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Abstract
Model-independent searches in particle physics aim at completing our knowledge of

the universe by looking for new possible particles not predicted by the current

theories. Such particles, referred to as signal, are expected to behave as a deviation

from the background, representing the known physics. Information available on the

background can be incorporated in the search, in order to identify potential

anomalies. From a statistical perspective, the problem is recasted to a peculiar

classification one where only partial information is accessible. Therefore a semi-

supervised approach shall be adopted, either by strengthening or by relaxing

assumptions underlying clustering or classification methods respectively. In this

work, following the first route, we semi-supervise nonparametric clustering in order

to identify a possible signal. The main contribution consists in tuning a nonpara-

metric estimate of the density underlying the experimental data to identify a par-

tition which guarantees a signal warning while allowing for an accurate

classification of the background. As a side contribution, a variable selection pro-

cedure is presented. The whole procedure is tested on a dataset mimicking proton–

proton collisions performed within a particle accelerator. While finding motivation

in the field of particle physics, the approach is applicable to various science

domains, where similar problems of anomaly detection arise.
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1 Introduction

1.1 Framework and motivation

Since the early Seventies, the Standard Model has represented the state of the art in

High Energy Physics. It describes how the fundamental particles interact with each

others and with the forces between them (electromagnetic, weak and strong nuclear

forces), originating the matter in the universe. Within the Standard Model, a pivotal

role is played by the Higgs boson, which imparts mass to some fundamental and

otherwise massless particles. While its recent empirical confirmation (Atlas-

Collaboration 2012a, b) has represented an essential step to prove the consistency of

the Standard Model, there are indications that the current dominant theory does not

complete our understanding of the universe. In fact, it fails to explain some

phenomena as gravity, the nature of dark matter, as well as the dark energy, the last

one roughly accounting by itself for the two thirds of the universe.

All those attempts aiming to explain the shortcomings of the Standard Model go

under the heading of Physics Beyond the Standard Model. In this framework

experiments are conducted within large particle accelerators, such as the LHC at

Cern, where particles are made to collide and the products of their collisions

detected. Research in this context is often performed in a model-dependent fashion,

trying to confirm some alternative physical conjectures (e.g. the so-called

Supersymmetry). In this work we follow, conversely, a model-independent approach,

not constrained to any specific physical theory already formulated. Model-

independent searches aim to detect empirically any possible signal which behaves

as a deviation from the background process, representing, in turn, the known physics.

From a statistical perspective, the considered problem is naturally recasted as a

classification one, although of a very peculiar nature. While the background process

is known and a sample of virtually infinite size can be drawn from it, the signal

process is unknown, possibly even missing. Available data have, consequently, two

different sources: a first sample from the background process, generated via Monte

Carlo simulations which mimic the results of collisions under the Standard Model;

and a second sample of experimental data, drawn from an unknown generating

mechanism, which surely includes observations from the background but might also

include observations from the signal. Due to the different degree of knowledge of

the underlying generating processes, the two samples are referred to respectively as

labelled and unlabelled.

Hence, a semi-supervised perspective shall be adopted, to gain knowledge from

data for which only partial information is available (Zhu 2011). In principle, and

depending on the nature of the partial knowledge, semi-supervised methods are built

either by relaxing assumptions and requirements of supervised methods, or by

strengthening unsupervised structures through the inclusion of the additional

information available. We follow the latter route, in a nonparametric guise, since

such formulation appears particularly consistent with some physical notion of

signal. A common assumption in High Energy Physics is that a new particle would

manifest itself as a significant peak emerging from the background process, in the
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distribution of the particle mass reconstructed from the available data. Nonpara-
metric (modal) clustering, in turn, draws a correspondence between groups and the

modal peaks of the density underlying the observed data, since clusters are defined

as dense regions of the sample space. Thus, the one-to-one relationship between

clusters and modes of the distribution provide an immediate physical meaning to the

detected clusters.

Further reasons make this approach to unsupervised learning appropriate in the

considered context. The link between the groups and some specific features of the

probability distribution assumed to underlie the data allows to frame the clustering

problem into a standard inferential context. Hence, it is possible to estimate the

number of clusters, and to resort to formal testing procedures. Both these tasks,

typically prevented by alternative unsupervised approaches, are especially favorable

in the physical context: groups may be labelled as background by exploiting the

knowledge of the process or, by elimination, as signal, and any signal claim can be

motivated by statistical evidence, as required by scientific discoveries. Furthermore,

associating clusters to the characteristics of a probability distribution allows to

partition the whole sample space, in addition to the observed data. This trait can be

exploited to classify observations deriving from new experimental settings and not

employed in the estimation phase, as it will be clarified in the next sections. Finally,

the modal notion of cluster is not linked to any specific cluster shape, and employing

a nonparametric approach to estimate the density allows for preserving this freedom

operationally. Considering the physical framework where a possible signal is

completely unknown, it would be indeed unrealistic to assume a predetermined

shape for it.

