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COVID-19 in Lombardia, con l’utilizzo del numero
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Abstract The daily fluctuations in the released number of Covid-19 cases played a
big role both at the beginning and in the most critical weeks of the outbreak, when
local authorities in Italy had to decide whether to impose a lockdown and at which
level. Public opinion was focused on this information as well, to understand how
quickly the epidemic was spreading. In this work, we propose a nonlinear asymmet-
ric diffusion model, which includes information on the daily number of swabs, to
describe daily fluctuations in the number of confirmed cases in addition to the main
trend of the outbreak evolution. The proposed model is compared with alternative
model structures in the application to data of the Lombardy region.
Abstract Le oscillazioni giornaliere nel numero di contagi diagnosticati di Covid-
19 sono state al centro dell’attenzione nelle fasi iniziali della pandemia, quando
le autorità avevano scarsi elementi per decidere quali restrizioni adottare. Anche
l’opinione pubblica e i media erano costantemente focalizzati su questo dato quo-
tidiano, per cercare di ricavarne elementi sull’evoluzione del contagio. In questo
lavoro, proponiamo un modello di diffusione nonlineare asimmetrico per descri-
vere, oltre al trend dei contagi diagnosticati, le oscillazioni giornaliere. Il modello
utilizza come input il numero di tamponi processati quotidianamente. Il modello
proposto è sottoposto a comparazione con altri cinque modelli sui dati della re-
gione Lombardia.
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1 Introduction

Italy was the first nation to be affected by Covid-19 after China, and the epidemic
has mainly been located in Nothern Italy. On February 21st, 2020, an infected pa-
tient was detected in the small town of Codogno, which is located in the Lombardy
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region. During the first wave, among the Italian regions, Lombardy is the most af-
fected by the epidemic, with a death toll three times greater than that in China [1]. It
is apparent that, in Italy, the regional autonomy regarding health policy has resulted
in services with different levels of quality [1], such as the number of beds and the
capacity of processing swabs. With regard to the number of beds in Italy, the fore-
casts of hospitalisations was faced by [2] for the bordering Veneto region, while [3]
modeled the intensive care unit occupancy.

The capacity of processing swabs is of particular importance for detecting the
state of the epidemic, measuring the lockdown effects and, most importantly, reduc-
ing the outbreak. Our opinion is that it is necessary to include the number of swabs
to describe the local fluctuations in the epidemic evolution in addition to detecting
the main trend. At the beginning of the outbreak, the curve of confirmed cases was
usually modeled through an exponential [4] or a logistic growth model [5]. When
the data collection window became long enough, the models were usually of two
types: the compartmental and ARIMA models.

We made an effort to describe the cumulative number of confirmed cases in the
Lombardy region, based on the combination of a nonlinear model and the number
of completed swabs. In the class of growth models, we propose a new version of the
dynamic potential model [6], where the novelty consists of the formulation of a new
intervention function with the number of daily swabs as an explanatory variable.
The model is particularly parsimonious since the intervention function has only one
additional parameter. The base of the dynamic potential model was chosen since
a) it has an asymmetric shape and makes it possible to model a ‘saddle’, which is
a rather common nonlinear pattern; b) it gives an estimate of the total number of
confirmed cases at the end of the epidemic; and c) the total number of confirmed
cases is not fixed throughout the outbreak, but it is allowed to change over time.
Since the capability of processing swabs increased over time and, consequently, the
meeting criteria for people for being tested were enlarged with the aim of detecting
a larger number of asymptomatic positive subjects, it is sensible to suppose that the
number of diagnosed cases increases with time.

The proposed model was compared with five alternative growth models described
in Section 2. Three-week forecasts of the spreading dynamics were provided for
each model as well. The models were compared in terms of R2 and BIC values, for
the cumulative values. The squared linear correlation coefficient between observed
and fitted daily values was evaluated as well.

2 Models

A general diffusion of innovations model can be defined through a nonlinear regres-
sion model as follows:

y(t) = z(t,ϑ)+ ε(t), (1)

where y(t) are the cumulative sales of a product at time t and z(t,ϑ) = z(t) is a
specific structure to be used to describe an evolution process. Here, εt are assumed
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to be i.i.d. Gaussian with variance σ2. The components of the parameter vector
ϑ are jointly estimated using nonlinear least squares (or, equivalently, likelihood
estimation).

In this paper, we will compare the performance of alternative evolution struc-
tures. The basic model is a logistic one (LOG):

z(t) = m
e

t−λ
η

1+ e
t−λ

η
, (2)

where λ is the mode, median and average of the distribution, while η is a shape
parameter. Parameter m is the market potential, which is the limiting value for z(t),
as t goes to infinity.

The Generalized Bass Model corresponds to:

z(t) = m
1− e−(p+q)

∫ t
0 w(τ)dτ

1+ q
p e−(p+q)

∫ t
0 w(τ)dτ

, (3)

where m is the market potential, p is the innovation coefficient, q is the imitation
coefficient and w(t) can be any integrable function. The effect of the intervention
function w(t) is to accelerate or decrease diffusion with respect to a symmetric uni-
modal path, which would arise in (3) for w(t) = 1 for all t values. For t values such
as w(t)> 1 diffusion is accelerated, while w(t)< 1 corresponds to time periods with
decreased diffusion speed. Below, we examine the model (GBMRECT) arising when
w(t) is specified by the so-called rectangular shock:

wR(t) = 1+ cIa≤t≤b. (4)

This allows us to describe the diffusion of a product for which we observe a constant
shock with intensity c, either positive or negative, in the time interval [a,b] [7].

