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We congratulate the authors on an interesting paper, which provides a concrete contri-
bution in Bayesian nonparametric methods. The proposed latent nested process (LNP)
of Camerlenghi et al. is a notable generalization of the nested Dirichlet process (NDP)
of Rodriguez et al. (2008). In the first place, Camerlenghi et al. extend the NDP to a
broader class of nested processes (NP), leveraging on homogeneous random measures
with independent increments (Regazzini et al., 2003). They elegantly frame this novel
class of priors within the theory of completely random measures.

The rigorous theoretical study of the involved clustering mechanism allows Camer-
lenghi et al. to identify a potential pitfall of general NpPs. Specifically, two random discrete
distributions p, and py, associated to different groups (populations) and distributed ac-
cording to a NP, are either identical (i.e. py = pe a.s.), or they do not have common
atoms. This behavior implies that NPs can borrow information across groups only in an
extreme fashion, that is, by assuming full homogeneity across populations. In contrast,
the LNP generalization accommodates smooth transitions between the full homogene-
ity and the independence cases, while still accounting for clustering across different
populations.

We will focus on the latent nested Dirichlet process special case, which has been con-
sidered by Camerlenghi et al. in their Example 2. First recall that the NDP of Rodriguez
et al. (2008), in presence of d > 2 populations, can be alternatively defined through
a Blackwell and MacQueen (1973) urn-scheme. Let J, denote a point mass at z. If
(p1,-..,pa) is a collection of random probability measures on a complete and separable
metric space X following an NDP, then for any ¢ > 0
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where @ is the probability distribution of a Dirichlet process gy ~ DP(coQo), with
precision parameter ¢y > 0 and with ¢y being a non-atomic probability measure on X.
In other words, each py is either a sample from a DP(cpQp) or is set equal to one of the
previously observed random measures.

The latent nested Dirichlet process is built upon (1). More precisely, the vector of
random probability measures (P, ..., pq) characterizing such a process is obtained as a
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convex combination of two random probability measures, namely
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where ps ~ DP(yc¢oQp), with v > 0, is independent on pi,...,p; whereas wy A
Beta(co,v¢o), independently on the random probability measures pq,...,pq and pg.

As formalized by Proposition 4 in Camerlenghi et al., some random probability
measures among p1, . . ., pg will be identical with positive probability. Broadly speaking,
this occurs if ties are present in the underlying urn-scheme of (1). In the Dirichlet case,
the a priori probability of homogeneity among two distributions is

Wf = P(pZ:pé’):P(ﬁézﬁé’):H—l, 57&5/.

Thus, Camerlenghi et al. suggest to evaluate the posterior probability P(pe, = pe | X),
to test the null hypothesis Hy : py = Py against the alternative Hj : py # pg. Such an
approach is appealing as it naturally follows from the model construction.

Although this testing procedure is theoretically well-justified, there might be few
practical difficulties that are worth emphasizing. Consider the example in Scenario II
of Section 5.1 in Camerlenghi et al., in which there are two mixtures of two normal
distributions with a common component. The two distributions can be made equal
either allowing the weight of the idiosyncratic component to be zero, or having arbitrary
weights and letting the distribution-specific components to have the same parameters.
The former case can easily be encountered. In fact, when the parameter + is large enough
one has that wy ~ 0, in turn implying that p, =~ ps. This statement is formalized in the
following lemma, whose proof is omitted.

Lemma 1. Let (p1,...,p4) be a latent nested Dirichlet process of (1)—(2). Then p; =
-+ = pg almost surely, as v — oo.

Lemma 1 holds for general LNPs and it has relevant consequences. Strictly speaking,
it implies that homogeneity among populations is recovered as limiting case when v —
00, regardless of the ties occurring in the Pélya-sequence of (1). Besides, (2) suggests that
homogeneity between two groups (i.e. pr = D) is attained exactly whenever p; = py
but also approximately if w, =~ 0. This could affect the rationale underlying the testing
procedure, because an LNP model may struggle in discriminating between the case of two
identical latent distributions (p; = pe) and that of two similar, yet different, random
probability measures (w, = 0). Note that this issue is specific to the LNP, since nested
processes correspond to the case w, = 1.

As a consequence, if an LNP is employed for testing purposes, the probability of
homogeneity P(py = pp | X) might be deflated, possibly leading to biased decisions.
Hence, we recommend to select the parameter v with great care. In contrast, if the LNP
were used for density estimation, these considerations would not be a concern.
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