Within the described framework, this paper introduces a nonparametric global

methodology to search for the possible presence of signals which exhibit as high-

density peaks in the estimate of the distribution underlying a set of unlabelled data.

The methodology is designed to integrate, within a nonparametric clustering

formulation, the additional information we have about the background labelled

process. Two main contributions can be highlighted. Firstly, assuming that a signal

does exist, we tune a nonparametric density estimate of the unlabelled data by

selecting the smoothing amount so that the induced modal partition, where the

signal emerges as a bump, classifies the labelled background data as accurately as

possible. Any significance of the bump would provide empirical evidence of a

signal, and should then represent the stepping-stone for further investigation of the

detected anomaly and the possible claim of new physics discoveries. As a second,

side contribution, we propose a variable selection procedure, specifically conceived

for this framework, again exploiting available information about the background

process. This procedure allows us to work in a lower dimensional space, where

nonparametric methods provide more accurate estimates and where more

interpretable results can be obtained.

The paper is organized as follows. After providing an overview of the literature

inherent to the considered problem (Sect. 1.2), we outline the nonparametric

approach to clustering (Sect. 2). Then, we propose the semi-supervised nonpara-

metric methodology for signal detection (Sect. 3), and illustrate its application to a

set of physical data (Sect. 4). A discussion concludes the paper (Sect. 5).
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1.2 Related literature

The peculiarity of the considered problem makes the inspection of the inherent

literature not trivial. In fact, the aim of discriminating a possible signal which is

expected to have an anomalous behavior with respect to the known background,

frames into an anomaly detection problem. Examples of such situations can be

found in several domains. In networking, automatic systems are required to detect

host-based intrusions. Similarly, in banking, credit institutes want to detect and

prevent out-of-pattern fraudulent spendings. In manufacturing, it is of interest

detecting abnormal machine behaviours to prevent cost overruns, while in medical

analysis detection of anomalies may be the sign of some disease. In all these

situations, the normal behaviour of the process of interest can be considered as

known, since large amounts of data are usually available; conversely, tools to

analyse unprocessed data which might include anomalies are required.

In the considered setting, anomalies are expected to lie within the domain of the

background data, hence a single signal observation would look as if it was produced

by the background process. For this reason, anomalies are not to be searched among

individual observations, but it is their occurrence together as a collection to be

considered anomalous, and then possibly indicative of a new unknown particle. The

problem is sometimes refereed to as collective anomaly detection (see e.g.,

Chandola et al. 2009).

For the analysis of such data, the presence of time, spatial, or some other kinds of

relationships between observations is usually exploited to identify the anomalous

regions; distance-based or, in general, clustering methods are typically employed

otherwise.

Staying within the field of High Energy Physics, anomaly detection has been

often driven by the assessment of the degree of compatibility between two samples,

and conducted via hypothesis testing (e.g. Naimuddin 2012; Vischia and Dorigo

2017). Alternatively, Farina et al. (2018) have employed unsupervised, or weakly

supervised neural networks to search for new physics, with some analogies with the

approach followed in this work. A specific contribution that is worth to mention is

the one of Vatanen et al. (2012), where a clustering-based semi-supervised

approach relying on parametric assumptions is proposed to face the same problem

as the one considered here. The authors propose a modification of the Expectation-

Maximization algorithm (Dempster et al. 1977) to estimate the probability density

function underlying the experimental data, specified as a mixture of parametric

distributions. One component of such mixture, describing the background density, is

estimated based on the background data only; the other component, representing the

possible signal, along with the mixing proportions, is estimated in a second step

based on the experimental data. A goodness of fit test is then employed to discard

insignificant components and assures that the whole estimated density is equal to the

background component when no signal is detected.
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2 Nonparametric clustering

Nonparametric or modal clustering delineates a class of methods for grouping data

defined on a topological, continuous space, and built on the concept of clusters as

‘‘continuous, relatively densely populated regions of the space, surrounded by

continuous, relatively empty regions’’ (Carmichael et al. 1968).

The observed data X ¼ fxigi¼1;...;n; xi 2 Rd are supposed to be a sample from a

multidimensional random variable with (unknown) probability density function

f. The modes of f are regarded to as the archetypes of the clusters, which are in turn

represented by their domains of attraction. This idea has found a proper

formalization in Chacón (2015). By exploiting some notions from differential

topology, the author defines a cluster as the unstable manifold of the negative

gradient flow corresponding to the local maxima of f. Intuitively, if f is figured as a

mountainous landscape, and modes are its peaks, clusters are the ‘‘regions that

would be flooded by a fountain emanating from a peak of the mountain range’’.