Due to the asymmetric path observed for almost every region, we also examine
the more flexible Bemmaor model, in an extended version with a rectangular shock
(BeGBMRECT):

z(t) = m
1− e−(p+q)

∫ t
0 wR(τ)dτ

[1+ q
p e−(p+q)

∫ t
0 wR(τ)dτ ]A

, (5)

where A is a further parameter allowing for asymmetry (positive asymmetry for
A > 1, negative asymmetry for A < 1), with function wR specified as in (4).

A different way to provide flexibility to the evolutive structure can be obtained
through a dynamic market potential model [6], eventually perturbed by shocks

z(t) = m

√
1− e−(pc+qc)t

1+ qc
pc

e−(pc+qc)t
1− e−(p+q)

∫ t
0 w(τ)dτ

1+ q
p e−(p+q)

∫ t
0 w(τ)dτ

, (6)

where pc and qc are two parameters to describe how fast the dynamic market poten-
tial approaches its maximum value, m, while w(t) is a general intervention function.
If in model (6) we use, as proposed in [8], the following intervention function
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ws(t) = 1+α1 cos
(

2πt
s

)
+α2 sin

(
2πt

s

)
, (7)

we allow the model to incorporate cyclic seasonal fluctuations of width α1 and α2
with period s (DMPseas). If w(t) = 1, we obtain dynamic market potential (DMP).

Here, we propose to assess the usefulness of a dynamic market potential model
as in (6), but with an intervention function depending upon the number of swabs
analyzed at day t, B(t) (DMPsw). In particular, we suggest using

wB(t) = 1+ξ
(

B(t)−µB

σB

)
, (8)

where µB and σB are the average and the standard deviation, respectively, of the
B(t) values recorded during the observation period. It is easy to appreciate that such
a structure accelerates, with respect to an underlying trend described by a DMP, the
number of cases whenever B(t) exceeds its average, while cases are reduced with a
below-average number of swabs.

3 Applications

Models of Section 2 were applied to the data of Lombardy, and forecasts up to
May 24th are provided (three weeks ahead for each region). The six models were
fitted to the cumulative confirmed cases using NLS estimation. Table 1 summarizes
the values of the determination index R2 for all models: the huge values of R2 are
unsurprising, given that we are working with cumulative data and any S-shaped
fitting produces high determination indexes.

Lombardy is the Italian region where COVID-19 spread in the most dramatic
way. The total number of infected people on May 3rd was 77528 with more than
14000 deaths (about half of the death toll up to that date in Italy as a whole). The
results for Lombardy are displayed in Table 1 (R2, BIC and ρ2), and in Figure 1,
where observed and fitted daily values are plotted.

For this region, the logistic (Figure 1(a)) is the less effective model in describing
the asymmetrical evolution of the epidemic.

A positive (ĉ > 0) rectangular shock is significantly diagnosed at the beginning
of the time series, both in the GBMRECT and the BeGBMRECT. The GBMRECT es-
timates the end of the shock on March 25th (t ≃ 34), but according to Figure 1(b),

Table 1 R2 of the nonlinear models and corresponding BIC (cumulative data as response variable)
and squared linear correlation coefficient, ρ2, between observed instantaneous sales and fitted
instantaneous sales.

LOG GBMRECT BeGBMRECT DMP DMPseas DMPsw
Lombardy R2 0.993010 0.999629 0.999900 0.999834 0.999860 0.999919

BIC 1143.348 941.8574 850.6930 878.7936 879.2002 830.5268
ρ2 0.593900 0.690817 0.826706 0.803006 0.820098 0.902698
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this is not perfectly matching with the data. This is the reason why, for this model,
ρ2 is particularly small (0.690817).

Conversely, the BeGBMRECT better identifies the end of the shock three days
later, on March 28th, when we observe a relevant stable decrease. For this region,
the lockdown policy had a delayed effect compared to what happened in Veneto, as
the decrease in the number of cases was registered 20 days after March 8th, while
the incubation period is up to 14 days. One reason for such a wider interval could
be possible delays in taking and processing the swabs; in fact, the health system of
Lombardy experienced an unexpected overload.

With the DMP model (Figure 1(d)), it is possibile to fully appreciate the asym-
metrical shape of the outbreak, especially the slow decrease in the number of cases
in this region. However, its performance in terms of R2, ρ2 and BIC is worse than
that of the BeGBMRECT.

The performance of the DMPseas, with a weekly cycle (ŝ = 7.005 days), is not
satisfactory, as it does not adequately capture the fluctuations (except for the very
end of the series). Here, too, the R2, ρ2 and BIC values are worse than those obtained
with the BeGBMRECT.

Finally, the DMPsw (Figure 1(f)) performs very well. With this model, we ob-
tained the largest values for R2, 0.999919, and ρ2, 0.902698. The BIC value for this
model, 830.5628, supports it with respect to the BeGBMRECT (850.6930), which
was the best model up to this point. The proposed model, which is highly parsimo-
nious, is able to describe the daily fluctuations in cases very well and proved to be
the best of the models analysed here for Lombardy.
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Fig. 1 Lombardy. Observed and fitted values with the alternative models. (a) Logistic (LOG);
(b) GBM with rectangular shock (GBMRECT); (c) Bemmaor GBM with rectangular shock
(BeGBMRECT); (d) Dynamic market potential (DMP); (e) Dynamic market potential+seasonal ef-
fect (DMPseas); (f) Dynamic market potential+swabs (DMPsw).
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