited rejec-

tion (figure 5a) under CH, whereas exploratory behaviour

(figure 5b) was observed in 75% of individuals under UL

treatment. Nearly all (91%) of the fish that rejected did so

multiple times, up to a maximum of four occasions. Second

points of rejection occurred closer to the bar rack than the

first in 70% of cases.
Individuals in CH swam greater distances after behavioural

switch than in the UL treatment (t29¼ 2.23, p ¼ 0.03, mean

89.3+38.7 m and 54.3+44.8 m (+s.d.), respectively), and a

higher proportion of the post-switch tracks occurred outside of

the intake channel (median proportion 68%, range 21–85%;

Mann–Whitney U ¼ 3.93, p , 0.001). Conversely, in the UL

treatment, fish rarely left the intake channel after switch

(median proportion 10%, range 0–68%). Mean eel ground

speed (m s21 over ground, unadjusted for water velocity)

compared before and after a change in behaviour also revealed

a treatment effect after switch (t29¼ 2.88, p ¼ 0.007), but not

before (t29¼ 1.67, p ¼ 0.11). Ground speed was higher post-

switch under CH (0.28+0.05 ms21, median+ s.d.) than for

the UL treatment (0.23+0.05 ms21, median+ s.d.).

During downstream movements, 84% of eels were

detected within 20 cm of the channel bed at the PIT antennae

(I and II, figure 1), whereas upstream-moving fish were less

frequently detected (56%), which may suggest a reduced

tendency for benthic orientation after rejection.
4. Discussion
Manipulation of flow fields clearly influenced the behaviour of

downstream-moving adult eels. On encountering flow accel-

eration eels displayed erratic behaviour, and the magnitude

of response was positively related to maximum water velocity

http://rspb.royalsocietypublishing.org/
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and flow acceleration. When flow was constricted, eels exhib-

ited rejection as opposed to exploratory behaviour, which

was observed predominantly under unrestricted conditions.

The response to the abrupt hydrodynamic transitions

described may suggest the avoidance of hazardous areas

that could cause damage or disorientation [25,33,35]. Other

studies have demonstrated a rejection response exhibited by

fish on encountering velocity gradients (e.g. juvenile Atlantic

salmon [33] and juvenile Pacific salmon [34]). Although most

eel rejections were several metres upstream of the bar rack, a

small proportion (5%) could have been associated with phys-

ical contact at this structure. Findings differ from previous

studies under both laboratory [51,52,60] and field conditions

[46], which report that the majority of eels did not respond

until making contact with structures. Although pre-contact

rejection has been previously documented in the field [61,62],

in this study both the close proximity to the intake at which

the behavioural switch occurred and the positive relationship

between magnitude of response and velocity acceleration pro-

vide evidence of the link between hydrodynamic stimuli and

avoidance by eels.

In common with salmonids, eel behaviour during down-

stream migration was influenced by flow acceleration. To

advance fish passage research, it is important that common

concepts and approaches are adopted to aid the transfer of

knowledge about different species and study systems [4,63].

A conceptual framework to understand and predict fish move-

ment patterns in relation to complex flow fields around river

structures is provided by Goodwin et al. [64]. In a model that

describes four mutually exclusive downstream behavioural

states (B1–4) used to govern the movements of simulated

fish, individuals adjust swim orientation and speed in response

to local water acceleration and pressure (depth). The first
behaviour denotes fish movement with a biased correlated

random walk, downstream in the direction of flow (B1). On

approaching flow accelerations or decelerations, the fish exhi-

bits one of two responses (determined by thresholds

governed by recent past experience); either it orients swim-

ming in the direction leading to faster water to facilitate

obstacle and turbulence avoidance (B2), or a repulsive escape

response is elicited in which the fish temporarily abandons

downstream migration and swims upstream (B3). The fourth

behaviour regulates fish response to pressure, and thus dictates

swim depth. Incorporating all four behaviours provided the

best fit between simulated fish and actual swim paths of juven-

ile salmonid smolts (Oncorhynchus sp.) descending complex

flow fields at Lower Granite Dam, Snake River, USA [64].