These notions are illustrated for a bivariate example in Fig. 1. Note that since the

groups are induced by the gradient of the underlying density, clustering is not

limited to the observed points, but can be extended to any point of the sample space.

Operationally, modal clustering involves two main choices, which are over-

viewed in the following. See Menardi (2016) and references therein for further

details.

The first choice concerns the operational identification of the modal regions,

which may occur according to different paradigms. One strand of methods,

searching directly for the modes of f, naturally complies with the previously

outlined notion of cluster. Most of the contributions following this direction can be

considered as refinements of the mean-shift (Fukunaga and Hostetler 1975), an

iterative mode-seeking algorithm that, at each step, moves the data points along the

steepest ascent path of the gradient, until converging to a mode. Operationally a

partition of the data points is obtained by grouping in the same cluster those

observations ascending to the same mode of the density; the right panel of Fig. 1

provides a simple illustration of this idea. A second strand of methods does not

attempt the task of mode detection but associates the clusters to disconnected
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Fig. 1 A trimodal density and the sample space partition induced by domain of attraction of the modes; a
sample generated from the density, and the path of each observation to climb the gradient towards the
estimated modes according to the mean-shift clustering
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density level sets of the sample space, as the modes correspond to the innermost

points of these sets.

The second choice concerns the estimation of the density function, which

determines the high density regions and, hence governs the final clustering. Which

specific estimator is employed depends on either conceptual or operational

convenience reasons, but the selection usually falls within a nonparametric

formulation. Disregarding the specific choice adopted, nonparametric estimators

depend on some parameters defining the amount of smoothing. Consider, for

example, a product kernel estimator, specified as follows

f̂ ðx;X ; hÞ ¼ 1

n � hd
Xn

i¼1

Yd

j¼1

K
xj � xij

h

� �
; ð1Þ

where K is a symmetric probability density function and h[ 0 is the bandwidth

which defines the degree of smoothing. How to set this parameter is an issue to be

tailored, as it affects both the shape and the number of modes of the estimate: a large

h oversmooths the density function thus averaging away features in the highest

density regions, while a small h undersmooths the density and favors the appearance

of spurious modes. The number of nearest neighbors and the number of summands

play a similar role in k�nearest neighbors and in orthogonal series estimators

respectively.

3 Nonparametric semi-supervised learning

3.1 Notation and assumptions

In the rest of the paper, we adopt the following notation: X b ¼ fxi;bgi¼1;...;nb
denotes

the set of labeled data, supposed to be a sample of i.i.d. realizations from the

background distribution fb: Each observation represents a collision event recorded

by a detector within a proton-proton collider. As such, xi;b ¼
ðxi1;b; . . .; xij;b; . . .; xid;bÞ0 corresponds to different characteristics of the topology of

a collision event (e.g. the number of tracks, the high-transverse momenta of new

objects produced by the collision, etc). The unlabeled set of data X bs ¼
fxi;bsgi¼1;...;nbs

is in turn assumed to be drawn from the whole underlying distribution

fbs with xi;bs sharing the same structure of xi;b.
Similarly to Vatanen et al. (2012), our work relies on the following assumptions:

(i) as far as a signal exists, it arises as a new mode in fbs, not seen in the background

density fb; (ii) it arises in a fraction of data that is large enough to enable collective

inferences; (iii) its underlying structure is revealed in a lower-dimensional space

with respect to the one defined by all the observed variables; (iv) the background has

a stationary distribution, i.e. the Monte Carlo sample X b; perfectly captures the true

distribution of the background, and fb possibly differs from fbs just because of the

presence of a signal.

A few comments shall be pointed out to discuss the assumptions above. First, it

may be the case that a physical signal would not exhibit as a new mode unseen in

123

A. Casa, G. Menardi



the background density. For example, it could lie on top of an existing mode and

simply raise that mode. However, the behavior we assume is common for several

signals (see, e.g. Pruneau 2017) and this somewhat strong assumption allows us to

gain more power with respect to the searches for undefined kinds of anomalies.

Second, since new undiscovered physics would certainly be rare, it might appear

unrealistic to assume the appearance of a sensible fraction of signal events. In fact,

in physical applications whole regions of the sample space are completely drop out

from the analysis as known not to bear useful information; focusing specifically on a

subset of the domain implies an automatic increase of the frequency of observations

coming from a possible signal. As far as it concerns assumption (iii), it is largely

reported that a typical aspect of high-dimensional data is the tendency to fall into

manifolds of lower dimension (Scott 2015). Finally, Monte Carlo simulations of the

background often require simplifications and approximations that might introduce a

source of errors. Hence, it is quite common to assume that the main behavior of the

process is, in fact, adequately represented, and we may rely on that to investigate

whether fbs is, in fact, different from fb:

3.2 On choosing the amount of smoothing

Due to the key role played by the density in nonparametric clustering, it makes sense to

semi-supervise the learning process by strengthening it via the inclusion of the additional

information available on the labeled data within the phase of density estimation.

Whatever specific estimator is selected, one of the most critical aspects of

nonparametric density estimation consists in tuning some parameter which governs

the amount of smoothing and, hence, the modal structure. In the following, we focus

on the product kernel estimator (1), but the methodology easily applies to other

estimators.

The idea underlying the proposed procedure is to identify the modal partition of

the experimental, unlabeled, data induced by the density estimate which guarantees

a signal warning while allowing for an accurate classification of the background

labeled data.

Specifically, let f̂ b be an estimate of fb, which we may consider to be arbitrarily

accurate due to the availability of as many data as required from the background

process (see below for a discussion about this aspect). The estimate f̂ b induces a

partition PbðXbÞ of the background data Xb, determined by its modal structure.

Then, for a grid of bandwidths hbs varying in a range of plausible values, the

estimates f̂ bsð�;X bs; hbsÞ of the whole process density fbs are obtained, each of them

inducing a partition PbsðX bsÞ of the unlabeled data X bs, as well as a partition of the

sample space, defined by its modal regions. The latter partition allows to determine

the cluster membership of Xb, i.e. a partition PbsðXbÞ. The two partitions of X b,

PbðX bÞ and PbsðX bÞ, induced respectively by the modal structure of f̂ bð�;Xb; hbÞ
and f̂ bsð�;X bs; hbsÞ, can then be compared via the computation of some agreement

index I.
Assume, without loss of generality, that high values of I indicate an agreement

between PbðXbÞ and PbsðX bÞ. Then, the ultimate partition ~PbsðXbsÞ of the
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unlabeled data will be induced by the estimated density f̂ bsð�;X bs; ~hbsÞ, built on the

best undersmoothing bandwidth, i.e.

~hbs ¼ arg maxhbs2HI Pb Xbð Þ;Pbs X bð Þð Þ ; ð2Þ

where H ¼ fhbs : Mbs [Mbg and Mbs;Mb represent the number of modes of

f̂ bsð�;X bs; hbsÞ and f̂ bð�;X b; hbÞ respectively. The significance of the Mbs �Mb

additional modes then becomes the focus to investigate on, to eventually decide

whether proceed with further insights on a possible signal claim and its features.

To better figure out the evolution of the agreement index as a function of hbs, it is

possible to highlight some recurring behaviors. Small values of hbs will determine

an indented f̂ bs, not compatible with the clusters of X b. For increasing hbs; Mbs is

expected to decrease, eventually leading to a unimodal structure, as the number of

modes of a density estimate is grossly decreasing with the amount of smoothing.

This is precisely true for kernel estimators with some specific choices of kernels.

The associated behavior of I will depend on the characteristics of fb. If, with a

multimodal background, large values of hbs will not reflect the clustering structure

of fb and lead to a decreased I, in the unimodal case the agreement index will grows

with hbs and a perfect recovering of the background partition will be achieved just as

an effect of oversmoothing fbs, disregarding the presence of a signal.

The rationale underlying the proposed procedure is that the background process

is dominant with respect to any possible signal, and its density estimate f̂ b is

arbitrarily accurate. Since fb and fbs are assumed to differ just because of the

possible presence of a signal, it appears sensible to preserve a good characterization

of the background features by inducing an agreement between PbðX bÞ and PbsðX bÞ.
On the other hand, yet for the prevalence of the background process, its features are

going to be largely persistent across different smoothing amounts. In fact, by

choosing the amount of smoothness implied by the best undersmoothing bandwidth,

we aim at preserving as much as possible the relevant structures of the background

process, while highlighting new modes. Whether these modes are actually candidate

to be a signal or just sampling artifacts is then established by formally testing their

significance and further investigating on their features.

For an operational description of the procedure see the Pseudo-algorithm 1.

3.2.1 Remarks

The actual implementation of these ideas requires a number of operational choices,

discussed in the following.

– As a first step the procedure requires an estimate of the background density fb,
and therefore the selection of an appropriate smoothing parameter hb. In the

specific application, the complete knowledge of the background process, and the

consequent availability of an arbitrarily large number of observations drawn

from it, makes the selection not critical. Under minimal regularity assumptions,

the kernel density estimator is consistent, hence with a huge sample size small

changes in the quality of the estimate are expected by selecting hb via any
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sensible automatic selector proposed in literature; see Wand and Jones (1995)

and references therein for further details.