The tendency for eels to align with streamlines in the

upstream part of the forebay suggested advective behaviour

(i.e. semi-passive drift with the local flow), which is broadly sup-

ported by the correspondence between eel ground speed and

mean streamline velocity. Downstream movement was predo-

minantly benthic-oriented, as observed in previous studies

[45,46,48]. Therefore, the lower than 1 : 1 ratio of ground speed

to water velocity probably reflects the lower velocities eels

would have experienced near the channel bed, relative to mod-

elled depth-averaged values. This resembled the B1 behaviour

described by the Goodwin et al. [64] framework. However, in

this study, the eels predominantly followed routes parallel to

streamlines located close to the banks of the channel. Given

their thigmotactic nature [51], it is surprising that individual

eels seldom came into contact with the channel banks. Instead,

our findings suggest that proximity to (rather than contact

with) structures was used to some benefit. For eels, which under-

take migration during dark and often turbid conditions which

reduce visual cues, proximity to lateral boundaries may be an

important navigational cue [65]. Fish are able to detect the

hydraulic signatures created by structures through the mechan-

osensory system [23,30] and learn that near-field hydraulic

patterns provide information on the environment beyond their

sensory range [23]. For example, frictional resistance, resulting

in decreasing average velocities towards the channel bed and

banks, can be distinguished from form resistance induced by

in-channel objects (e.g. rocks and woody debris), where water

velocities increase due to reduced area, and increased travel

distance, of flow around the object [23,24]. It was not clear

what hydraulic signatures were detected by eels to identify the

lateral banks. There was no apparent difference in characteristics

between the streamlines eels descended, near the lateral bound-

aries, and those in the centre of the channel. It is plausible

that such hydraulic signatures could be identified by using

three-dimensional numerical models because they provide infor-

mation on flow features induced by lateral boundaries (e.g.

secondary currents) that cannot be captured by two-dimensional

models such as the one used in this study.

The response of eels on encountering velocity acceleration

depended on both the novelty and strength of the transition

stimuli. When approaching rapid velocity acceleration, most

fish responded by rejecting upstream, a behaviour that clo-

sely corresponded to B3 in the Goodwin et al. framework

[64]. This is postulated to occur when the relative change in

acceleration exceeds a threshold intensity, causing the fish

to swim in the opposite direction to the principal velocity

vector and return upstream [64]. The greater the magnitude

of acceleration, the faster the subsequent swim speed

during eel response. A similar relationship has been observed

http://rspb.royalsocietypublishing.org/
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for salmon smolts rejecting decelerating flow [28]. When

approaching a less abrupt acceleration transition, eels ven-

tured closer to the intake, and therefore experienced higher

velocities before switching to slower exploratory behaviour.

This broadly conforms to similar milling/exploratory behav-

iour in salmonids [66], expressed as recursive cycles between

behaviours B3 and B1–2 in modelled fish [64]. Eels are influ-

enced more by thigmotactic cues than salmonids [67], thus

observed exploratory behaviour may have been both hydrau-

lically and thigmotactically mediated. The propensity of eels

to explore their environment has been associated with active

searching for a way through (or alternative route past) screens

and bar racks at hydropower and pumping facilities [46,61].

In this study, eels generally restricted exploration to the

area within the intake channel, yet were rarely detected to

contact the bar rack.

After their first response to velocity acceleration in the

intake channel, individuals appeared to become somewhat

habituated to the transition and more likely to pass through

the same region on subsequent encounters. For a fish to

detect change in a stimulus relative to the background noise

it is acclimated to, the stimulus must exceed a threshold

value (termed ‘just notable difference’). Therefore, the response

is dependent on exposure history [24,68]. Such adaptive behav-

iour enables animals to repeatedly test their environment and

adjust their risk of exposure to potentially harmful elements

based on prior experience.

The importance of hydrodynamics in influencing eel behav-

iour has significant implications for progressing guidance and

passage technologies for this threatened species. Eel bypasses

should be designed to avoid abrupt velocity acceleration at the

entrance, as is currently advised for salmonids [15,69], with

the aim to minimize rejection. Conversely, avoidance behaviours

present an opportunity to guide eels away from dangerous areas

and towards safe passage routes. There is clear potential for

hydrodynamic-based guidance to enhance the effectiveness of

traditional physical screens that can be expensive to install and

maintain, reduce power generation or pumping efficiency, and

may still induce fish damage and mortality through collision

and impingement [37,43]. Indeed, flow manipulation to guide

downstream migrants past river infrastructure has been applied

with some success for juvenile salmonids [70,71], and may have

value for eels too. All individuals that rejected ultimately
habituated to intake conditions and passed, highlighting that

the response to acceleration fields is adaptive. Eels have also

been shown to quickly habituate after initial rejection induced

by water jets and air bubbles [52]. Accordingly, effective behav-

ioural guidance devices must efficiently divert fish to alternative

routes (e.g. a bypass) prior to habituation.

Semi-passive drift probably accounts for the majority of

downstream adult silver eel movement through lotic systems,

though it was apparent that they reject abrupt changes in

flow fields on the approach to structures and explore upstream

until continuing their migration. Rapid acceleration triggered

upstream rejection, whereas less abrupt acceleration caused

slower, exploratory behaviour. The increased resolution afforded

by the fish-positioning telemetry and flow-mapping techniques

employed in this study has challenged historical perceptions

about eel behaviour derived from more coarse-scale investi-

gations. These advances represent an important step forward

in the drive to develop effective guidance and passage solutions

for this species at anthropogenic barriers. Combining fine-scale

fish movement data with empirically informed hydrodynamic

models offers great potential to further our limited understand-

ing of fish behaviour in relation to the complex hydrodynamic

environments encountered at river infrastructure.
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