– The agreement index I employed to select hbs may be any external validation

index employed to compare different partitions of the same data. Sensible

choices are, for instance, the Fowlkes-Mallows coefficient, the Jaccard index,

the Adjusted Rand Index ( Hennig et al. 2015, Ch. 27).

– Selecting the best undersmoothing bandwidth ~hbs entails the whole process

density fbs to be estimated under the assumption of the presence of a signal. In

fact, most of the physical experiments are expected to produce no signal, hence

further steps are needed to establish whether the additional modes of fbs are

spurious or actual candidates to be signals.

To this aim, various tools can be employed. According to the concept of

persistent homology (Fasy et al. 2014), non-spurious modes are generally

associated with enduring behaviors for varying bandwidth. Hence, a true signal

is expected to produce a plateau in the plot of agreement index versus the

bandwidth. This idea is also related to the rationale underlying the SiZer map

(Chaudhuri and Marron 1999), a graphical device to display significant features

in univariate curves. Alternative tools to test mode significance, also working in

the multidimensional context, have been proposed, among others, by Genovese

et al. (2016); Burman and Polonik (2009); Duong et al. (2008).

Pseudo-algorithm 1 Semi-supervised procedure for bandwidth selection
Denote with: hgrid a grid of plausible values for hbs; I(A,B) an agreement
index between partitions A and B; α the I − type error probability of testing
the significance of the signal modes.

Input Xb, Xbs, hb, hgrid, α.
1: compute f̂b(·;Xb, hb) and count its modes Mb;
2: obtain Pb(Xb);
3: Hgrid ← ∅
4: for h in hgrid do
5: compute f̂bs(·;Xbs, h) and count its modes Mbs

6: if Mbs > Mb then
7: Hgrid ← {Hgrid ∪ h}
8: end if
9: obtain Pbs(Xb);
10: compute I (Pb(Xb), Pbs(Xb)).
11: end for
12: h̃bs ← argmaxh∈Hgrid

I (Pb(Xb), Pbs(Xb))

13: compute f̂bs(·;Xbs, h̃bs);
14: test the significance p of the modes of f̂bs
15: if p < α then
16: obtain Pbs(Xbs);
17: end if

Output: p; (Pbs(Xbs), if computed)
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3.3 Variable selection procedure

Within a nonparametric framework, the curse of dimensionality is known to have a

strong impact on the quality of the estimates. In the context of density estimation,

for high dimensional sample spaces, much of the probability mass flows to the tails

of the data density, possibly causing the appearance of spurious clusters and

averaging away features in the highest density regions. Resorting to dimension

reduction methods is then often advisable to work on a reduced subspace and to

improve the accuracy of the estimates. The identification of the reduced subspace,

either obtained by variable selection or by producing suitable combinations of the

variables, is driven by the aim of preserving the relevance and the informativeness

of the originally observed variables. Prior to reducing the dimensionality, it is

therefore crucial to give an unambiguous definition of the concepts of relevance and

informativeness. A thorough and rigorous discussion on the subject has been

conducted in the supervised learning framework (see e.g., John et al. 1994; Yu and

Liu 2004) where the availability of a response variable allows prediction oriented

characterizations of these concepts. On the other hand, their definition is more

problematic in an unsupervised context because of the symmetric role of the

variables. Therefore dimensionality reduction techniques have noticeably attracted

less attention in this framework with respect to the supervised one. In fact in the

parametric context the clustering task is recasted into a formal modeling context

which allows to link the concept of relevance to the latent variable encoding the

group membership structure (Ritter 2014). Hence some approaches have been

proposed and readers can refer to Bouveyron and Brunet-Saumard (2014); Fop and

Murphy (2018) for recent reviews.

On the other hand there is a lack of dimensionality reduction strategies

specifically conceived to improve nonparametric density estimation and with a

modal clustering aim in mind. In this framework, the dimension is usually reduced

by considering general-purpose tools such as principal components analysis (PCA),

multidimensional scaling, or more involved techniques such as nonlinear manifold

learning (see e.g., Lee and Verleysen 2007; Ma and Fu 2011; Izenman 2012, for

more detailed tractations of the topic). Procedures as isomap and locally linear

embedding aim to map the observed data into a lower dimensional unknown

manifold, embedded in the original high-dimensional space, by means of a

nonlinear function preserving the relevant information in the data. In front of a

greater flexibility these approaches require an higher computational complexity. As

a consequence linear techniques such as PCA are still among the most commonly

considered ones in cluster analysis routines even though components associated

with larger eigenvalues do not necessarily retain useful information about the

clustering structures (e.g. Chang 1983).

In our framework, subject-matter knowledge may aid in defining the concept of

relevance and informativeness which shall be then related to the aim of identifying a

possible signal whose behavior departs from the one of the background process.

Therefore we drive (i.e. semi-supervise) the dimensionality reduction process by

exploiting the additional knowledge available on the background process. In this
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work, as opposed to some of the lower-dimensional mapping procedures mentioned

above, we pursue a variable selection approach allowing to interpret the subsequent

results in terms of the originally observed features. Our choice is specifically

motivated by the high energy physics framework where the identification of a signal

is followed by further in-depth analyses, aiming to unveil the underlying physical

mechanisms, that are possible only if the meaning of the variables is retained.

In this perspective, we assume a variable to be relevant if its distribution shows a

changed behavior in fbs with respect to fb; as this difference shall be only due to the

presence of a signal, not seen in the background density. This idea is pursued by

comparing repeatedly the estimated densities f̂ b and f̂ bs on subsets of variables and

by eventually selecting those variables that, more often, are responsible for a

different behavior of the two marginal distributions.

Among the many possible alternatives, we consider as a comparison criterion a

two sample version of the integrated squared error, extensively used in the

nonparametric framework to assess the quality of a density estimate. The statistic,

proposed by Anderson et al. (1994) to test the equality of two distributions and

shown to be asymptotically normal (Duong et al. 2012), is the integrated squared
difference between a kernel estimate of the two densities under evaluation. In our

setting, the test is repeatedly applied on the marginal kernel densities estimated on a

subset of variables, based on the background and the whole process data. Formally,

at each step k variables are selected at random among the d observed ones, the

samples X b and X bs are reduced coherently to X k
b and X k

bs, and used to estimate the

underlying distribution. Then the statistic
Z

Rk
f̂ b �;X k

b; h
� �

� f̂ bs �;X k
bs; h

� �� �2
dx ð3Þ

is computed. Large values are considered evidence of a departure of fbs from fb;
ascribable to a different behavior of the selected k variables. For those variables a

counter is then updated to account for such evidence. At the end of the procedure,

the counter will give an indication about the relative relevance of each single

variable. If d0\d variables show evidence of a remarkable relevance with respect to

the other ones, these are selected and the associated reduced samples Sb and Sbs; of

size nb � d0 and nbs � d0 respectively, are then intended to be used in place of X b

and Xbs within the main methodology illustrated in the previous section.

For an operational description of the procedure see Pseudo-algorithm 2.

3.3.1 Remarks

The procedure described so far, albeit in principle sensible, requires a few choices to

be discussed.

– In order to perform the test based on (3) under the null hypothesis of equal

distributions, the kernel estimates of both the processes are built on the basis of

the same bandwidth h. While, one more time, one has to deal with the problem

of selecting such bandwidth, at this phase of the procedure any sensible
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bandwidth selector can be employed, as the main aim is not to obtain an accurate

density estimate but just a fair comparison between the two distributions.

– While selecting at each step k ¼ 1 variables would guarantee to count for the

relevance of the only variables possibly responsible for a different behavior

in the two processes under consideration, the choice of working with a subset

of k[ 1 variables aims to keep the relations among variables while working

on a reduced space. It might occur, indeed, that a signal not emerging in the

univariate behaviour of the observed variables would, in fact, manifest in

their joint distribution. The choice of k is subjective and it can be motivated

both by computational reasons and by theoretical considerations on the

degradation of the estimates. An upper bound may be given by Scott (2015)

that, studying the probability mass content flowing to the tails of a

multivariate normal density, suggests to consider kernel density estimators up

to five or six dimensions.

– Operationally, a subset of k variables is candidate to be relevant if the test based

on (3) results in a low p�value. A possible argument is that, using a test at each

step of the procedure, a multiple testing problem arises. In fact, the procedure

does not aim at testing the difference between distributions, but it is built just to

give a general indication of which variables are responsible for a possible

difference. In this sense, following heuristic, non-rigorous principles to a certain

extent looks a sensible choice.

– The proposed procedure to select the relevant variables implicitly assumes that

the unlabeled data exhibit, in fact, the presence of a signal. When this is not the

case, the relevance counter is likely not to vary that much across the variables,

thus not showing evidence of some variables being more informative than

others. This gives a first, rough, answer to the research question on whether the

signal is present or not.

Pseudo-algorithm 2 Semi-supervised variable selection procedure
Denote with: M the number of iterations of the procedure and k the number
of variables selected at each iteration; count a d-dimensional vector giving an
indication about the relevance of each variable and countk the elements of
count indexed by the k variables selected at that iteration.

Input Xb, Xbs, M , k.
1: count ← (0, . . . , 0)
2: for i=1,. . . ,M do
3: select randomly k variables;
4: compare f̂b(Xk

b ) and f̂bs(Xk
bs);

5: if f̂b(Xk
b ) = f̂bs(Xk

bs) then
6: update countk ← countk + 1.
7: end if
8: end for

Output: k∗, a vector of length d with d < d, indexing the set of variables considered
to be relevant.
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4 Application

To illustrate the proposed methodology, we consider its application to a Monte

Carlo physical process simulated at a parton level according to the configuration of

the ATLAS detector, within the LHC at CERN. Note that unlike statistical

simulations, where data are generated from a given probability distribution, physical

Monte Carlo simulations are realizations of possible collisions, produced by a

complex system of subsequent steps, based on theoretical parton distribution

functions, possible collision effects as, for instance, creation of elementary particles,

coupling, interactions. The simulations also cover further processes that the particles

are subject to immediately after the collision, as for example their deceleration,

scatterings or jet creation. For such simulated events, a detector response is

computed based on its measurement efficiency, and a trigger is applied, to reflect

conditions in which the experimental data are collected.

Each observation then corresponds to a single collision event and the associated

variables describe the kinematics of the decaying results of the collision. Variables

are classified into 22 low-level features, representing basic measurements made by

the particle detector, as well as the result of standard algorithms for reconstructing

the nature of the collision, namely the leading lepton momenta, the missing

transverse momentum magnitude and angle, the momenta of the first four more

energetic jets, the b-tagging information for each jet. Additionally, 5 high-level

variables are considered, which combine the low-level information to approximate

the invariant masses of the intermediate particles. Since a few of the considered

variables are highly discretized, they have been removed from the analysis to allow

for a proper application of kernel methods. The final data count d ¼ 23 variables.

The signal is simulated as a new particle of unknown mass which decays to a top

quark pair production tt. The known background is in turn a Standard Model top

pair production, identical in its final state to the signal but distinct in the kinematic

characteristics because of the lack of an intermediate resonance. Refer to Baldi et al.

(2016) for a detailed description of the data and their characteristics.

From the original data set including several millions of collision events of both

the background and the signal processes, two samples X b and X bs have been drawn,

each including 20,000 observations. In fact, the latter set has been split into two

halves, to be used as training and test sample, so that nb = 20,000, nbs = 10,000

ultimately, and a further test set XT
bs of size nTbs = 10,000 is at hand. The choice of

the sample sizes is motivated by the aim of keeping the analysis computationally

feasible with standard machines, but of course larger samples could be extracted,

given the huge amount of data available, especially for the background. In the X bs

data set, we consider a signal proportion amounting to the 30% of the data.

Since the data are simulated, both Xb and X bs are, in fact, labeled. However, to

mimic their use in a realistic setting where X bs would represent the experimental,

unlabelled, data, labels of X bs have been employed for evaluating the quality of the

results only.

In the left panel of Fig. 2, the results of the variable selection procedure are

displayed. The test based on (3) has been performed by extracting 1000 subsets of
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k ¼ 3 variables from the original 23. To compute the test statistic, we adopted the

rule of thumb of selecting h as asymptotically optimal for a Normal underlying

background density. Two features, numbered as 23 and 7, and corresponding to the

combined mass of two bottom quarks with two W bosons, and the transverse

momentum of the leading jet, show a remarkably different behaviour between the

background and whole process densities. In the subsequent analyses we have

worked with these two variables only. The estimated background density on the

reduced set of bivariate data Sb results unimodal, as illustrated in the right panel of

Fig. 2. The estimate f̂ b has been obtained by selecting a plug-in gradient bandwidth

hb (Chacón and Duong 2010). It is worth noting, however, that due to the large

amount of available data, most of automatic bandwidth selectors lead to grossly the

same result. Due to the unimodality of f̂ bð�;Sb; ~hbÞ, the induced partition PbðSbÞ is

formed by one group only.

Figure 3 shows the results of the application of the procedure sketched in the

Pseudo-algorithm 1. Nonparametric clustering has been performed by applying the

mean-shift algorithm which allows for a natural classification of the background

observations not employed to determine the partition. As an agreement measure, we

have considered the Fowlkes-Mallows index, as it is sensitive to a different quality

of partitions also when one of the two partitions is formed by one group only (as it is

PbðSbÞ in our case). The bandwidth ~hbs has been selected as the maximum value of

the agreement index associated to more than one mode and determines a bimodal

f̂ bsð�;Sbs; ~hbsÞ (middle panel of Fig. 3). Specifically, the plot of the agreement index

versus the bandwidth, illustrated in the left panel of Fig. 3, reveals that small values

of the bandwidth hbs determine a low quality in the classification of the background

observations, likely due to a heavily undersmoothed f̂ bs with a complex modality

not shared by the background density. From some hbs on, the agreement index lifts

up to high values, remaining stable for a wide range of hbs, and associated to a

bimodal f̂ bs. This is a first rough indication about the non-spuriousness of the

detected modes. Finally, I grows up to its maximum value, occurring when the

density estimate of the whole process gets unimodal as the background is. The

significance of the additional mode, potential candidate to be the signal, is formally

evaluated via the application of the test proposed by Genovese et al. (2016).

Inference relies on computing a bootstrap-based confidence interval for the

eigenvalues of the Hessian at the given mode of the density estimate, based on a test

sample of data (the selected XT
bs in our case). The derived intervals, at the level

1 � a ¼ 0:0001 are entirely included in the negative semi-axis, suggesting the

significance of the mode (right panel of Fig. 3).

Hence, density f̂ bsð�;Sbs; ~hbsÞ has been employed to determine a partition of Sbs

in order to finally identify the signal events. Table 1 compares the detected labels

with the true ones and shows a satisfying quality of the partition, with a Fowlkes-

Mallows index (FMI) equal to 0.84 and a True positive rate (TPR) amounting to the

80% of the observed signal.

As a benchmark procedure, we also applied the parametric semi-supervised

method proposed by Vatanen et al. (2012). Due to the high dimensionality, data

123

A. Casa, G. Menardi



have been preliminarly reduced according to two different routes: first, we followed

the authors suggestions and performed principal component analysis (PC). We kept

6 components, to exceed the 50% of explained variance. While in Table 1 we just

reported the aggregated background and signal classes, the method finds 12

background clusters and 4 additional components capturing the signal. The overall

Fowlkes-Mallows index is equal to 0:77%, which is pretty satisfying but the true

positive rate amounts to the 50% only. As a second route to reduce the data

dimensionality, we considered the two variables selected according to the proposed

nonparametric procedure. Results, reported in Table 1, are improved over the use of

principal components analysis to reduce data dimensionality, thus showing further

evidence about the relevance of the selected variables. However, the final partition

is less accurate than the one obtained via the proposed nonparametic methodology.

In this setting, 5 Gaussian components have been selected via the Bayesian

Information Criterion to model the background and 4 components are used to fit the

signal.

For the sake of completeness, and with the aim of controlling for the different

sources of result variability, we also tested our anomaly detection procedure on the

data reduced via PCA. The resulting classification is rather accurate, but the mode

associated to the signal is, in that setting, definitely not significant. The result

strengthens the idea that dimension reduction has to be driven by the considered

concept of relevance and informativeness of the original variables.

All the analyses has been performed in the R environment (R Core Team 2018),

with the aid of the ks package (Duong 2018) to perform density estimation and

nonparametric clustering based on the mean-shift algorithm.

5 Final remarks

In this paper we have presented a global semi-supervised methodology aiming to

identify a possible presence of a signal, within the distribution of a known

background process. While finding motivation in particle physics applications, the

methodology easily extends to all those other fields where the searched signal

Table 1 True classification of background and signal versus: classification obtained with the proposed

nonparametric semi-supervised procedure applied on the two selected variables, classification obtained

with the parametric procedure proposed by Vatanen et al. (2012) applied on the first 6 principal com-

ponents and classification obtained with the same parametric method applied on the same two variables

selected by the nonparametric approach

Nonparametric method Parametric method - 6 PC Parametric method - 2 var

1 2 1 2 1 2

Background 6582 441 6709 314 6646 377

Signal 604 2373 1500 1477 1305 1672

FMI 0.84 FMI 0.77 FMI 0.78

TPR 0.80 TPR 0.50 TPR 0.56
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represents any anomaly expected to appear collectively in regions of the sample

space which are compatible with the domain of the normal process.

Whatever application field is considered, an implicit common denominator is the

greatest interest in the unknown signal process, whose detection would represent a

far-reaching discovery. While any such discovery cannot be claimed without further

analyses, the proposed methodology shall be considered as a fundamental step in the

direction of forewarning of the possible presence of some anomaly, with the

additional indication of which specific observations are the suspected anomalous

ones. In this perspective, our proposal has proved remarkably useful and its

application to physical data has led to promising results, which overperform the

parametric counterpart (Vatanen et al. 2012). In addition to the anomaly detection,

the proposed procedure for variable selection exhibits good results as well, with

respect to standard alternatives such as principal components, in building a

meaningful subspace to work on.
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